1
|
Iraçabal L, Barbosa MR, Selvatti AP, Russo CADM. Molecular time estimates for the Lagomorpha diversification. PLoS One 2024; 19:e0307380. [PMID: 39241029 PMCID: PMC11379240 DOI: 10.1371/journal.pone.0307380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 09/08/2024] Open
Abstract
Despite their importance as members of the Glires group, lagomorph diversification processes have seldom been studied using molecular data. Notably, only a few phylogenetic studies have included most of the examined lagomorph lineages. Previous studies that included a larger sample of taxa and markers used nonconservative tests to support the branches of their proposed phylogeny. The objective of this study was to test the monophyly of families and genera of lagomorphs and to evaluate the group diversification process. To that end, this work expanded the sampling of markers and taxa in addition to implementing the bootstrap, a more rigorous statistical test to measure branch support; hence, a more robust phylogeny was recovered. Our supermatrix included five mitochondrial genes and 14 nuclear genes for eighty-eight taxa, including three rodent outgroups. Our maximum likelihood tree showed that all tested genera and both families, Leporidae and Ochotonidae, were recovered as monophyletic. In the Ochotona genus, the subgenera Conothoa and Pika, but not Ochotona, were recovered as monophyletic. Six calibration points based on fossils were used to construct a time tree. A calibration test was performed (via jackknife) by removing one calibration at a time and estimating divergence times for each set. The diversification of the main groups of lagomorphs indicated that the origin of the order's crown group was dated from the beginning of the Palaeogene. Our diversification time estimates for Lagomorpha were compared with those for the largest mammalian order, i.e., rodent lineages in Muroidea. According to our time-resolved phylogenetic tree, the leporids underwent major radiation by evolving a completely new morphospace-larger bodies and an efficient locomotor system-that enabled them to cover wide foraging areas and outrun predators more easily than rodents and pikas.
Collapse
Affiliation(s)
- Leandro Iraçabal
- Departamento de Genética, Rio de Janeiro, Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Matheus R Barbosa
- Departamento de Genética, Rio de Janeiro, Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Alexandre Pedro Selvatti
- Departamento de Zoologia, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Maracanã, Rio de Janeiro, Brazil
| | - Claudia Augusta de Moraes Russo
- Departamento de Genética, Rio de Janeiro, Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
3
|
Zeb U, Aziz T, Azizullah A, Zan XY, Khan AA, Bacha SAS, Cui FJ. Complete mitochondrial genomes of edible mushrooms: features, evolution, and phylogeny. PHYSIOLOGIA PLANTARUM 2024; 176:e14363. [PMID: 38837786 DOI: 10.1111/ppl.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 06/07/2024]
Abstract
Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.
Collapse
Affiliation(s)
- Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, PR China
| | - Azizullah Azizullah
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Asif Ali Khan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Syed Asim Shah Bacha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
4
|
Zhao W, Gao J, Hall D, Andersson BA, Bruxaux J, Tomlinson KW, Drouzas AD, Suyama Y, Wang XR. Evolutionary radiation of the Eurasian Pinus species under pervasive gene flow. THE NEW PHYTOLOGIST 2024. [PMID: 38515228 DOI: 10.1111/nph.19694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers withc . $$ c. $$ 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - David Hall
- Forestry Research Institute of Sweden (Skogforsk), Sävar, SE-91833, Sweden
| | - Bea Angelica Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Kyle W Tomlinson
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Miyagi, 989-6711, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Luo A, Zhang C, Zhou QS, Ho SYW, Zhu CD. Impacts of Taxon-Sampling Schemes on Bayesian Tip Dating Under the Fossilized Birth-Death Process. Syst Biol 2023; 72:781-801. [PMID: 36919368 PMCID: PMC10405359 DOI: 10.1093/sysbio/syad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
Evolutionary timescales can be inferred by molecular-clock analyses of genetic data and fossil evidence. Bayesian phylogenetic methods such as tip dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of different densities of diversified sampling on Bayesian tip dating on unresolved fossilized birth-death (FBD) trees, in which fossil taxa are topologically constrained but their exact placements are averaged out. We used synthetic data generated by simulations of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses under the diversified-sampling FBD process show that increasing taxon-sampling density does not necessarily improve divergence-time estimates. However, when informative priors were specified for the root age or when tree topologies were fixed to those used for simulation, the performance of tip dating on unresolved FBD trees maintains its accuracy and precision or improves with taxon-sampling density. By exploring three situations in which models are mismatched, we find that including all relevant fossils, without pruning off those that are incompatible with the diversified-sampling FBD process, can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have practical implications for using Bayesian tip dating to infer evolutionary timescales across the Tree of Life. [Bayesian tip dating; eutherian mammals; fossilized birth-death process; phylogenomics; taxon sampling.].
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xia Q, Zhang H, Lv D, El-Kassaby YA, Li W. Insights into phylogenetic relationships in Pinus inferred from a comparative analysis of complete chloroplast genomes. BMC Genomics 2023; 24:346. [PMID: 37349702 DOI: 10.1186/s12864-023-09439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Pinus is the largest genus of Pinaceae and the most primitive group of modern genera. Pines have become the focus of many molecular evolution studies because of their wide use and ecological significance. However, due to the lack of complete chloroplast genome data, the evolutionary relationship and classification of pines are still controversial. With the development of new generation sequencing technology, sequence data of pines are becoming abundant. Here, we systematically analyzed and summarized the chloroplast genomes of 33 published pine species. RESULTS Generally, pines chloroplast genome structure showed strong conservation and high similarity. The chloroplast genome length ranged from 114,082 to 121,530 bp with similar positions and arrangements of all genes, while the GC content ranged from 38.45 to 39.00%. Reverse repeats showed a shrinking evolutionary trend, with IRa/IRb length ranging from 267 to 495 bp. A total of 3,205 microsatellite sequences and 5,436 repeats were detected in the studied species chloroplasts. Additionally, two hypervariable regions were assessed, providing potential molecular markers for future phylogenetic studies and population genetics. Through the phylogenetic analysis of complete chloroplast genomes, we offered novel opinions on the genus traditional evolutionary theory and classification. CONCLUSION We compared and analyzed the chloroplast genomes of 33 pine species, verified the traditional evolutionary theory and classification, and reclassified some controversial species classification. This study is helpful in analyzing the evolution, genetic structure, and the development of chloroplast DNA markers in Pinus.
Collapse
Affiliation(s)
- Qijing Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Zhang
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Dong Lv
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Figueroa‐Corona L, Moreno‐Letelier A, Ortega‐Del Vecchyo D, Peláez P, Gernandt DS, Eguiarte LE, Wegrzyn J, Piñero D. Changes in demography and geographic distribution in the weeping pinyon pine ( Pinus pinceana) during the Pleistocene. Ecol Evol 2022; 12:e9369. [PMID: 36225821 PMCID: PMC9534753 DOI: 10.1002/ece3.9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022] Open
Abstract
Climate changes, together with geographical barriers imposed by the Sierra Madre Oriental and the Chihuahuan Desert, have shaped the genetic diversity and spatial distribution of different species in northern Mexico. Pinus pinceana Gordon & Glend. tolerates extremely arid conditions. Northern Mexico became more arid during the Quaternary, modifying ecological communities. Here, we try to identify the processes underlying the demographic history of P. pinceana and characterize its genetic diversity using 3100 SNPs from genotyping by sequencing 90 adult individuals from 10 natural populations covering the species' entire geographic distribution. We inferred its population history and contrasted possible demographic scenarios of divergence that modeled the genetic diversity present in this restricted pinyon pine; in support, the past distribution was reconstructed using climate from the Last Glacial Maximum (LGM, 22 kya). We inferred that P. pinceana diverged into two lineages ~2.49 Ma (95% CI 3.28-1.62), colonizing two regions: the Sierra Madre Oriental (SMO) and the Chihuahuan Desert (ChD). Our results of population genomic analyses reveal the presence of heterozygous SNPs in all populations. In addition, low migration rates across regions are probably related to glacial-interglacial cycles, followed by the gradual aridification of the Chihuahuan Desert during the Holocene.
Collapse
Affiliation(s)
- Laura Figueroa‐Corona
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | | | - Diego Ortega‐Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
| | - Pablo Peláez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - David S. Gernandt
- Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Luis E. Eguiarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Daniel Piñero
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
8
|
Powell GS, Saxton NA, Pacheco YM, Stanger-Hall KF, Martin GJ, Kusy D, Felipe Lima Da Silveira L, Bocak L, Branham MA, Bybee SM. Beetle bioluminescence outshines extant aerial predators. Proc Biol Sci 2022; 289:20220821. [PMID: 35855602 PMCID: PMC9297012 DOI: 10.1098/rspb.2022.0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.
Collapse
Affiliation(s)
- Gareth S. Powell
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Natalie A. Saxton
- Research and Collections Division, The Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, USA,Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Yelena M. Pacheco
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Kathrin F. Stanger-Hall
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Gavin J. Martin
- School of Math and Sciences, Laramie County Community College, 1400 E. College Dr., Cheyenne, WY 82007, USA
| | - Dominik Kusy
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Luiz Felipe Lima Da Silveira
- Biology Department, Western Carolina University, 206 Stillwell Building, 1 University Dr., Cullowhee, NC 2723, USA
| | - Ladislav Bocak
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611, USA
| | - Seth M. Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
9
|
Yang R, Li D, Yi S, Wang M. Evolutionarily conserved odorant-binding proteins participate in establishing tritrophic interactions. iScience 2022; 25:104664. [PMID: 35811847 PMCID: PMC9263996 DOI: 10.1016/j.isci.2022.104664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Attracting herbivores and their natural enemies is a standard method where plant volatiles mediate tritrophic interactions. However, it remains unknown whether the shared attraction has a shared chemosensory basis. Here we focus on the odorant-binding proteins (OBPs), a gene family integral to peripheral detection of odoriferous chemicals. Previous evidence suggests that the herbivorous beetle Monochamus alternatus and its parasitoid beetle Dastarcus helophoroides are attracted to stressed pines. In this study, (+)-fenchone, emitted by stressed pines, is found to be attracted to M. alternatus and D. helophoroides in behavioral assays. Meanwhile, two orthologous OBPs with a slower evolutionary rate, respectively, from the two insects are shown to bind with (+)-fenchone, and the attraction is abolished after RNAi. These results show the ability of evolutionarily conserved OBPs from herbivores and their enemies to detect the same plant volatiles, providing an olfactory mechanism of chemical signals–mediated tritrophic relationships. Monochamus alternatus and Dastarcus helophoroides are attracted to (+)-fenchone from host pines They harbor evolutionarily conserved odorant-binding proteins (OBPs) One pair of the conserved OBPs can bind with (+)-fenchone The behavioral preference is lost upon RNAi knockdown of the OBPs
Collapse
Affiliation(s)
- Ruinan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongzhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Shancheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
10
|
de Raad J, Päckert M, Irestedt M, Janke A, Kryukov AP, Martens J, Red'kin YA, Sun Y, Töpfer T, Schleuning M, Neuschulz EL, Nilsson MA. Speciation and population divergence in a mutualistic seed dispersing bird. Commun Biol 2022; 5:429. [PMID: 35534538 PMCID: PMC9085801 DOI: 10.1038/s42003-022-03364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bird-mediated seed dispersal is crucial for the regeneration and viability of ecosystems, often resulting in complex mutualistic species networks. Yet, how this mutualism drives the evolution of seed dispersing birds is still poorly understood. In the present study we combine whole genome re-sequencing analyses and morphometric data to assess the evolutionary processes that shaped the diversification of the Eurasian nutcracker (Nucifraga), a seed disperser known for its mutualism with pines (Pinus). Our results show that the divergence and phylogeographic patterns of nutcrackers resemble those of other non-mutualistic passerine birds and suggest that their early diversification was shaped by similar biogeographic and climatic processes. The limited variation in foraging traits indicates that local adaptation to pines likely played a minor role. Our study shows that close mutualistic relationships between bird and plant species might not necessarily act as a primary driver of evolution and diversification in resource-specialized birds. Genomic and phylogeographic analyses indicate that resource-specialization did not play a major role in the diversification and speciation of seed dispersing nutcrackers
Collapse
Affiliation(s)
- Jordi de Raad
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Martin Päckert
- Senckenberg Naturhistorische Sammlungen Dresden, Museum für Tierkunde, Königsbrücker Landstraße 159, 01109, Dresden, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Frescativägen 40, 114 18, Stockholm, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Alexey P Kryukov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Russian Academy of Sciences, Stoletiya Avenue 159, 690022, Vladivostok, Russia
| | - Jochen Martens
- Institut für Organismische und Molekulare Evolutionsbiologie (iomE), Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Yaroslav A Red'kin
- Department of Ornithology, Zoological Museum of Moscow State University, Bol'shaya Nikitskaya Street 2, 125009, Moscow, Russia
| | - Yuehua Sun
- Institute of Zoology, Chinese Academy of Sciences, CN-100101, Beijing, PR China
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Adenauerallee 127, 53113, Bonn, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
| |
Collapse
|
11
|
Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat Commun 2022; 13:1097. [PMID: 35233020 PMCID: PMC8888738 DOI: 10.1038/s41467-022-28748-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Forests constitute important ecosystems in the global carbon cycle. However, how trees and environmental conditions interact to determine the amount of organic carbon stored in forest soils is a hotly debated subject. In particular, how tree species influence soil organic carbon (SOC) remains unclear. Based on a global compilation of data, we show that functional traits of trees and forest standing biomass explain half of the local variability in forest SOC. The effects of functional traits on SOC depended on the climatic and soil conditions with the strongest effect observed under boreal climate and on acidic, poor, coarse-textured soils. Mixing tree species in forests also favours the storage of SOC, provided that a biomass over-yielding occurs in mixed forests. We propose that the forest carbon sink can be optimised by (i) increasing standing biomass, (ii) increasing forest species richness, and (iii) choosing forest composition based on tree functional traits according to the local conditions. Forests constitute important ecosystems in the global carbon cycle. This study investigates how tree species influence soil organic carbon using a global dataset, showing the importance of tree functional traits and forest standing biomass to optimise forest carbon sink.
Collapse
|
12
|
Phylotranscriptomics reveals the evolutionary history of subtropical East Asian white pines: further insights into gymnosperm diversification. Mol Phylogenet Evol 2022; 168:107403. [PMID: 35031461 DOI: 10.1016/j.ympev.2022.107403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 11/20/2022]
Abstract
Floristic composition within a geographic area is driven by a wide array of factors from local biotic interactions to biogeographical processes. Subtropical East Asia is a key biodiversity hotspot of the world, and harbors the most families of extant gymnosperms and a large number of endemic genera with ancient origins, but rare phylogenetic studies explored whether it served as a diversification center for gymnosperms. Here, we investigated the evolutionary and biogeographical history of subtropical East Asian white pines using an integrative approach that combines phylotranscriptomic and ecological analyses. Using 2,606 orthologous nuclear genes, we reconstructed a fully resolved and dated phylogeny of these species. Two main clades first diverged in the early Miocene, and by the late Miocene, all species appeared. Two white pines endemic to Taiwan Island experienced independent colonization events and regional extinction, which resulted in the present disjunctive distribution from mainland China. Ecological and biogeographical analyses indicate that the monsoon-driven assembly of evergreen broadleaved forests (EBLFs) might have significantly affected the diversification of subtropical East Asian white pines. Our study highlights the interactions of biotic and abiotic forces in the diversification and speciation of subtropical East Asian white pines. These findings indicate that subtropical East Asia is not only a floristic museum, but also a diversification center for gymnosperms. Our study also demonstrates the importance of phylotranscriptomics on species delimitation and biodiversity conservation, particularly for closely related species.
Collapse
|
13
|
Podnar M, Grbac I, Tvrtković N, Hörweg C, Haring E. Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Irena Grbac
- Croatian Natural History Museum Zagreb Croatia
| | | | | | - Elisabeth Haring
- Natural History Museum Vienna Vienna Austria
- Faculty of Life Science Department of Evolutionary Biology University of Vienna Vienna Austria
| |
Collapse
|
14
|
Adamo I, Castaño C, Bonet JA, Colinas C, Martínez de Aragón J, Alday JG. Lack of Phylogenetic Differences in Ectomycorrhizal Fungi among Distinct Mediterranean Pine Forest Habitats. J Fungi (Basel) 2021; 7:jof7100793. [PMID: 34682215 PMCID: PMC8538088 DOI: 10.3390/jof7100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Understanding whether the occurrences of ectomycorrhizal species in a given tree host are phylogenetically determined can help in assessing different conservational needs for each fungal species. In this study, we characterized ectomycorrhizal phylogenetic composition and phylogenetic structure in 42 plots with five different Mediterranean pine forests: i.e., pure forests dominated by P. nigra, P. halepensis, and P. sylvestris, and mixed forests of P. nigra-P. halepensis and P. nigra-P. sylvestris, and tested whether the phylogenetic structure of ectomycorrhizal communities differs among these. We found that ectomycorrhizal communities were not different among pine tree hosts neither in phylogenetic composition nor in structure and phylogenetic diversity. Moreover, we detected a weak abiotic filtering effect (4%), with pH being the only significant variable influencing the phylogenetic ectomycorrhizal community, while the phylogenetic structure was slightly influenced by the shared effect of stand structure, soil, and geographic distance. However, the phylogenetic community similarity increased at lower pH values, supporting that fewer, closely related species were found at lower pH values. Also, no phylogenetic signal was detected among exploration types, although short and contact were the most abundant types in these forest ecosystems. Our results demonstrate that pH but not tree host, acts as a strong abiotic filter on ectomycorrhizal phylogenetic communities in Mediterranean pine forests at a local scale. Finally, our study shed light on dominant ectomycorrhizal foraging strategies in drought-prone ecosystems such as Mediterranean forests.
Collapse
Affiliation(s)
- Irene Adamo
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Correspondence:
| | - Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - José Antonio Bonet
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| | - Carlos Colinas
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Josu G. Alday
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| |
Collapse
|
15
|
Olsson S, Lorenzo Z, Zabal-Aguirre M, Piotti A, Vendramin GG, González-Martínez SC, Grivet D. Evolutionary history of the mediterranean Pinus halepensis-brutia species complex using gene-resequencing and transcriptomic approaches. PLANT MOLECULAR BIOLOGY 2021; 106:367-380. [PMID: 33934278 DOI: 10.1007/s11103-021-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Complementary gene-resequencing and transcriptomic approaches reveal contrasted evolutionary histories in a species complex. Pinus halepensis and Pinus brutia are closely related species that can intercross, but occupy different geographical ranges and bioclimates. To study the evolution of this species complex and to provide genomic resources for further research, we produce and analyze two new complementary sets of genetic resources: (i) a set of 172 re-sequenced genomic target loci analyzed in 45 individuals, and (ii) a set of 11 transcriptome assemblies. These two datasets provide insights congruent with previous studies: P. brutia displays high level of genetic diversity and no genetic sub-structure, while P. halepensis shows three main genetic clusters, the western Mediterranean and North African clusters displaying much lower genetic diversity than the eastern Mediterranean cluster, the latter cluster having similar genetic diversity to P. brutia. In addition, these datasets provide new insights on the timing of the species-complex history: the two species would have split at the end of the tertiary, and the changing climatic conditions of the Mediterranean region at the end of the Tertiary-beginning of the Quaternary, together with the distinct species tolerance to harsh climatic conditions would have resulted in different geographic distributions, demographic histories and genetic patterns of the two pines. The multiple glacial-interglacial cycles during the Quaternary would have led to the expansion of P. brutia in the Middle East, while P. halepensis would have been through bottlenecks. The last glaciations, from 0.6 Mya on, would have affected further the Western genetic pool of P. halepensis.
Collapse
Affiliation(s)
- Sanna Olsson
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain.
| | - Zaida Lorenzo
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Mario Zabal-Aguirre
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino, Florence, Italy
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino, Florence, Italy
| | - Santiago C González-Martínez
- UMR BIOGECO, INRAE, University of Bordeaux, 33610, Cestas, France
- Sustainable Forest Management Research Institute, INIA - University of Valladolid, Avda. Madrid 44, 34004, Palencia, Spain
| | - Delphine Grivet
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain.
- Sustainable Forest Management Research Institute, INIA - University of Valladolid, Avda. Madrid 44, 34004, Palencia, Spain.
| |
Collapse
|
16
|
Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc Natl Acad Sci U S A 2021; 118:2022302118. [PMID: 33941644 PMCID: PMC8157994 DOI: 10.1073/pnas.2022302118] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest to know whether the midlatitude region has been an evolutionary cradle or museum for conifers and how evolutionary and ecological factors have driven their spatiotemporal evolution. Here, we investigated the macroevolution of Pinus, the largest conifer genus and characteristic of northern temperate coniferous forests, based on nearly complete species sampling. Using 1,662 genes from transcriptome sequences, we reconstructed a robust species phylogeny and reestimated divergence times of global pines. We found that ∼90% of extant pine species originated in the Miocene in sharp contrast to the ancient origin of Pinus, indicating a Neogene rediversification. Surprisingly, species at middle latitudes are much older than those at other latitudes. This finding, coupled with net diversification rate analysis, indicates that the midlatitude region has provided an evolutionary museum for global pines. Analyses of 31 environmental variables, together with a comparison of evolutionary rates of niche and phenotypic traits with a net diversification rate, found that topography played a primary role in pine diversification, and the aridity index was decisive for the niche rate shift. Moreover, fire has forced diversification and adaptive evolution of Pinus Our study highlights the importance of integrating phylogenomic and ecological approaches to address evolution of biological groups at the global scale.
Collapse
|
17
|
Mitchell JK, Garrido-Benavent I, Quijada L, Pfister DH. Sareomycetes: more diverse than meets the eye. IMA Fungus 2021; 12:6. [PMID: 33726866 PMCID: PMC7961326 DOI: 10.1186/s43008-021-00056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
Since its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction.
Collapse
Affiliation(s)
- James K Mitchell
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA.
| | - Isaac Garrido-Benavent
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE) & Dept. Botànica i Geologia, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Luis Quijada
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
18
|
Spasojevic T, Broad GR, Sääksjärvi IE, Schwarz M, Ito M, Korenko S, Klopfstein S. Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae). Syst Biol 2021; 70:322-339. [PMID: 33057674 PMCID: PMC7875445 DOI: 10.1093/sysbio/syaa079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023] Open
Abstract
Taxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of commonly employed outgroup sampling schemes and missing morphological data in extant taxa on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group is Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We analyze a data set comprising 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid-Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. These outgroups not only lack morphological and temporal information but also sit on long terminal branches and considerably increase the evolutionary rate heterogeneity. In addition, we discover an artifact that might be detrimental for total-evidence dating: "bare-branch attraction," namely high attachment probabilities of certain fossils to terminal branches for which morphological data are missing. Using computer simulations, we confirm the generality of this phenomenon and show that a large phylogenetic distance to any of the extant taxa, rather than just older age, increases the risk of a fossil being misplaced due to bare-branch attraction. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Jurassic origin for Pimpliformes and Ichneumonidae. This first age estimate for the group not only suggests an older origin than previously thought but also that diversification of the crown group happened well before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information. [Bare-branch attraction; ichneumonids; fossils; morphological matrix; phylogeny; RoguePlots.].
Collapse
Affiliation(s)
- Tamara Spasojevic
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Department of Entomology, National Museum of Natural History, Washington, DC 20560, USA
| | - Gavin R Broad
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | | | | | - Masato Ito
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, 657-8501 Japan
| | - Stanislav Korenko
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague 6, Suchdol, Czech Republic
| | - Seraina Klopfstein
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Abteilung für Biowissenschaften, Naturhistorisches Museum Basel, 4051 Basel, Switzerland
| |
Collapse
|
19
|
Cavender-Bares J, Reich P, Townsend P, Banerjee A, Butler E, Desai A, Gevens A, Hobbie S, Isbell F, Laliberté E, Meireles JE, Menninger H, Pavlick R, Pinto-Ledezma J, Potter C, Schuman M, Springer N, Stefanski A, Trivedi P, Trowbridge A, Williams L, Willis C, Yang Y. BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. RESEARCH IDEAS AND OUTCOMES 2021. [DOI: 10.3897/rio.7.e63850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world—from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution.
INTELLECTUAL MERIT
The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team.
BROADER IMPACTS
A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association.
Collapse
|
20
|
Jaramillo-Correa JP, Bagnoli F, Grivet D, Fady B, Aravanopoulos FA, Vendramin GG, González-Martínez SC. Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Mol Ecol 2020; 29:4797-4811. [PMID: 33063352 DOI: 10.1111/mec.15684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Severe bottlenecks significantly diminish the amount of genetic diversity and the speed at which it accumulates (i.e., evolutionary rate). They further compromise the efficiency of natural selection to eliminate deleterious variants, which may reach fixation in the surviving populations. Consequently, expanding and adapting to new environments may pose a significant challenge when strong bottlenecks result in genetic pauperization. Herein, we surveyed the patterns of nucleotide diversity, molecular adaptation and genetic load across 177 gene-loci in a circum-Mediterranean conifer (Pinus pinea L.) that represents one of the most extreme cases of genetic pauperization in widespread outbreeding taxa. We found very little genetic variation in both hypervariable nuclear microsatellites (SSRs) and gene-loci, which translated into genetic diversity estimates one order of magnitude lower than those previously reported for pines. Such values were consistent with a strong population decline that began some ~1 Ma. Comparisons with the related and parapatric maritime pine (Pinus pinaster Ait.) revealed reduced rates of adaptive evolution (α and ωa ) and a significant accumulation of genetic load. It is unlikely that these are the result from differences in mutation rate or linkage disequilibrium between the two species; instead they are the presumable outcome of contrasting demographic histories affecting both the speed at which these taxa accumulate genetic diversity, and the global efficacy of selection. Future studies, and programs for conservation and management, should thus start testing for the effects of genetic load on fitness, and integrating such effects into predictive models.
Collapse
Affiliation(s)
- Juan P Jaramillo-Correa
- Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francesca Bagnoli
- Division of Florence, Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, Italy
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain
| | - Bruno Fady
- INRAE, Unité de Recherche Écologie des Forêts Méditerranéennes (URFM), Avignon, France
| | - Filippos A Aravanopoulos
- Laboratory of Forest Genetics and Tree Breeding, Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanni G Vendramin
- Division of Florence, Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, Italy
| | | |
Collapse
|
21
|
Sullivan AR, Eldfjell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, Keech O, Öberg L, Møller IM, Arvestad L, Street NR, Wang XR. The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants. Genome Biol Evol 2020; 12:3586-3598. [PMID: 31774499 PMCID: PMC6944214 DOI: 10.1093/gbe/evz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| | - Yrin Eldfjell
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Lisa Öberg
- Oldtjikko Photo Art & Science, Duved, Sweden
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Lars Arvestad
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| |
Collapse
|
22
|
Chetverikov PE, Cvrković T, Efimov PG, Klimov PB, Petanović RU, Romanovich AE, Schubert MA, Sukhareva SI, Zukoff SN, Amrine J. Molecular phylogenetic analyses reveal a deep dichotomy in the conifer-inhabiting genus Trisetacus (Eriophyoidea: Nalepellidae), with the two lineages differing in their female genital morphology and host associations. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:287-316. [PMID: 32514877 DOI: 10.1007/s10493-020-00503-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
We analyzed the phylogenetic relationships of the genus Trisetacus using two genes [cytochrome c oxidase subunit I (COI) and D1-D2 region of 28S rDNA (D1-D2 28S)], a representive taxon sampling (nearly 40% of known diversity), and a large set of close and distant outgroups. Our analyses suggest the presence of a dichotomy between Trisetacus associated with Cupressaceae and Pinaceae. The following smaller molecular clades were found: Pin-1 (bud mites, twig sheath mites, bark gall mites, and endoparasitic mites from pinaceans), Pin-2 (needle sheath mites from pines), Pin-2a (putative Nearctic group of needle sheath mites), Pin-2b (putative Palearctic group of needle sheath mites), Cup-1 and 2 (bud, cone, seed mites and mites living under bark scales from cupressaceans). The monophyly of the recently proposed subgenus Brevithecus nested within clade Cup-2 was confirmed. Ancestral character reconstruction analyses recovered: (1) Pinaceae as the ancestral hosts of Nalepellidae and Trisetacus, (2) repetitive reductions of the spermathecal tube independently occurred in two lineages of Trisetacus from Cupressaceae, and (3) several mite habitats on host (galls, cones, twig sheaths, seeds, inside leaves, and under scales) are evolutionarily derived states, whereas living in buds or needle sheaths are ancestral states for Trisetacus clades Cup and Pin. Using confocal microscopy, we identified six basic types of the female internal genitalia of Trisetacus based on shapes of the spermatheca and spermathecal tube. These genitalic types are strongly correlated with lineages recovered by molecular phylogenetic analyses, suggesting that the female genital morphology is both evolutionarily conserved and is a factor influencing macroevolutionary patterns in this group of mites.
Collapse
Affiliation(s)
- Philipp E Chetverikov
- Saint-Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034.
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, Russia, 199034.
| | - Tatjana Cvrković
- Department of Plant Pests, Institute for Plant Protection and Environment, Banatska 33, 11080, Zemun, Serbia
| | - Petr G Efimov
- Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, St. Petersburg, Russia, 197376
| | - Pavel B Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI, 48109-1079, USA
| | - Radmila U Petanović
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Zemun, Serbia
| | - Anna E Romanovich
- Resource Center for Development of Molecular and Cellular Technologies, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg, Russia, 199034
| | - Maria A Schubert
- Saint-Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Sogdiana I Sukhareva
- Saint-Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Sarah N Zukoff
- Southwest Research and Extension Center, Kansas State University, 4500 E. Mary Street, Garden City, KS, 67846, USA
| | - James Amrine
- Division of Plant & Soil Sciences, West Virginia University, P.O. Box 6108, Morgantown, WV, 26506-6108, USA
| |
Collapse
|
23
|
Mu XY, Tong L, Sun M, Zhu YX, Wen J, Lin QW, Liu B. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data. Mol Phylogenet Evol 2020; 147:106802. [DOI: 10.1016/j.ympev.2020.106802] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
|
24
|
Guindon S. Rates and Rocks: Strengths and Weaknesses of Molecular Dating Methods. Front Genet 2020; 11:526. [PMID: 32536940 PMCID: PMC7267027 DOI: 10.3389/fgene.2020.00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
I present here an in-depth, although non-exhaustive, review of two topics in molecular dating. Clock models, which describe the evolution of the rate of evolution, are considered first. Some of the shortcomings of popular approaches-uncorrelated clock models in particular-are presented and discussed. Autocorrelated models are shown to be more reasonable from a biological perspective. Some of the most recent autocorrelated models also rely on a coherent treatment of instantaneous and average substitution rates while previous models are based on implicit approximations. Second, I provide a brief overview of the processes involved in collecting and preparing fossil data. I then review the main techniques that use this data for calibrating the molecular clock. I argue that, in its current form, the fossilized birth-death process relies on assumptions about the mechanisms underlying fossilization and the data collection process that may negatively impact the date estimates. Node-dating approaches make better use of the data available, even though they rest on paleontologists' intervention to prepare raw fossil data. Altogether, this study provides indications that may help practitioners in selecting appropriate methods for molecular dating. It will also hopefully participate in defining the contour of future methodological developments in the field.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CNRS and Université Montpellier (UMR 5506), Montpellier, France
| |
Collapse
|
25
|
Loiseau O, Weigand A, Noben S, Rolland J, Silvestro D, Kessler M, Lehnert M, Salamin N. Slowly but surely: gradual diversification and phenotypic evolution in the hyper-diverse tree fern family Cyatheaceae. ANNALS OF BOTANY 2020; 125:93-103. [PMID: 31562744 PMCID: PMC6948215 DOI: 10.1093/aob/mcz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/26/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The tremendously unbalanced distribution of species richness across clades in the tree of life is often interpreted as the result of variation in the rates of diversification, which may themselves respond to trait evolution. Even though this is likely a widespread pattern, not all diverse groups of organisms exhibit heterogeneity in their dynamics of diversification. Testing and characterizing the processes driving the evolution of clades with steady rates of diversification over long periods of time are of importance in order to have a full understanding of the build-up of biodiversity through time. METHODS We studied the macroevolutionary history of the species-rich tree fern family Cyatheaceae and inferred a time-calibrated phylogeny of the family including extinct and extant species using the recently developed fossilized birth-death method. We tested whether the high diversity of Cyatheaceae is the result of episodes of rapid diversification associated with phenotypic and ecological differentiation or driven by stable but low rates of diversification. We compared the rates of diversification across clades, modelled the evolution of body size and climatic preferences and tested for trait-dependent diversification. KEY RESULTS This ancient group diversified at a low and constant rate during its long evolutionary history. Morphological and climatic niche evolution were found to be overall highly conserved, although we detected several shifts in the rates of evolution of climatic preferences, linked to changes in elevation. The diversification of the family occurred gradually, within limited phenotypic and ecological boundaries, and yet resulted in a remarkable species richness. CONCLUSIONS Our study indicates that Cyatheaceae is a diverse clade which slowly accumulated morphological, ecological and taxonomic diversity over a long evolutionary period and provides a compelling example of the tropics as a museum of biodiversity.
Collapse
Affiliation(s)
- Oriane Loiseau
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Weigand
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Sarah Noben
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, B.C., Canada
| | - Daniele Silvestro
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Global Gothenburg Biodiversity Center, Gothenburg, Sweden
| | - Michael Kessler
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
| | - Marcus Lehnert
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- Department of Geobotany and Botanical Garden, Herbarium, Martin-Luther-University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
O'Reilly JE, Donoghue PCJ. The Effect of Fossil Sampling on the Estimation of Divergence Times with the Fossilized Birth-Death Process. Syst Biol 2020; 69:124-138. [PMID: 31127936 DOI: 10.1093/sysbio/syz037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/17/2019] [Indexed: 08/25/2023] Open
Abstract
Timescales are of fundamental importance to evolutionary biology as they facilitate hypothesis tests of historical evolutionary processes. Through the incorporation of fossil occurrence data, the fossilized birth-death (FBD) process provides a framework for estimating divergence times using more paleontological data than traditional node calibration approaches have allowed. The inclusion of more data can refine evolutionary timescale estimates, but for many taxonomic groups it is computationally infeasible to include all available fossil occurrence data. Here, we utilize both empirical data and a simulation framework to identify approaches to subsampling fossil occurrence data that result in the most accurate estimates of divergence times. To achieve this we assess the performance of the FBD-Skyline model when implementing multiple approaches to incorporating subsampled fossil occurrence data. Our results demonstrate that it is necessary to account for all available fossil occurrence data to achieve the most accurate estimates of clade age. We show that this can be achieved if an empirical Bayes approach, accounting for fossil sampling through time, is applied to the FBD process. Random subsampling of occurrence data can lead to estimates of clade age that are incompatible with fossil evidence if no control over the affinities of fossil occurrences is enforced. Our results call into question the accuracy of previous divergence time studies incorporating the FBD process that have used only a subsample of all available fossil occurrence data.
Collapse
Affiliation(s)
- Joseph E O'Reilly
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
27
|
Salazar-Tortosa D, Castro J, Saladin B, Zimmermann NE, Rubio De Casas R. Arid environments select for larger seeds in pines (Pinus spp.). Evol Ecol 2019. [DOI: 10.1007/s10682-019-10016-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Hernández-Gutiérrez R, Magallón S. The timing of Malvales evolution: Incorporating its extensive fossil record to inform about lineage diversification. Mol Phylogenet Evol 2019; 140:106606. [DOI: 10.1016/j.ympev.2019.106606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
|
29
|
Chen J, Li L, Milesi P, Jansson G, Berlin M, Karlsson B, Aleksic J, Vendramin GG, Lascoux M. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evol Appl 2019; 12:1539-1551. [PMID: 31462913 PMCID: PMC6708423 DOI: 10.1111/eva.12801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022] Open
Abstract
Primeval forests are today exceedingly rare in Europe, and transfer of forest reproductive material for afforestation and improvement has been very common, especially over the last two centuries. This can be a serious impediment when inferring past population movements in response to past climate changes such as the last glacial maximum (LGM), some 18,000 years ago. In the present study, we genotyped 1,672 individuals from three Picea species (P. abies, P. obovata, and P. omorika) at 400K SNPs using exome capture to infer the past demographic history of Norway spruce (P. abies) and estimate the amount of recent introduction used to establish the Norway spruce breeding program in southern Sweden. Most of these trees belong to P. abies and originate from the base populations of the Swedish breeding program. Others originate from populations across the natural ranges of the three species. Of the 1,499 individuals stemming from the breeding program, a large proportion corresponds to recent introductions from mainland Europe. The split of P. omorika occurred 23 million years ago (mya), while the divergence between P. obovata and P. abies began 17.6 mya. Demographic inferences retrieved the same main clusters within P. abies than previous studies, that is, a vast northern domain ranging from Norway to central Russia, where the species is progressively replaced by Siberian spruce (P. obovata) and two smaller domains, an Alpine domain and a Carpathian one, but also revealed further subdivision and gene flow among clusters. The three main domains divergence was ancient (15 mya), and all three went through a bottleneck corresponding to the LGM. Approximately 17% of P. abies Nordic domain migrated from P. obovata ~103K years ago, when both species had much larger effective population sizes. Our analysis of genomewide polymorphism data thus revealed the complex demographic history of Picea genus in Western Europe and highlighted the importance of material transfer in Swedish breeding program.
Collapse
Affiliation(s)
- Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Lili Li
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Gunnar Jansson
- Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
| | - Mats Berlin
- Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk)EkeboSweden
| | - Jelena Aleksic
- Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
| | - Giovanni G. Vendramin
- Division of Florence, Institute of Biosciences and BioResourcesNational Research Council (IBBR‐CNR)Sesto FiorentinoItaly
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
30
|
Ling LZ, Zhang SD. The complete chloroplast genome of Pinus squamata (Pinaceae), a critically endangered species in China. Mitochondrial DNA B Resour 2019; 4:2668-2669. [PMID: 33365675 PMCID: PMC7706991 DOI: 10.1080/23802359.2019.1644224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 11/18/2022] Open
Abstract
The complete chloroplast (cp) genome of Pinus squamata, a critically endangered species in China, was reported in this study. The cp genome is 118,300 bp in length and has four regions: 65,298 bp of large single copy (LSC) region and 52,098 bp of small single copy (SSC) region separated by 452 bp of highly reduced inverted repeat (IR) regions. This cp genome with GC content of 38.8% contains 107 unique genes (73 protein-coding genes, 30 tRNA genes, and four rRNA genes). Phylogenetic analysis based on the complete cp genomes indicates that P. squamata is closer to P. gerardiana than P. bungeana.
Collapse
Affiliation(s)
- Li-Zhen Ling
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, China
| | - Shu-Dong Zhang
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
31
|
Liu YY, Jin WT, Wei XX, Wang XQ. Cryptic speciation in the Chinese white pine (Pinus armandii): Implications for the high species diversity of conifers in the Hengduan Mountains, a global biodiversity hotspot. Mol Phylogenet Evol 2019; 138:114-125. [PMID: 31112783 DOI: 10.1016/j.ympev.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 03/19/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022]
Abstract
Conifers are the largest and ecologically and economically most important component group of the gymnosperms. Despite their slow rate of molecular evolution, rapid and recent diversification was unexpectedly prevalent in this ancient group in the Hengduan Mountains, a world's biodiversity hotspot and gymnosperm diversity center in Southwest China. In this study, we investigated the underlying mechanisms and disentangled the interactions of geography and ecology in speciation and evolution in Pinus armandii, an important forest tree species endemic to China, by integrating analyses of population transcriptomics, population genetics and ecological niche modeling. Many lines of evidence suggest that cryptic speciation has occurred in P. armandii. During the process, geologically induced formation of Mount Gongga and other massive peaks might trigger the initial vicariance isolation of the northern and southern subdivisions, and ecologically based selection then reinforced their differentiation and local adaptation. Our ecological niche analysis and earlier reciprocal transplant experiments in P. armandii provided convincing evidences for the critical role of ecology in the process of speciation. These findings suggest that both geography and ecology contributed significantly to the abundance of very recent and rapid species divergences, which promoted the rising of the extremely high conifer diversity in the Hengduan Mountains.
Collapse
Affiliation(s)
- Yan-Yan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao-Xin Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
32
|
Losada JM, Blanco-Moure N, Leslie AB. Not all 'pine cones' flex: functional trade-offs and the evolution of seed release mechanisms. THE NEW PHYTOLOGIST 2019; 222:396-407. [PMID: 30367490 DOI: 10.1111/nph.15563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Seed dispersal is critical for plants, but the evolution of mechanisms that actually release seeds from their parents is not well understood. We use the reproductive cones of conifers, specifically the Pinaceae clade, to explore the factors driving the evolution of different release mechanisms in plants. We combine comparative anatomical and phylogenetic analyses to test whether fundamental trade-offs in the mechanical and hydraulic properties of vasculature underlie the evolution of two seed release mechanisms: cone scale flexion and cone scale shedding. We then test whether these mechanisms are linked with differences in seed size, dispersal syndrome and reproductive allocation. Cone scale xylem in flexing species is tough, but poorly conductive. Xylem in shedding species is less extensive, fragile and highly conductive; its thin-walled tracheids allow scales to easily fracture at maturity. Shedding is also consistently associated with large, densely packed seeds. Pinaceae cones exploit a well-known trade-off in xylem mechanical strength vs hydraulic efficiency to generate release mechanisms that allow seeds of various sizes to leave the protecting cone. The linkage among release mechanisms, vascular anatomy and seed traits illustrates how a wide variety of selective pressures may influence the function and physiology of reproductive structures.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02130, USA
| | | | - Andrew B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA
| |
Collapse
|
33
|
Rellstab C, Dauphin B, Zoller S, Brodbeck S, Gugerli F. Using transcriptome sequencing and pooled exome capture to study local adaptation in the giga‐genome of
Pinus cembra. Mol Ecol Resour 2019; 19:536-551. [DOI: 10.1111/1755-0998.12986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Stefan Zoller
- ETH Zürich Genetic Diversity Centre Zürich Switzerland
| | - Sabine Brodbeck
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| |
Collapse
|
34
|
Silvestro D, Tejedor MF, Serrano-Serrano ML, Loiseau O, Rossier V, Rolland J, Zizka A, Höhna S, Antonelli A, Salamin N. Early Arrival and Climatically-Linked Geographic Expansion of New World Monkeys from Tiny African Ancestors. Syst Biol 2018; 68:78-92. [PMID: 29931325 PMCID: PMC6292484 DOI: 10.1093/sysbio/syy046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5–10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small—weighing 0.4 kg—and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,These authors contributed equally to this work
| | - Marcelo F Tejedor
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,Instituto Patagónico de Geología y Paleontología (CCT CONICET-CENPAT), Boulevard Almirante Brown 2915, 9120 Puerto Madryn, Chubut, Argentina.,Facultad de Ciencias Naturales, Sede Trelew, Universidad Nacional de la Patagonia 'San Juan Bosco', 9100 Trelew, Chubut, Argentina.,These authors contributed equally to this work
| | | | - Oriane Loiseau
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Victor Rossier
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Department of Zoology, University of British Columbia, 2212 Main Mall, Vancouver, BC Canada
| | - Alexander Zizka
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Sebastian Höhna
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Munich, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, 413 19 Gothenburg, Sweden.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.,These authors are severs as a co-last authorship
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,These authors are severs as a co-last authorship
| |
Collapse
|
35
|
Lamont BB, He T, Yan Z. Evolutionary history of fire‐stimulated resprouting, flowering, seed release and germination. Biol Rev Camb Philos Soc 2018; 94:903-928. [DOI: 10.1111/brv.12483] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Byron B. Lamont
- School of Molecular and Life Sciences Curtin University PO Box U1987, Perth, WA 6845 Australia
| | - Tianhua He
- School of Molecular and Life Sciences Curtin University PO Box U1987, Perth, WA 6845 Australia
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
36
|
Cossu RM, Casola C, Giacomello S, Vidalis A, Scofield DG, Zuccolo A. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes. Genome Biol Evol 2018; 9:3449-3462. [PMID: 29228262 PMCID: PMC5751070 DOI: 10.1093/gbe/evx260] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 12/29/2022] Open
Abstract
The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content.
Collapse
Affiliation(s)
- Rosa Maria Cossu
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Amaryllis Vidalis
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Section of Population Epigenetics and Epigenomics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Sweden.,Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Sweden
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Istituto di Genomica Applicata, Udine, Italy
| |
Collapse
|
37
|
Guindon S. Accounting for Calibration Uncertainty: Bayesian Molecular Dating as a "Doubly Intractable" Problem. Syst Biol 2018; 67:651-661. [PMID: 29385558 DOI: 10.1093/sysbio/syy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
This study introduces a new Bayesian technique for molecular dating that explicitly accommodates for uncertainty in the phylogenetic position of calibrated nodes derived from the analysis of fossil data. The proposed approach thus defines an adequate framework for incorporating expert knowledge and/or prior information about the way fossils were collected in the inference of node ages. Although it belongs to the class of "node-dating" approaches, this method shares interesting properties with "tip-dating" techniques. Yet, it alleviates some of the computational and modeling difficulties that hamper tip-dating approaches. The influence of fossil data on the probabilistic distribution of trees is the crux of the matter considered here. More specifically, among all the phylogenies that a tree model (e.g., the birth-death process) generates, only a fraction of them "agree" with the fossil data. Bayesian inference under the new model requires taking this fraction into account. However, evaluating this quantity is difficult in practice. A generic solution to this issue is presented here. The proposed approach relies on a recent statistical technique, the so-called exchange algorithm, dedicated to drawing samples from "doubly intractable" distributions. A small example illustrates the problem of interest and the impact of uncertainty in the placement of calibration constraints in the phylogeny given fossil data. An analysis of land plant sequences and multiple fossils further highlights the pertinence of the proposed approach.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Zhao YJ, Cao Y, Wang J, Xiong Z. Transcriptome sequencing of Pinus kesiya var. langbianensis and comparative analysis in the Pinus phylogeny. BMC Genomics 2018; 19:725. [PMID: 30285615 PMCID: PMC6171231 DOI: 10.1186/s12864-018-5127-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pines are widely distributed in the Northern Hemisphere and have a long evolutionary history. The availability of transcriptome data has facilitated comparative transcriptomics for studying the evolutionary patterns associated with the different geographical distributions of species in the Pinus phylogeny. Results The transcriptome of Pinus kesiya var. langbianensis was sequenced using the Illumina HiSeq 2000 platform, and a total of 68,881 unigenes were assembled by Trinity. Transcriptome sequences of another 12 conifer species were downloaded from public databases. All of the pairwise orthologues were identified by comparative transcriptome analysis in 13 conifer species, from which the rate of diversification was calculated and a phylogenetic tree inferred. All of the fast-evolving positive selection sequences were identified, and some salt-, drought-, and abscisic acid-resistance genes were discovered. Conclusions mRNA sequences of P. kesiya var. langbianensis were obtained by transcriptome sequencing, and a large number of simple sequence repeat and short nucleotide polymorphism loci were detected. These data can be used in molecular marker-assisted selected in pine breeding. Divergence times were estimated in the 13 conifer species using comparative transcriptomic analysis. A number of positive selection genes were found to be related to environmental factors. Salt- and abscisic acid-related genes exhibited different selection patterns between coastal and inland Pinus. Our findings help elucidate speciation patterns in the Pinus lineage. Electronic supplementary material The online version of this article (10.1186/s12864-018-5127-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- You-Jie Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, People's Republic of China.,College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, People's Republic of China
| | - Yong Cao
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, People's Republic of China
| | - Juan Wang
- Eco-development Academy, Southwest Forestry University, Kunming, 650224, Yunnan, People's Republic of China
| | - Zhi Xiong
- College of Light industry and Food, Southwest Forestry University, Kunming, 650224, Yunnan, People's Republic of China.
| |
Collapse
|
39
|
Leslie AB, Beaulieu J, Holman G, Campbell CS, Mei W, Raubeson LR, Mathews S. An overview of extant conifer evolution from the perspective of the fossil record. AMERICAN JOURNAL OF BOTANY 2018; 105:1531-1544. [PMID: 30157290 DOI: 10.1002/ajb2.1143] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/29/2018] [Indexed: 05/07/2023]
Abstract
PREMISE OF THE STUDY Conifers are an important living seed plant lineage with an extensive fossil record spanning more than 300 million years. The group therefore provides an excellent opportunity to explore congruence and conflict between dated molecular phylogenies and the fossil record. METHODS We surveyed the current state of knowledge in conifer phylogenetics to present a new time-calibrated molecular tree that samples ~90% of extant species diversity. We compared phylogenetic relationships and estimated divergence ages in this new phylogeny with the paleobotanical record, focusing on clades that are species-rich and well known from fossils. KEY RESULTS Molecular topologies and estimated divergence ages largely agree with the fossil record in Cupressaceae, conflict with it in Araucariaceae, and are ambiguous in Pinaceae and Podocarpaceae. Molecular phylogenies provide insights into some fundamental questions in conifer evolution, such as the origin of their seed cones, but using them to reconstruct the evolutionary history of specific traits can be challenging. CONCLUSIONS Molecular phylogenies are useful for answering deep questions in conifer evolution if they depend on understanding relationships among extant lineages. Because of extinction, however, molecular datasets poorly sample diversity from periods much earlier than the Late Cretaceous. This fundamentally limits their utility for understanding deep patterns of character evolution and resolving the overall pattern of conifer phylogeny.
Collapse
Affiliation(s)
- Andrew B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, Box G-W, 80 Waterman Street, Providence, Rhode Island, 02912, USA
| | - Jeremy Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Garth Holman
- School of Biology and Ecology, University of Maine, Orono, Maine, 04469, USA
| | | | - Wenbin Mei
- Department of Plant Sciences, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Linda R Raubeson
- Department of Biological Sciences, Central Washington University, 400 E. University Way, Ellensburg, Washington, 98926, USA
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia
| |
Collapse
|
40
|
From America to Eurasia: a multigenomes history of the genus Abies. Mol Phylogenet Evol 2018; 125:14-28. [DOI: 10.1016/j.ympev.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022]
|
41
|
Casola C, Koralewski TE. Pinaceae show elevated rates of gene turnover that are robust to incomplete gene annotation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:862-876. [PMID: 29901849 DOI: 10.1111/tpj.13994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Gene duplications and gene losses are major determinants of genome evolution and phenotypic diversity. The frequency of gene turnover (gene gains and gene losses combined) is known to vary between organisms. Comparative genomic analyses of gene families can highlight such variation; however, estimates of gene turnover may be biased when using highly fragmented genome assemblies resulting in poor gene annotations. Here, we address potential biases introduced by gene annotation errors in estimates of gene turnover frequencies in a dataset including both well-annotated angiosperm genomes and the incomplete gene sets of four Pinaceae, including two pine species, Norway spruce and Douglas-fir. We show that Pinaceae experienced higher gene turnover rates than angiosperm lineages lacking recent whole-genome duplications. This finding is robust to both known major issues in Pinaceae gene sets: missing gene models and erroneous annotation of pseudogenes. A separate analysis limited to the four Pinaceae gene sets pointed to an accelerated gene turnover rate in pines compared with Norway spruce and Douglas-fir. Our results indicate that gene turnover significantly contributes to genome variation and possibly to speciation in Pinaceae, particularly in pines. Moreover, these findings indicate that reliable estimates of gene turnover frequencies can be discerned in incomplete and potentially inaccurate gene sets. Because gymnosperms are known to exhibit low overall substitution rates compared with angiosperms, our results suggest that the rate of single-base pair mutations is uncoupled from the rate of large DNA duplications and deletions associated with gene turnover in Pinaceae.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA
| | - Tomasz E Koralewski
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA
| |
Collapse
|
42
|
Gernandt DS, Aguirre Dugua X, Vázquez-Lobo A, Willyard A, Moreno Letelier A, Pérez de la Rosa JA, Piñero D, Liston A. Multi-locus phylogenetics, lineage sorting, and reticulation in Pinus subsection Australes. AMERICAN JOURNAL OF BOTANY 2018; 105:711-725. [PMID: 29683492 DOI: 10.1002/ajb2.1052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/24/2018] [Indexed: 05/04/2023]
Abstract
PREMISE OF THE STUDY Both incomplete lineage sorting and reticulation have been proposed as causes of phylogenetic incongruence. Disentangling these factors may be most difficult in long-lived, wind-pollinated plants with large population sizes and weak reproductive barriers. METHODS We used solution hybridization for targeted enrichment and massive parallel sequencing to characterize low-copy-number nuclear genes and high-copy-number plastomes (Hyb-Seq) in 74 individuals of Pinus subsection Australes, a group of ~30 New World pine species of exceptional ecological and economic importance. We inferred relationships using methods that account for both incomplete lineage sorting and reticulation. KEY RESULTS Concatenation- and coalescent-based trees inferred from nuclear genes mainly agreed with one another, but they contradicted the plastid DNA tree in recovering the Attenuatae (the California closed-cone pines) and Oocarpae (the egg-cone pines of Mexico and Central America) as monophyletic and the Australes sensu stricto (the southern yellow pines) as paraphyletic to the Oocarpae. The plastid tree featured some relationships that were discordant with morphological and geographic evidence and species limits. Incorporating gene flow into the coalescent analyses better fit the data, but evidence supporting the hypothesis that hybridization explains the non-monophyly of the Attenuatae in the plastid tree was equivocal. CONCLUSIONS Our analyses document cytonuclear discordance in Pinus subsection Australes. We attribute this discordance to ancient and recent introgression and present a phylogenetic hypothesis in which mostly hierarchical relationships are overlain by gene flow.
Collapse
Affiliation(s)
- David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Xitlali Aguirre Dugua
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Vázquez-Lobo
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Ann Willyard
- Biology Department, Hendrix College, Conway, Arkansas, 72032, USA
| | - Alejandra Moreno Letelier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Jorge A Pérez de la Rosa
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Botánica, Universidad de Guadalajara, Nextipac, Zapopan, Jalisco, 45510, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Aaron Liston
- Department of Botany and Plant Pathology, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
43
|
Yamada M, Yamada T. Relicts of the Mid-Miocene Climatic Optimum may contribute to the floristic diversity of Japan: a case study of Pinus mikii (Pinaceae) and its extant relatives. JOURNAL OF PLANT RESEARCH 2018; 131:239-244. [PMID: 29101488 DOI: 10.1007/s10265-017-0993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
The epidermis of Pinus mikii leaves was studied. Pinus mikii is a fossil species from the lower Miocene to lower Pleistocene of Japan. In P. mikii, the stomata are closely set and guard cells have polar extensions of cuticle on their inner cell walls. These features suggest that P. mikii is closely related to P. luchuensis, an extant species endemic to the Ryukyu Islands of Japan. Pinus mikii also shares some epidermal characters with P. thunbergii, which is semiendemic to Japan. It is possible that P. mikii is a common ancestor of both of these extant species. The distribution of P. mikii expanded during the Mid-Miocene Climatic Optimum (MMCO), but its distribution shifted southwards as global temperatures declined. Pinus luchuensis likely speciated from the retreating population, whereas P. thunbergii arose from a population that adapted to the cooler climate. This study provides a new perspective on the contribution of MMCO relicts to the floristic diversity of Japan.
Collapse
Affiliation(s)
- Mariko Yamada
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Toshihiro Yamada
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
44
|
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol Biol 2017; 17:95. [PMID: 28376717 PMCID: PMC5381128 DOI: 10.1186/s12862-017-0941-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 03/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. RESULTS We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. CONCLUSIONS Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.
Collapse
Affiliation(s)
- Bianca Saladin
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrew B. Leslie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, USA
| | - Rafael O. Wüest
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Glenn Litsios
- Department of Computational Biology, Biophore building, University of Lausanne, Lausanne, Switzerland
- Species, Ecosystems, Landscapes Division, Federal Office for the Environment FOEN, Bern, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanical Garden, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore building, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|