1
|
Ramírez-Álvarez R, Peterson TA, Contreras S, Górski K. Evolution of the ecological niche behind the largest disjunct freshwater fish distribution in the world. J Anim Ecol 2024; 93:715-730. [PMID: 38529896 DOI: 10.1111/1365-2656.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Ecological processes that are behind distributions of species that inhabit isolated localities, complex disjunct distributions, remain poorly understood. Traditionally, vicariance and dispersion have been proposed as explanatory mechanisms that drive such distributions. However, to date, our understanding of the ecological processes driving evolution of ecological niches associated with disjunct distributions remains rudimentary. Here, we propose a framework to deconstruct drivers of such distribution using World's most widespread freshwater fish Galaxias maculatus as a model and integrating marine and freshwater environments where its life cycle may occur. Specifically, we assessed ecological and historical factors (Gondwanan vicariance, marine dispersion) and potential dispersion (niche-tracking) that explain its distribution in the Southern Hemisphere. Estimated distribution was consistent with previously reported distribution and mainly driven by temperature and topography in freshwater environments and by primary productivity and nitrate in marine environments. Niche dynamics of G. maculatus provided evidence of synergy between vicariance and marine dispersion as explanatory mechanisms of its disjunct distribution, suggesting that its ecological niche was conserved since approximately 30 Ma ago. This integrated assessment of ecological niche in marine and freshwater environments serves as a generic framework that may be applied to understand processes underpinning complex distributions of diadromous species.
Collapse
Affiliation(s)
| | - Townsend A Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Sergio Contreras
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Konrad Górski
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
2
|
Nzei JM, Martínez-Médez N, Mwanzia VM, Kurauka JK, Wang QF, Li ZZ, Chen JM. Climatic niche evolution and niche conservatism of Nymphaea species in Africa, South America, and Australia. BMC PLANT BIOLOGY 2024; 24:476. [PMID: 38816799 PMCID: PMC11137912 DOI: 10.1186/s12870-024-05141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Interest in the evolution of climatic niches, particularly in understanding the potential adaptive responses of species under climate change, has increased both theoretically and within macroecological studies. These studies have provided valuable insights into how climatic traits of species influence their niche evolution. In this study, we aim to investigate whether niche conservatism plays a role in the species diversification of Nymphaea, a group of aquatic plants with a cosmopolitan distribution that is facing severe habitat loss. We will use climatic models and phylogenetic data for 23 species to reconstruct Nymphaea's niche evolution, measure niche overlap, and assess disparity through time while testing for evolutionary models. RESULTS There was a lot of overlap in niches both within and between groups, especially for species that can be found in many places. The breadth and peaks of the niche profile varied depending on the bioclimatic variables, which suggested that the species evolved differently to cope with changes in climate. The analysis also showed that evolutionary changes happened across the phylogeny, with weak to moderate signals. The morphological disparity index (MDI) values indicated that there were disparities within subclades over time but not between or among them. Niche reconstruction and evolution analysis revealed both convergent and divergent evolution among various variables. For example, N. immutabilis, N. atrans, N. violancea, and N. nouchali evolved towards intermediate temperatures for bio2 and bio3 (isothermity) while moving towards extreme temperatures for bio8 and bio9 (wettest and driest average quarterly temperatures). CONCLUSION Our study will improve our understanding of how changes in climatic niches are potentially driving the evolution of Nymphaea. It has significant scientific implications for the limits, assemblages, evolution, and diversification of species. This information is crucial for the ongoing efforts of conservation and management, particularly considering the inevitable effects of climate change.
Collapse
Affiliation(s)
- John M Nzei
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Norberto Martínez-Médez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Virginia M Mwanzia
- School of Agriculture Technical Studies and Natural Sciences, Lukenya University, P.O Box 90-90128, Mtito Andei, Kenya
| | - Joseph K Kurauka
- School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Qing-Feng Wang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
3
|
Mejía O, Martínez-Méndez N, Pérez-Miranda F, Matamoros WA. Climatic niche evolution of a widely distributed Neotropical freshwater fish clade. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The role of climate in the speciation process has been documented widely in ectotherms but poorly in freshwater fishes, which represent the richest clade among vertebrates. In this study, we have evaluated the occurrence of phylogenetic niche evolution as a promoter of diversification in the herichthyines (Cichliformes: Cichlidae) clade. We used distributional and bioclimatic data, niche modelling algorithms and phylogenetic comparative methods to study patterns of climatic niche evolution in the herichthyines clade. Our results suggested that herichthyines display signals of phylogenetic niche conservatism, but also signals of niche evolution in the last 14 Myr associated with the availability of new habitats promoting ecological opportunity within the clade. We also concluded that niche conservatism is equally strong in the fundamental and realized niches, which indicates a need to evaluate the potential role of biotic interactions in the evolution of the niche in future studies.
Collapse
Affiliation(s)
- Omar Mejía
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Norberto Martínez-Méndez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Fabian Pérez-Miranda
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Chiapas, México
| | - Wilfredo A Matamoros
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Chiapas, México
| |
Collapse
|
4
|
Nunes LA, Raxworthy CJ, Pearson RG. Evidence for ecological processes driving speciation among endemic lizards of Madagascar. Evolution 2021; 76:58-69. [PMID: 34862965 DOI: 10.1111/evo.14409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Although genetic patterns produced by population isolation during speciation are well documented, the biogeographic and ecological processes that trigger speciation remain poorly understood. Alternative hypotheses for the biogeography and ecology of speciation include geographic isolation combined with niche conservation (soft allopatry) or parapatric distribution on an environmental gradient with niche divergence (ecological speciation). Here, we use species' distributions, environmental data, and two null models (the Random Translation and Rotation and the Background Similarity Test) to test these alternative hypotheses among 28 sister pairs of microendemic lizards in Madagascar. Our results demonstrate strong bimodal peaks along a niche divergence-conservation spectrum, with at least 25 out of 28 sister pairs exhibiting either niche conservation or divergence, and the remaining pairs showing weak ecological signals. Yet despite these significant results, we do not find strong associations of niche conservation with allopatric distributions or niche divergence with parapatric distributions. Our findings thus provide strong evidence of a role for ecological processes driving speciation, rather than the classic expectation of speciation through geographic isolation, but demonstrate that the link between ecological speciation and parapatry is complex and requires further analysis of a broader taxonomic sample to fully resolve.
Collapse
Affiliation(s)
- Laura A Nunes
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, New York, New York, 10024
| | - Richard G Pearson
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Prado JR, Percequillo AR, Pirani RM, Thomaz AT. Phenotypic and genomic differences between biomes of the South America marsh rat, Holochilus brasiliensis. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Abiotic factors can influence genetic and phenotypic divergence in several ways, and identifying the mechanisms responsible for generating this variation is challenging. However, when evaluated in combination, ecological characteristics and genetic and phenotypic information can help us to understand how habitat preferences can influence morphological and genetic patterns exhibited by taxa distributed between distinct biomes, such as the Atlantic Forest and Pampas biomes in South America. By combining distributional, environmental, phenotypic and genomic information from a habitat-specialist semi-aquatic rodent (Holochilus brasiliensis), we quantified the relationship between ecological niche differences and the phenotypic and genetic variation. The results demonstrate notable segregation among the ecological niches of H. brasiliensis within each biome, although we could not refute the hypothesis of niche similarity or equivalency. Such differences are consistent with a solid morphometric variation associated with the size of these rodents. However, the ecological and morphometric differentiation is not accompanied by the same pattern of genetic variation. Despite differences in the connectivity patterns in both biomes, the genetic differences corroborate a consistent level of migration history between biomes. Additionally, the association tests show that the environment explains a small and non- significant part of the genetic variation but a significant portion of the morphometric variation.
Collapse
Affiliation(s)
- Joyce R Prado
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Alexandre R Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata M Pirani
- Biology Department, University of Nevada-Reno, Reno, NV, USA
| | - Andrea T Thomaz
- Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, DC, Colombia
| |
Collapse
|
6
|
Calixto-Rojas M, Lira-Noriega A, Rubio-Godoy M, Pérez-Ponce de León G, Pinacho-Pinacho CD. Phylogenetic relationships and ecological niche conservatism in killifish (Profundulidae) in Mesoamerica. JOURNAL OF FISH BIOLOGY 2021; 99:396-410. [PMID: 33733482 DOI: 10.1111/jfb.14727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 05/12/2023]
Abstract
The family Profundulidae is a group of small-sized fish species distributed between southern Mexico and Honduras, where they are frequently the only fish representatives at higher elevations in the basins where they occur. We characterized their ecological niche using different methods and metrics drawn from niche modelling and by re-examining phylogenetic relationships of a recently published molecular phylogeny of this family to gain a better understanding of its biogeographic and evolutionary history. We assessed both lines of evidence from the perspective of niche conservatism to set a foundation for discussing hypotheses about the processes underlying the distribution and evolution of the group. In fish clades where the species composition is not clear, we examined whether niche classification could be informative to discriminate groups geographically and ecologically consistent with any of the different hypotheses of valid species. The characterization of the ecological niche was carried out using the Maxent algorithm under different parameterizations and the projection of the presence on the main components of the most relevant environmental coverage, and the niche comparison was calculated with two indices (D and I), both in environmental space and in that projected geographically. With the molecular data, a species tree was generated using the *BEAST method. The comparison of these data was calculated with an age-overlap correlation test. Based on the molecular phylogeny and on niche overlap analyses, we uncovered strong evidence to support the idea that ecologically similar species are not necessarily sister species. The correlation analysis for genetic distance and niche overlap was not significant (P > 0.05). In clades with taxonomic conflicts, we only identified Profundulus oaxacae as a geographically and ecologically distinct group from P. punctatus. All the evidence considered leads us to propose that Profundulidae do not show evidence of niche conservatism and that there are reasons to consider P. oaxacae as a valid species. Our study suggests that niche divergence is a driving evolutionary force that caused the diversification and speciation processes of the Profundulidae, along with the geological and climatic events that promoted the expansion or contraction of suitable environments.
Collapse
Affiliation(s)
- Miguel Calixto-Rojas
- Doctorado en Ciencias, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, Veracruz, Mexico
| | - Andrés Lira-Noriega
- CONACyT Research Fellow, Instituto de Ecología A. C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, Veracruz, Mexico
| | - Miguel Rubio-Godoy
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera Antigua a Coatepec 351, Veracruz, Mexico
| | | | - Carlos D Pinacho-Pinacho
- CONACyT Research Fellow, Instituto de Ecología A. C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, Veracruz, Mexico
| |
Collapse
|
7
|
Cheng J, Xia L, Feijó A, Shenbrot GI, Wen Z, Ge D, Lu L, Yang Q. Phylogeny, taxonomic reassessment and ‘ecomorph’ relationship of the Orientallactaga sibirica complex (Rodentia: Dipodidae: Allactaginae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The ecological gradient–morphological variation (‘ecomorph’) relationship has long interested ecologists and evolutionary biologists, but it is applied far less frequently than genetic differentiation in cryptic species detection and species identification. With integrative methods, we revise taxonomic uncertainties in the Orientallactaga sibirica complex (OSC), with 298 sequence specimens and 469 voucher specimens from 138 localities covering nearly the entire distribution of the OSC. Phylogenetic relationships are assessed by Bayesian inference and maximum likelihood using two mitochondrial and nine nuclear genes. We use species-delimitation approaches to divide and validate the ‘candidate species’. We evaluate correlations between ecological divergence and phylogenetic splits, and visualize geographical patterns of morphological variation. The OSC is divided into four phylogenetic groups, the Ognevi, Altay, Bogda and Sibirica groups, and the OSC exhibits a significant ecomorph relationship and ecological divergence pattern. Morphological variations not only follow the general regularity under a large gradient of ecological factors, but are also closely related to the local environment/habitat. We suggest considering the comprehensive ecomorph relationship to identify species. Molecular analyses reveal that the OSC more easily forms deeply divergent lineages in the foothills and this differentiation depth may be related to mountain system size.
Collapse
Affiliation(s)
- Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Liang Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Changping District, Beijing, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
8
|
Ichthyological Differentiation and Homogenization in the Pánuco Basin, Mexico. DIVERSITY 2020. [DOI: 10.3390/d12050187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Species introductions and extirpations are key aspects of aquatic ecosystem change that need to be examined at large geographic and temporal scales. The Pánuco Basin (Eastern Mexico) has high ichthyological diversity and ecological heterogeneity. However, freshwater fish (FWF) introductions and extirpations since the mid-1900s have modified species range and distribution. We examine changes in FWF species composition in and among four sub-basins of the Pánuco by comparing fish collection records pre-1980 to 2018. Currently, the FWF of the Pánuco includes 95 species. Fishes in the Poeciliidae, Cyprinidae, and Cichlidae, respectively, comprised most records over time. Significant differences in species composition were found between the first (pre-1980) and last (2011–2018) study periods, but not for periods in-between. Eight independent species groups were key for explaining changes in Pánuco river ichthyofauna; one group was dominated by invasive species, and saw increases in the number of records across study periods (faunal homogenization). Another group was formed by species with conservation concern with a declining number of records over time. Thirteen (2 native and 11 non-native) species were responsible for temporal turnover. These results strongly suggest high rates of differentiation over time (via native species loss) following widespread non-native species introductions.
Collapse
|
9
|
Pérez-Miranda F, Mejia O, López B, Říčan O. Molecular clocks, biogeography and species diversity in Herichthys with evaluation of the role of Punta del Morro as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification. PeerJ 2020; 8:e8818. [PMID: 32391194 PMCID: PMC7195834 DOI: 10.7717/peerj.8818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/28/2020] [Indexed: 11/20/2022] Open
Abstract
Using molecular dated phylogenies and biogeographic reconstructions, the species diversity, biogeography and time frame of evolution of the genus Herichthys were evaluated. In particular, we test the role of Punta del Morro (PdM) as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification using several sets of calibrations. Species diversity in Herichthys is complex and the here employed dating methods suggest young age and rapid divergence for many species while species delimitation methods did not resolve these young species including both sympatric species pairs. Based on our molecular clock dating analyses, Herichthys has colonized its present distribution area significantly prior to the suggested vicariance by PdM (10-17.1 Ma vs. 5 to 7.5 Ma). The PdM constraint is in conflict with all other paleogeographic and fossil constraints including novel ones introduced in this study that are, however, congruent among each other. Our study demonstrates that any cichlid datings significantly older or younger than the bounds presented by our analyses and discussion have to be taken as highly questionable from the point of view of Middle American paleogeography and cichlid biogeography unless we allow the option that cichlid biogeography is completely independent from ecological and geological constraints.
Collapse
Affiliation(s)
- Fabian Pérez-Miranda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Omar Mejia
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Benjamín López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Oldřich Říčan
- Departament of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Zhao Q, Zhang H, Wei J. Climatic niche comparison across a cryptic species complex. PeerJ 2019; 7:e7042. [PMID: 31183260 PMCID: PMC6546150 DOI: 10.7717/peerj.7042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/30/2019] [Indexed: 12/04/2022] Open
Abstract
According to current molecular evidence, the Chionaspis pinifoliae heterophyllae species complex has been recognized as 10 cryptic species. In this study, we construct potential distribution maps for seven cryptic species based on climatic variables. This was done to assess the main environmental factors that have contributed to the distribution map and test the degree of niche overlap across the seven cryptic species. We used MaxEnt to build the climatic niche models under climatic variables. For these models, the similarities and differences of the niches across the cryptic species were estimated. By comparing the potential distribution model of each cryptic species, our results suggested parapatric, sympatric and allopatry populations for this cryptic species complex. Our results showed high variability in niche overlap, and more often niche conservatism than niche divergence. The current species delimitation of the Chionaspis pinifoliae heterophyllae complex by molecular information and the hypothesis that the niche overlap in the sympatric population is higher than that of the allopatry population were supported based on the findings. This study will provide baseline data and a distribution range to facilitate the further control of these insects and formulate quarantine measures.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Hufang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi, P. R. China
| | - Jiufeng Wei
- Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| |
Collapse
|
11
|
Salariato DL, Acosta JM, Cialdella AM. Ecological and Spatial Patterns Associated with Diversification of the Shrub Genus Tetraglochin along Southern-Central Andes (Rosaceae). Evol Biol 2019. [DOI: 10.1007/s11692-019-09472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Rey C, Noguerales V, García-Navas V. Ecological and phenotypic divergence in Iberian shrews (Soricidae). J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Claudia Rey
- Máster Universitario en Biodiversidad y Biología de la Conservación; Universidad Pablo de Olavide; Seville Spain
| | - Víctor Noguerales
- Grupo de Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (IREC CSIC-UCLM-JCCM); Ciudad Real Spain
- Department of Biological Sciences; University of Cyprus; Nicosia Cyprus
| | - Vicente García-Navas
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD CSIC); Seville Spain
- Laboratoire d'Ecologie Alpine (LECA); Université Grenoble Alpes; Grenoble France
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zürich Switzerland
| |
Collapse
|
13
|
Martínez-Méndez N, Mejía O, Ortega J, Méndez-de la Cruz F. Climatic niche evolution in the viviparous Sceloporus torquatus group (Squamata: Phrynosomatidae). PeerJ 2019; 6:e6192. [PMID: 30643683 PMCID: PMC6330044 DOI: 10.7717/peerj.6192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 12/01/2018] [Indexed: 11/21/2022] Open
Abstract
The cold-climate hypothesis maintains that viviparity arose as a means to prevent increased egg mortality in nests owing to low temperatures, and this hypothesis represents the primary and most strongly supported explanation for the evolution of viviparity in reptiles. In this regard, certain authors have stated that viviparous species will exhibit speciation via climatic niche conservatism, with similar climatic niches being observed in allopatric sister species. However, this prediction remains to be tested with bioclimatic variables relevant to each viviparous group. In the present study, we examined climatic niche evolution in a group of North American viviparous lizards to determine whether their diversification is linked to phylogenetic niche conservatism (PNC). We evaluated the phylogenetic signal and trait evolution of individual bioclimatic variables and principal component (PC) scores of a PC analysis, along with reconstructions of ancestral climate tolerances. The results suggest that diversification of the Sceloporus torquatus group species is associated with both niche differentiation and PNC. Furthermore, we did not observe PNC across nearly all bioclimatic variables and in PC2 and PC3. However, in Precipitation Seasonality (Bio15), in Precipitation of Coldest Quarter (Bio19) and in PC1 (weakly associated with variability of temperature), we did observe PNC. Additionally, variation of the scores along the phylogeny and Pagel's delta (δ) >1 of PC3 suggests a fast, recent evolution to dry conditions in the clade that sustains S. serrifer.
Collapse
Affiliation(s)
- Norberto Martínez-Méndez
- Departamento de Zoología, Laboratorio de Bioconservación y Manejo, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Omar Mejía
- Departamento de Zoología, Laboratorio de Variación y Evolución, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jorge Ortega
- Departamento de Zoología, Laboratorio de Bioconservación y Manejo, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Fausto Méndez-de la Cruz
- Departamento de Zoología, Laboratorio de Herpetología, Instituto de Biología de la Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Stallsmith B. Reproductive differences between three species of Brachyrhaphis livebearing fishes in Panamá. NEOTROPICAL BIODIVERSITY 2018. [DOI: 10.1080/23766808.2018.1467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Bruce Stallsmith
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
15
|
Rodrigues JFM, Villalobos F, Iverson JB, Diniz-Filho JAF. Climatic niche evolution in turtles is characterized by phylogenetic conservatism for both aquatic and terrestrial species. J Evol Biol 2018; 32:66-75. [PMID: 30387214 DOI: 10.1111/jeb.13395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/29/2018] [Indexed: 01/29/2023]
Abstract
Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein-Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.
Collapse
Affiliation(s)
- João Fabrício M Rodrigues
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Fabricio Villalobos
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.,Red de Biología Evolutiva, Instituto de Ecología, Xalapa, Mexico
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana
| | | |
Collapse
|
16
|
García-Navas V, Westerman M. Niche conservatism and phylogenetic clustering in a tribe of arid-adapted marsupial mice, the Sminthopsini. J Evol Biol 2018; 31:1204-1215. [PMID: 29808505 DOI: 10.1111/jeb.13297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/27/2022]
Abstract
The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low-moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Michael Westerman
- Department of Ecology, Environment and Evolution, LaTrobe University, Melbourne, Vic., Australia
| |
Collapse
|
17
|
Culumber ZW, Tobler M. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. J Evol Biol 2018; 31:722-734. [DOI: 10.1111/jeb.13260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/13/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|