1
|
Sommer RJ. Pristionchus - Beetle associations: Towards a new natural history. J Invertebr Pathol 2025; 209:108243. [PMID: 39644992 DOI: 10.1016/j.jip.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The free-living nematode Pristionchus pacificus has been established as a model system in integrative evolutionary biology by combining laboratory studies with field work and evolutionary biology. Multiple genetic, molecular and experimental tools and a collection of more than 2,500 P. pacificus strains and more than 50 Pristionchus species, which are available as living cultures or frozen stock collections, support research on various life history traits. Species of Pristionchus exhibit a number of complex traits unknown from Caenorhabditis elegans and most other free-living nematodes. First, P. pacificus can form two alternative mouth forms, an example of developmental plasticity that is increasingly studied to investigate the role of plasticity as a facilitator of evolutionary novelty. More than a decade of work has identified associated genetic and epigenetic mechanisms and revealed the evolutionary and ecological significance of feeding structure plasticity. Second, one of the two mouth morphs results in predatory behavior against other nematodes and is currently used to investigate the neurobiology of predation. Third, potential predation results in the risk of cannibalism among conspecifics. Strikingly, Pristionchus nematodes have developed a self-recognition system that allows the distinction of self (kin) and non-self. Given all these organismal features, this nematode has recently been considered a key example for research towards a new natural history (West-Eberhard, 2024). Here, I summarize recent work on Pristionchus with a focus on a 'new natural history'. In addition, I review some recent studies that indicate an interaction of Pristionchus with EPNs that was suggested based on various surveys in different ecological habitats.
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Biology Tübingen, Tübingen, Germany; Max Planck Ring 9, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Blow F, Jeffrey K, Chow FWN, Nikonorova IA, Barr MM, Cook AG, Prevo B, Cheerambathur DK, Buck AH. SID-2 is a conserved extracellular vesicle protein that is not associated with environmental RNAi in parasitic nematodes. Open Biol 2024; 14:240190. [PMID: 39501794 PMCID: PMC11538922 DOI: 10.1098/rsob.240190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
In the free-living nematode Caenorhabditis elegans, the transmembrane protein SID-2 imports double-stranded RNA into intestinal cells to trigger systemic RNA interference (RNAi), allowing organisms to sense and respond to environmental cues such as the presence of pathogens. This process, known as environmental RNAi, has not been observed in the most closely related parasites that are also within clade V. Previous sequence-based searches failed to identify sid-2 orthologues in available clade V parasite genomes. In this study, we identified sid-2 orthologues in these parasites using genome synteny and protein structure-based comparison, following identification of a SID-2 orthologue in extracellular vesicles from the murine intestinal parasitic nematode Heligmosomoides bakeri. Expression of GFP-tagged H. bakeri SID-2 in C. elegans showed similar localization to the intestinal apical membrane as seen for GFP-tagged C. elegans SID-2, and further showed mobility in intestinal cells in vesicle-like structures. We tested the capacity of H. bakeri SID-2 to functionally complement environmental RNAi in a C. elegans SID-2 null mutant and show that H. bakeri SID-2 does not rescue the phenotype in this context. Our work identifies SID-2 as a highly abundant EV protein whose ancestral function may be unrelated to environmental RNAi, and rather highlights an association with extracellular vesicles in nematodes.
Collapse
Affiliation(s)
- Frances Blow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Kate Jeffrey
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Atlanta G Cook
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
3
|
Guerin MN, Ellis TS, Ware MJ, Manning A, Coley AA, Amini A, Igboanugo AG, Rothrock AP, Chung G, Gunsalus KC, Bracht JR. Evolution of a biological thermocouple by adaptation of cytochrome c oxidase in a subterrestrial metazoan, Halicephalobus mephisto. Commun Biol 2024; 7:1214. [PMID: 39342021 PMCID: PMC11439043 DOI: 10.1038/s42003-024-06886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
In this study, we report a biological temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the complete mitochondrial genome sequence of this organism and show through dN/dS analysis evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively selected amino acid substitutions were located in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase completely shuts down at low temperatures (20 °C), leading to a 4.8-fold reduction in the transmembrane proton gradient (ΔΨm) compared to optimal temperature (37 °C). Direct measurement of oxygen consumption found a corresponding 4.6-fold drop at 20 °C compared to 37 °C. Correspondingly, the lifecycle of H. mephisto takes four times longer at low temperature than at higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success across varying environmental temperatures.
Collapse
Affiliation(s)
- Megan N Guerin
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - TreVaughn S Ellis
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Mark J Ware
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Alexandra Manning
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ariana A Coley
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ali Amini
- Mathematics and Statistics Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Adaeze G Igboanugo
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Amaya P Rothrock
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - George Chung
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - John R Bracht
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA.
| |
Collapse
|
4
|
Reinhardt F, Kaiser A, Prömel S, Stadler PF. Evolution of neuropeptide Y/RFamide-like receptors in nematodes. Heliyon 2024; 10:e34473. [PMID: 39130429 PMCID: PMC11315170 DOI: 10.1016/j.heliyon.2024.e34473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The Neuropeptide Y/RFamide-like receptors belong to the Rhodopsin-like G protein-coupled receptors G protein-coupled receptors (GPCRs) and are involved in functions such as locomotion, feeding and reproduction. With 41 described receptors they form the best-studied group of neuropeptide GPCRs in Caenorhabditis elegans. In order to understand the expansion of the Neuropeptide Y/RFamide-like receptor family in nematodes, we started from the sequences of selected receptor paralogs in C. elegans as query and surveyed the corresponding orthologous sequences in another 159 representative nematode target genomes. To this end we employed a automated pipeline based on ExonMatchSolver, a tool that solves the paralog-to-contig assignment problem. Utilizing subclass-specific HMMs we were able to detect a total of 1557 Neuropeptide Y/RFamide-like receptor sequences (1100 NPRs, 375 FRPRs and 82 C09F12.3) in the 159 target nematode genomes investigated here. These sequences demonstrate a good conservation of the Neuropeptide Y/RFamide-like receptors across the Nematoda and highlight the diversification of the family in nematode evolution. No other genus shares all Neuropeptide Y/RFamide-like receptors with the genus Caenorhabditis. At the same time, we observe large numbers of clade specific duplications and losses of family members across the phylum Nematoda.
Collapse
Affiliation(s)
- Franziska Reinhardt
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
| | - Anette Kaiser
- Leipzig University, Faculty of Medicine, Department of Anesthesiology and Intensive Care, Liebigstr. 19, Leipzig, D-04103, Germany
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, Leipzig, D-04103, Germany
| | - Simone Prömel
- Heinrich Heine University Düsseldorf, Universitätsstraße 1/ Gebäude 26.24, Düsseldorf, D-40225, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrße 22, D-04103 Leipzig, Germany
- Inst. f. Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogota, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Půža V, Machado RAR. Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. ZOOLOGICAL LETTERS 2024; 10:13. [PMID: 39020388 PMCID: PMC11256433 DOI: 10.1186/s40851-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/08/2024] [Indexed: 07/19/2024]
Abstract
Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.
Collapse
Affiliation(s)
- Vladimír Půža
- Institute of Entomology, Biology centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, České Budějovice, 37005, Czech Republic.
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
6
|
Charrier E, Chen R, Thundathil N, Gilleard JS. A set of nematode rRNA cistron databases and a primer assessment tool to enable more flexible and comprehensive metabarcoding. Mol Ecol Resour 2024; 24:e13965. [PMID: 38733216 DOI: 10.1111/1755-0998.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The ITS-2-rRNA has been particularly useful for nematode metabarcoding but does not resolve all phylogenetic relationships, and reference sequences are not available for many nematode species. This is a particular issue when metabarcoding complex communities such as wildlife parasites or terrestrial and aquatic free-living nematode communities. We have used markerDB to produce four databases of distinct regions of the rRNA cistron: the 18S rRNA gene, the 28S rRNA gene, the ITS-1 intergenic spacer and the region spanning ITS-1_5.8S_ITS-2. These databases comprise 2645, 254, 13,461 and 10,107 unique full-length sequences representing 1391, 204, 1837 and 1322 nematode species, respectively. The comparative analysis illustrates the complementary value but also reveals a better representation of Clade III, IV and V than Clade I and Clade II nematodes in each case. Although the ITS-1 database includes the largest number of unique full-length sequences, the 18S rRNA database provides the widest taxonomic coverage. We also developed PrimerTC, a tool to assess primer sequence conservation across any reference sequence database, and have applied it to evaluate a large number of previously published rRNA cistron primers. We identified sets of primers that currently provide the broadest taxonomic coverage for each rRNA marker across the nematode phylum. These new resources will facilitate more comprehensive metabarcoding of nematode communities using either short-read or long-read sequencing platforms. Further, PrimerTC is available as a simple WebApp to guide or assess PCR primer design for any genetic marker and/or taxonomic group beyond the nematode phylum.
Collapse
Affiliation(s)
- Eléonore Charrier
- Faculty of Veterinary Medicine, Host Parasite Interaction Program, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Chen
- Faculty of Veterinary Medicine, Host Parasite Interaction Program, University of Calgary, Calgary, Alberta, Canada
| | - Noelle Thundathil
- Faculty of Veterinary Medicine, Host Parasite Interaction Program, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Faculty of Veterinary Medicine, Host Parasite Interaction Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Gendron EMS, Qing X, Sevigny JL, Li H, Liu Z, Blaxter M, Powers TO, Thomas WK, Porazinska DL. Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 2024; 25:615. [PMID: 38890582 PMCID: PMC11184840 DOI: 10.1186/s12864-024-10500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.
Collapse
Affiliation(s)
- Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Xue Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Joseph L Sevigny
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyin Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | - Thomas O Powers
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - W Kelly Thomas
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Bhattarai UR, Poulin R, Gemmell NJ, Dowle E. Genome assembly and annotation of the mermithid nematode Mermis nigrescens. G3 (BETHESDA, MD.) 2024; 14:jkae023. [PMID: 38301266 PMCID: PMC10989877 DOI: 10.1093/g3journal/jkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Genetic studies of nematodes have been dominated by Caenorhabditis elegans as a model species. A lack of genomic resources has limited the expansion of genetic research to other groups of nematodes. Here, we report a draft genome assembly of a mermithid nematode, Mermis nigrescens. Mermithidae are insect parasitic nematodes with hosts including a wide range of terrestrial arthropods. We sequenced, assembled, and annotated the whole genome of M. nigrescens using nanopore long reads and 10X Chromium link reads. The assembly is 524 Mb in size consisting of 867 scaffolds. The N50 value is 2.42 Mb, and half of the assembly is in the 30 longest scaffolds. The assembly BUSCO score from the eukaryotic database (eukaryota_odb10) indicates that the genome is 86.7% complete and 5.1% partial. The genome has a high level of heterozygosity (6.6%) with a repeat content of 83.98%. mRNA-seq reads from different sized nematodes (≤2 cm, 3.5-7 cm, and >7 cm body length) representing different developmental stages were also generated and used for the genome annotation. Using ab initio and evidence-based gene model predictions, 12,313 protein-coding genes and 24,186 mRNAs were annotated. These genomic resources will help researchers investigate the various aspects of the biology and host-parasite interactions of mermithid nematodes.
Collapse
Affiliation(s)
- Upendra R Bhattarai
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Eddy Dowle
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Jung J, Loschko T, Reich S, Rassoul-Agha M, Werner MS. Newly identified nematodes from the Great Salt Lake are associated with microbialites and specially adapted to hypersaline conditions. Proc Biol Sci 2024; 291:20232653. [PMID: 38471558 PMCID: PMC10932707 DOI: 10.1098/rspb.2023.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Extreme environments enable the study of simplified food-webs and serve as models for evolutionary bottlenecks and early Earth ecology. We investigated the biodiversity of invertebrate meiofauna in the benthic zone of the Great Salt Lake (GSL), Utah, USA, one of the most hypersaline lake systems in the world. The hypersaline bays within the GSL are currently thought to support only two multicellular animals: brine fly larvae and brine shrimp. Here, we report the presence, habitat, and microbial interactions of novel free-living nematodes. Nematode diversity drops dramatically along a salinity gradient from a freshwater river into the south arm of the lake. In Gilbert Bay, nematodes primarily inhabit reef-like organosedimentary structures built by bacteria called microbialites. These structures likely provide a protective barrier to UV and aridity, and bacterial associations within them may support life in hypersaline environments. Notably, sampling from Owens Lake, another terminal lake in the Great Basin that lacks microbialites, did not recover nematodes from similar salinities. Phylogenetic divergence suggests that GSL nematodes represent previously undescribed members of the family Monhysteridae-one of the dominant fauna of the abyssal zone and deep-sea hydrothermal vents. These findings update our understanding of halophile ecosystems and the habitable limit of animals.
Collapse
Affiliation(s)
- Julie Jung
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tobias Loschko
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Max Planck Institute for Biology, Tübingen, Germany
| | - Shelley Reich
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Maxim Rassoul-Agha
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael S. Werner
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Zeng JL, Chen HX, Ni XF, Kang JY, Li L. Molecular phylogeny of the family Rhabdiasidae (Nematoda: Rhabditida), with morphology, genetic characterization and mitochondrial genomes of Rhabdias kafunata and R. bufonis. Parasit Vectors 2024; 17:100. [PMID: 38429838 PMCID: PMC10908064 DOI: 10.1186/s13071-024-06201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The family Rhabdiasidae (Nematoda: Rhabditida) is a globally distributed group of nematode parasites, with over 110 species parasitic mainly in amphibians and reptiles. However, the systematic position of the family Rhabdiasidae in the order Rhabditida remains unsolved, and the evolutionary relationships among its genera are still unclear. Moreover, the present knowledge of the mitochondrial genomes of rhabdiasids remains limited. METHODS Two rhabdiasid species: Rhabdias kafunata Sata, Takeuchi & Nakano, 2020 and R. bufonis (Schrank, 1788) collected from the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) in China, were identified based on morphology (light and scanning electron microscopy) and molecular characterization (sequencing of the nuclear 28S and ITS regions and mitochondrial cox1 and 12S genes). The complete mitochondrial genomes of R. kafunata and R. bufonis were also sequenced and annotated for the first time. Moreover, phylogenetic analyses based on the amino acid sequences of 12 protein-coding genes (PCGs) of the mitochondrial genomes were performed to clarify the systematic position of the family Rhabdiasidae in the order Rhabditida using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses based on the 28S + ITS sequences, were also inferred to assess the evolutionary relationships among the genera within Rhabdiasidae. RESULTS The detailed morphology of the cephalic structures, vulva and eggs in R. kafunata and R. bufonis was revealed using scanning electron microscopy (SEM) for the first time. The characterization of 28S and ITS regions of R. kafunata was reported for the first time. The mitogenomes of R. kafunata and R. bufonis are 15,437 bp and 15,128 bp long, respectively, and both contain 36 genes, including 12 PCGs (missing atp8). Comparative mitogenomics revealed that the gene arrangement of R. kafunata and R. bufonis is different from all of the currently available mitogenomes of nematodes. Phylogenetic analyses based on the ITS + 28S data showed Neoentomelas and Kurilonema as sister lineages, and supported the monophyly of Entomelas, Pneumonema, Serpentirhabdias and Rhabdias. Mitochondrial phylogenomic results supported Rhabdiasidae as a member of the superfamily Rhabditoidea in the suborder Rhabditina, and its occurrance as sister to the family Rhabditidae. CONCLUSIONS The complete mitochondrial genome of R. kafunata and R. bufonis were reported for the first time, and two new gene arrangements of mitogenomes in Nematoda were revealed. Mitogenomic phylogenetic results indicated that the family Rhabdiasidae is a member of Rhabditoidea in Rhabditina, and is closely related to Rhabditidae. Molecular phylogenies based on the ITS + 28S sequence data supported the validity of Kurilonema, and showed that Kurilonema is sister to Neoentomelas. The present phylogenetic results also indicated that the ancestors of rhabdiasids seem to have initially infected reptiles, then spreading to amphibians.
Collapse
Affiliation(s)
- Jia-Lu Zeng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xue-Feng Ni
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Jia-Yi Kang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei, People's Republic of China.
| |
Collapse
|
11
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
12
|
Pandey T, Kalluraya CA, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode interdomain horizontal gene transfer. EMBO J 2023; 42:e114835. [PMID: 37953666 PMCID: PMC10711659 DOI: 10.15252/embj.2023114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | - Bingying Wang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ting Xu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xinya Huang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shouhong Guang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | | | - Dengke K Ma
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
13
|
Guerin MN, Ellis T, Ware MJ, Manning A, Coley A, Amini A, Chung G, Gunsalus KC, Bracht JR. Evolution of a biological thermocouple by adaptation of cytochrome c oxidase in a subterrestrial metazoan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570156. [PMID: 38106155 PMCID: PMC10723328 DOI: 10.1101/2023.12.05.570156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In this study we report a naturally evolved temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the full mitochondrial genome sequence of this organism, and show through dN/dS analysis statistically robust evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively-selected amino acid substitutions were localized in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase proton pump completely shuts down at low temperatures (20°C) leading to approximately a 4.8-fold reduction in the transmembrane proton gradient voltage (ΔΨm) compared to optimal temperature (37°C). Direct measurement of oxygen consumption found a corresponding 4.7-fold drop at 20°C compared to 37°C. Correspondingly, the lifecycle of H. mephisto takes four-fold longer at the low temperature compared to higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success in varying environmental temperatures. Our study shows that evolutionary innovation may remodel core metabolism to make it more accurately map onto environmental variation.
Collapse
Affiliation(s)
- Megan N Guerin
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - TreVaughn Ellis
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Mark J Ware
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Alexandra Manning
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Ariana Coley
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Ali Amini
- American University Mathematics and Statistics Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - George Chung
- New York University, Center for Genomics and Systems Biology, New York, NY 10003
| | - Kristin C Gunsalus
- New York University, Center for Genomics and Systems Biology, New York, NY 10003
| | - John R Bracht
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| |
Collapse
|
14
|
Lim J, Kim W, Kim J, Lee J. Telomeric repeat evolution in the phylum Nematoda revealed by high-quality genome assemblies and subtelomere structures. Genome Res 2023; 33:1947-1957. [PMID: 37918961 PMCID: PMC10760449 DOI: 10.1101/gr.278124.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Telomeres are composed of tandem arrays of telomeric-repeat motifs (TRMs) and telomere-binding proteins (TBPs), which are responsible for ensuring end-protection and end-replication of chromosomes. TRMs are highly conserved owing to the sequence specificity of TBPs, although significant alterations in TRM have been observed in several taxa, except Nematoda. We used public whole-genome sequencing data sets to analyze putative TRMs of 100 nematode species and determined that three distinct branches included specific novel TRMs, suggesting that evolutionary alterations in TRMs occurred in Nematoda. We focused on one of the three branches, the Panagrolaimidae family, and performed a de novo assembly of four high-quality draft genomes of the canonical (TTAGGC) and novel TRM (TTAGAC) isolates; the latter genomes revealed densely clustered arrays of the novel TRM. We then comprehensively analyzed the subtelomeric regions of the genomes to infer how the novel TRM evolved. We identified DNA damage-repair signatures in subtelomeric sequences that were representative of consequences of telomere maintenance mechanisms by alternative lengthening of telomeres. We propose a hypothetical scenario in which TTAGAC-containing units are clustered in subtelomeric regions and pre-existing TBPs capable of binding both canonical and novel TRMs aided the evolution of the novel TRM in the Panagrolaimidae family.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Wonjoo Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea;
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
15
|
Huo C, Bao F, Long H, Qin T, Zhang S. The complete mitochondrial genome of Wellcomia compar (Spirurina: Oxyuridae) and its genome characterization and phylogenetic analysis. Sci Rep 2023; 13:14426. [PMID: 37660220 PMCID: PMC10475117 DOI: 10.1038/s41598-023-41638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Wellcomia compar (Spirurina: Oxyuridae) is a pinworm that infects wild and captive porcupines. Despite clear records of its morphological structure, its genetics, systematics, and biology are poorly understood. This study aimed to determine the complete mitochondrial (mt) genome of W. compar and reconstruct its phylogenetic relationship with other nematodes. We sequenced the complete mt genome of W. comparand conducted phylogenetic analyses using concatenated coding sequences of 12 protein-coding genes (PCGs) by maximum likelihood and Bayesian inference. The complete mt genome is 14,373 bp in size and comprises 36 genes, including 12 protein-coding, two rRNA and 22 tRNA genes. Apart from 28 intergenic regions, one non-coding region and one overlapping region also occur. A comparison of the gene arrangements of Oxyuridomorpha revealed relatively similar features in W. compar and Wellcomia siamensis. Phylogenetic analysis also showed that W. compar and W. siamensis formed a sister group. In Oxyuridomorpha the genetic distance between W. compar and W. siamensis was 0.0805. This study reports, for the first time, the complete W. compar mt genome sequence obtained from Chinese porcupines. It provides genetic markers for investigating the taxonomy, population genetics, and phylogenetics of pinworms from different hosts and has implications for the diagnosis, prevention, and control of parasitic diseases in porcupines and other animals.
Collapse
Affiliation(s)
- Chunmao Huo
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Fengyun Bao
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Hong Long
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Tingyang Qin
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Shibin Zhang
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
16
|
Lee YC, Ke HM, Liu YC, Lee HH, Wang MC, Tseng YC, Kikuchi T, Tsai IJ. Single-worm long-read sequencing reveals genome diversity in free-living nematodes. Nucleic Acids Res 2023; 51:8035-8047. [PMID: 37526286 PMCID: PMC10450198 DOI: 10.1093/nar/gkad647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Chen Wang
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
17
|
Pandey T, Kalluraya C, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554039. [PMID: 37662235 PMCID: PMC10473587 DOI: 10.1101/2023.08.20.554039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Natural selection drives acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisition of functions in immunity, metabolism, and reproduction via interdomain HGT (iHGT) from bacteria. We report that the nematode gene rml-3, which was acquired by iHGT from bacteria, enables exoskeleton resilience and protection against environmental toxins in C. elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most highly similar to bacterial enzymes that biosynthesize L-rhamnose to build cell wall polysaccharides. C. elegans rml-3 is regulated in developing seam cells by heat stress and stress-resistant dauer stage. Importantly, rml-3 deficiency impairs cuticle integrity, barrier functions and organismal stress resilience, phenotypes that are rescued by exogenous L-rhamnose. We propose that iHGT of an ancient bacterial rml-3 homolog enables L-rhamnose biosynthesis in nematodes that facilitates cuticle integrity and organismal resilience in adaptation to environmental stresses during evolution. These findings highlight the remarkable contribution of iHGT on metazoan evolution that is conferred by the domestication of bacterial genes.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Chinmay Kalluraya
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Ting Xu
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinya Huang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
18
|
Carvalho ELD, Santana RLS, Gonçalves EC, Sindeaux Neto JL, Silva MVOD, Giese EG. Systematic and parasite-host relationship by Baruscapillaria appendiculata in Phalacrocorax brasilianus collected from Marajó Island, State of Pará, Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e007423. [PMID: 37493787 PMCID: PMC10399554 DOI: 10.1590/s1984-29612023043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023]
Abstract
The genus Baruscapillaria Moravec, 1982 has six valid species recorded in birds Phalacrocoracidae, namely Baruscapillaria appendiculata Freitas, 1933, B. spiculata Freitas, 1933, B. carbonis (Dubinin & Dubinina, 1940), B. jaenschi (Johnston & Mawson, 1945), B. phalacrocoraxi (Borgarenko, 1975) and B. rudolphii Moravec, Scholz and Našincová, 1994. Helminthological tests carried out on cormorants of the species Phalacrocorax brasilianus (Gmelin), a migratory bird that occurs in the northeast of the State of Pará, Brazil, demonstrate B. appendiculata parasitizing the cloaca of these birds, through light microscopy, scanning electron microscopy and molecular biology. These studies allowed a redescription of males and females of this nematode in these hosts and in this geographical area through integrative taxonomy. The occurrence of lesions in the cloaca caused by this nematode parasite was registered using histological analysis. This is a new geographic report for this nematode.
Collapse
Affiliation(s)
- Elaine Lopes de Carvalho
- Laboratório de Histologia e Embriologia Animal, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
| | - Ricardo Luis Sousa Santana
- Laboratório de Histologia e Embriologia Animal, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
| | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará - UFPA, Belém, PA, Brasil
| | | | - Michele Velasco Oliveira da Silva
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
- Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
| | - Elane Guerreiro Giese
- Laboratório de Histologia e Embriologia Animal, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil
| |
Collapse
|
19
|
Guo F, Slos D, Du H, Li K, Li H, Qing X. Transcriptomics of Cruznema velatum (Nematoda: Rhabditidae) with a redescription of the species. J Helminthol 2023; 97:e57. [PMID: 37470247 DOI: 10.1017/s0022149x23000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Cruznema velatum isolated from soil in a chestnut orchard located at Guangdong province, China, is redescribed with morphology, molecular barcoding sequences, and transcriptome data. The morphological comparison for C. velatum and six other valid species is provided. Phylogeny analysis suggests genus Cruznema is monophyletic. The species is amphimix, can be cultured with Escherichia coli in 7-9 days from egg to egg-laying adult, and has a lifespan of 11 to 14 days at 20°C. The transcription data generated 45,366 unigenes; 29.9%, 31.3%, 24.8%, and 18.6% of unigenes were annotated in KOG, SwissProt, GO, and KEGG, respectively. Further gene function analysis demonstrated that C. velatum share the same riboflavin, lipoic acid, and vitamin B6 metabolic pathways with Caenorhabditis elegans and Pristionchus pacificus.
Collapse
Affiliation(s)
- F Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - D Slos
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke9820, Belgium
| | - H Du
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - K Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi830052, China
| | - H Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
- College of Agriculture, Xinjiang Agricultural University, Urumqi830052, China
| | - X Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
20
|
Shatilovich A, Gade VR, Pippel M, Hoffmeyer TT, Tchesunov AV, Stevens L, Winkler S, Hughes GM, Traikov S, Hiller M, Rivkina E, Schiffer PH, Myers EW, Kurzchalia TV. A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva. PLoS Genet 2023; 19:e1010798. [PMID: 37498820 PMCID: PMC10374039 DOI: 10.1371/journal.pgen.1010798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/29/2023] Open
Abstract
Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis when environmental conditions are unfavorable. This state-transition requires execution of a combination of genetic and biochemical pathways that enable the organism to survive for prolonged periods. Recently, nematode individuals have been reanimated from Siberian permafrost after remaining in cryptobiosis. Preliminary analysis indicates that these nematodes belong to the genera Panagrolaimus and Plectus. Here, we present precise radiocarbon dating indicating that the Panagrolaimus individuals have remained in cryptobiosis since the late Pleistocene (~46,000 years). Phylogenetic inference based on our genome assembly and a detailed morphological analysis demonstrate that they belong to an undescribed species, which we named Panagrolaimus kolymaensis. Comparative genome analysis revealed that the molecular toolkit for cryptobiosis in P. kolymaensis and in C. elegans is partly orthologous. We show that biochemical mechanisms employed by these two species to survive desiccation and freezing under laboratory conditions are similar. Our experimental evidence also reveals that C. elegans dauer larvae can remain viable for longer periods in suspended animation than previously reported. Altogether, our findings demonstrate that nematodes evolved mechanisms potentially allowing them to suspend life over geological time scales.
Collapse
Affiliation(s)
- Anastasia Shatilovich
- Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia
- Zoological Institute RAS, St. Petersburg, Russia
| | - Vamshidhar R. Gade
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | | | - Alexei V. Tchesunov
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Sylke Winkler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sofia Traikov
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Center for Systems Biology, Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Society for Nature Research & Goethe University, Frankfurt am Main, Germany
| | - Elizaveta Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia
| | | | | | | |
Collapse
|
21
|
Ghanei-Motlagh R, Fast MD, Groman D, Kumar G, Soliman H, El-Matbouli M, Saleh M. Description, molecular identification and pathological lesions of Huffmanela persica sp. nov. (Nematoda: Trichosomoididae: Huffmanelinae) from the daggertooth pike conger Muraenesox cinereus. Parasit Vectors 2023; 16:182. [PMID: 37277780 DOI: 10.1186/s13071-023-05772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/09/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND The genus Huffmanela Moravec, 1987 (Nematoda, Trichosomoididae, Huffmanelinae), represents a group of nematodes that infect both marine and freshwater fish, and the main gross feature of infection with different species of the genus is the presence of noticeable dark spots or tracks within the parasitized tissues. The purpose of this study was to describe morphologically and morphometrically the eggs of a new marine species of Huffmanela (Huffmanela persica sp. nov.), which was found in the form of black spots in the ovary and the tunica serosa of the stomach of the daggertooth pike conger (Muraenesox cinereus). The new species differs from Huffmanela hamo, another species reported from musculature of this host in Japan, in egg metrics, eggshell features and targeted organ. Molecular identification and pathological examination of the lesions caused by the new species are also reported. METHODS Nematode eggs with varying degrees of development were separated from the infected tissues (ovary and tunica serosa of stomach) and investigated using light and scanning electron microscopy. Different species-specific markers (small subunit ribosomal DNA, 18S; large subunit ribosomal DNA, 28S; internal transcribed spacer, ITS) were used for molecular identification and phylogenetic study of the new species. Infected tissues were fixed in buffered formalin for pathological investigations. RESULTS The fully developed eggs of H. persica sp. nov. are distinguished from those previously described from this host on the basis of their measurements (size, 54-68 × 31-43 µm; polar plugs, 6.4-9.7 × 8.4-12 µm; shell thickness, 3.5-6.1 µm) and a delicate but ornate uterine layer (UL) covering the entire eggshell including the polar plugs. Histopathological examination revealed a fibro-granulomatous inflammation in the ovary and the serosal layer of the stomach of infected fish. Maximum-likelihood (ML) phylogenetic analysis recovered a sister relationship between the new species of marine origin and Huffmanela species previously collected from freshwater hosts. CONCLUSIONS The present study is the first to report the molecular characterization and phylogenetic position of a teleost-associated marine species of the genus Huffmanela. A comprehensive list of nominal and innominate populations of Huffmanela is also provided.
Collapse
Affiliation(s)
- Reza Ghanei-Motlagh
- Division of Fish Health, University of Veterinary Medicine, 1210, Vienna, Austria.
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - David Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Gokhlesh Kumar
- Division of Fish Health, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Hatem Soliman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mansour El-Matbouli
- Division of Fish Health, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Mona Saleh
- Division of Fish Health, University of Veterinary Medicine, 1210, Vienna, Austria.
| |
Collapse
|
22
|
Pollo SMJ, Leon-Coria A, Liu H, Cruces-Gonzalez D, Finney CAM, Wasmuth JD. Transcriptional patterns of sexual dimorphism and in host developmental programs in the model parasitic nematode Heligmosomoides bakeri. Parasit Vectors 2023; 16:171. [PMID: 37246221 DOI: 10.1186/s13071-023-05785-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Heligmosomoides bakeri (often mistaken for Heligmosomoides polygyrus) is a promising model for parasitic nematodes with the key advantage of being amenable to study and manipulation within a controlled laboratory environment. While draft genome sequences are available for this worm, which allow for comparative genomic analyses between nematodes, there is a notable lack of information on its gene expression. METHODS We generated biologically replicated RNA-seq datasets from samples taken throughout the parasitic life of H. bakeri. RNA from tissue-dwelling and lumen-dwelling worms, collected under a dissection microscope, was sequenced on an Illumina platform. RESULTS We find extensive transcriptional sexual dimorphism throughout the fourth larval and adult stages of this parasite and identify alternative splicing, glycosylation, and ubiquitination as particularly important processes for establishing and/or maintaining sex-specific gene expression in this species. We find sex-linked differences in transcription related to aging and oxidative and osmotic stress responses. We observe a starvation-like signature among transcripts whose expression is consistently upregulated in males, which may reflect a higher energy expenditure by male worms. We detect evidence of increased importance for anaerobic respiration among the adult worms, which coincides with the parasite's migration into the physiologically hypoxic environment of the intestinal lumen. Furthermore, we hypothesize that oxygen concentration may be an important driver of the worms encysting in the intestinal mucosa as larvae, which not only fully exposes the worms to their host's immune system but also shapes many of the interactions between the host and parasite. We find stage- and sex-specific variation in the expression of immunomodulatory genes and in anthelmintic targets. CONCLUSIONS We examine how different the male and female worms are at the molecular level and describe major developmental events that occur in the worm, which extend our understanding of the interactions between this parasite and its host. In addition to generating new hypotheses for follow-up experiments into the worm's behavior, physiology, and metabolism, our datasets enable future more in-depth comparisons between nematodes to better define the utility of H. bakeri as a model for parasitic nematodes in general.
Collapse
Affiliation(s)
- Stephen M J Pollo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - David Cruces-Gonzalez
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Constance A M Finney
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
23
|
Zhang P, Zhu Y, Guo Q, Li J, Zhan X, Yu H, Xie N, Tan H, Lundholm N, Garcia-Cuetos L, Martin MD, Subirats MA, Su YH, Ruiz-Trillo I, Martindale MQ, Yu JK, Gilbert MTP, Zhang G, Li Q. On the origin and evolution of RNA editing in metazoans. Cell Rep 2023; 42:112112. [PMID: 36795564 PMCID: PMC9989829 DOI: 10.1016/j.celrep.2023.112112] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Extensive adenosine-to-inosine (A-to-I) editing of nuclear-transcribed mRNAs is the hallmark of metazoan transcriptional regulation. Here, by profiling the RNA editomes of 22 species that cover major groups of Holozoa, we provide substantial evidence supporting A-to-I mRNA editing as a regulatory innovation originating in the last common ancestor of extant metazoans. This ancient biochemistry process is preserved in most extant metazoan phyla and primarily targets endogenous double-stranded RNA (dsRNA) formed by evolutionarily young repeats. We also find intermolecular pairing of sense-antisense transcripts as an important mechanism for forming dsRNA substrates for A-to-I editing in some but not all lineages. Likewise, recoding editing is rarely shared across lineages but preferentially targets genes involved in neural and cytoskeleton systems in bilaterians. We conclude that metazoan A-to-I editing might first emerge as a safeguard mechanism against repeat-derived dsRNA and was later co-opted into diverse biological processes due to its mutagenic nature.
Collapse
Affiliation(s)
- Pei Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Qunfei Guo
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Li
- BGI Research-Wuhan, BGI, Wuhan 430074, China
| | | | - Hao Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Nianxia Xie
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Lydia Garcia-Cuetos
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Center for Theoretical Evolutionary Genomics, Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology, UPF-CSIC Barcelona, 08003 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Bilogia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Guojie Zhang
- Center of Evolutionary and Organismal Biology, & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Röseler W, Collenberg M, Yoshida K, Lanz C, Sommer RJ, Rödelsperger C. The improved genome of the nematode Parapristionchus giblindavisi provides insights into lineage-specific gene family evolution. G3 (BETHESDA, MD.) 2022; 12:jkac215. [PMID: 35980151 PMCID: PMC9526060 DOI: 10.1093/g3journal/jkac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Nematodes such as Caenorhabditis elegans and Pristionchus pacificus are extremely successful model organisms for comparative biology. Several studies have shown that phenotypic novelty but also conserved processes are controlled by taxon-restricted genes. To trace back the evolution of such new or rapidly evolving genes, a robust phylogenomic framework is indispensable. Here, we present an improved version of the genome of Parapristionchus giblindavisi which is the only known member of the sister group of Pristionchus. Relative to the previous short-read assembly, the new genome is based on long reads and displays higher levels of contiguity, completeness, and correctness. Specifically, the number of contigs dropped from over 7,303 to 735 resulting in an N50 increase from 112 to 791 kb. We made use of the new genome to revisit the evolution of multiple gene families. This revealed Pristionchus-specific expansions of several environmentally responsive gene families and a Pristionchus-specific loss of the de novo purine biosynthesis pathway. Focusing on the evolution of sulfatases and sulfotransferases, which control the mouth form plasticity in P. pacificus, reveals differences in copy number and genomic configurations between the genera Pristionchus and Parapristionchus. Altogether, this demonstrates the utility of the P. giblindavisi genome to date and polarizes lineage-specific patterns.
Collapse
Affiliation(s)
- Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Maximilian Collenberg
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Tchesunov AV, Nikolaeva OV, Rusin LY, Sanamyan NP, Panina EG, Miljutin DM, Gorelysheva DI, Pegova AN, Khromova MR, Mardashova MV, Mikhailov KV, Yushin VV, Petrov NB, Lyubetsky VA, Nikitin MA, Aleoshin VV. Paraphyly of Marimermithida refines primary routes of transition to parasitism in roundworms. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Parasitic life-strategies in the phylum Nematoda (roundworms) are remarkably diverse and intricate in terms of evolution and taxonomy. By analysing novel rDNA data obtained on rare host-associated groups with unusual biology, we reveal paraphyly of the last major taxon with uncertain higher-rank classification that united solely parasitic nematodes (Marimermithida) to show that primarily marine parasitism only emerged independently and repeatedly in a few free-living lineages. We report secondary seaward ingression of land-based parasites (Mermithida) via invading hosts in the subtidal zone to illustrate the host-borne scenario of oceanic fish and mammal colonization by primarily terrestrial parasites (Spiruria). We also present the first molecular data on marine nematodes from unicellular hosts (foraminiferan protozoans) to demonstrate the independent origins of exploitative nematode associations at a microscopic scale. We argue that, in contrast with primarily intestinal associations arising from saprotrophy and commensalism, non-intestinal host capture (colonization of host body cavity or internal organs) is likely to be a primary route of transition to truly exploitative parasitism in roundworms. Predispositions to host capture in nematode morphology, ecology and life cycles imply its evolution as part of innate pre-adaptations to crossing environmental boundaries to enable multiple successful transitions to parasitism in the phylum history.
Collapse
Affiliation(s)
- Alexei V Tchesunov
- Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Nikolaeva
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - Leonid Yu Rusin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Nadezda P Sanamyan
- Kamchatka Branch of Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences , Petropavlovsk-Kamchatsky , Russia
| | - Elena G Panina
- Kamchatka Branch of Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences , Petropavlovsk-Kamchatsky , Russia
| | | | - Daria I Gorelysheva
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences , Moscow , Russia
| | - Anna N Pegova
- Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Maria R Khromova
- Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Maria V Mardashova
- Marine Research Center, Lomonosov Moscow State University , Moscow , Russia
| | - Kirill V Mikhailov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Vladimir V Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences , Vladivostok , Russia
| | - Nikolai B Petrov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - Vassily A Lyubetsky
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Vladimir V Aleoshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University , Moscow , Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
26
|
Trautenberg LC, Brankatschk M, Shevchenko A, Wigby S, Reinhardt K. Ecological lipidology. eLife 2022; 11:79288. [PMID: 36069772 PMCID: PMC9451535 DOI: 10.7554/elife.79288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary lipids (DLs), particularly sterols and fatty acids, are precursors for endogenous lipids that, unusually for macronutrients, shape cellular and organismal function long after ingestion. These functions – cell membrane structure, intracellular signalling, and hormonal activity – vary with the identity of DLs, and scale up to influence health, survival, and reproductive fitness, thereby affecting evolutionary change. Our Ecological Lipidology approach integrates biochemical mechanisms and molecular cell biology into evolution and nutritional ecology. It exposes our need to understand environmental impacts on lipidomes, the lipid specificity of cell functions, and predicts the evolution of lipid-based diet choices. Broad interdisciplinary implications of Ecological Lipidology include food web alterations, species responses to environmental change, as well as sex differences and lifestyle impacts on human nutrition, and opportunities for DL-based therapies.
Collapse
Affiliation(s)
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Wigby
- Applied Zoology, Technische Universität Dresden, Dresden, Germany.,Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Klaus Reinhardt
- Applied Zoology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Eamsobhana P, Yong HS, Boonyong S, Wanachiwanawin D, Tungtrongchitr A. Genetic diversity and identity of Ascaris worms from human and pig hosts in Thailand. Vet Parasitol Reg Stud Reports 2022; 33:100752. [PMID: 35820723 DOI: 10.1016/j.vprsr.2022.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Ascaris roundworms are of public health and socio-economic importance worldwide. They are conventionally attributed to two taxa - A. lumbricoides infecting principally human and A. suum infecting principally pig. Phylogenomic analysis has revealed that Ascaris worms from both human and pig are represented in Clades A and B. A recent study indicates that the Ascaris worms from human and pig in Thailand belong to Clade A. We examined adult Ascaris worms from human and pig in Thailand by means of the partial sequences of three mitochondrial genes (cox1, cox2 and nad1) and concatenation of these genes. Phylogenomic analysis indicates that two isolates (H1,H2) of A. lumbricoides from human belonged to Clade B; one isolate (H3) belonged to Clade A (based on cox1, cox2 and concatenated sequences) or as an outlier to Clades A and B (based on nad1 sequences). All the eight isolates of A. suum from pig clustered in Clade A. The partial nad1 and the concatenated sequences revealed two lineages of A. suum isolates which were distinct from the two A. lumbricoides isolates of Clade B. It is evident that greater genetic diversity, and a more robust phylogeny, could be uncovered by the application of multiple genes. In sum, the present study reveals the presence in Thailand of A. lumbricoides from human in Clades A and B which necessitates appropriate treatment and control measures; Clades A and B have been reported to contain haplotypes of Ascaris worms from both human and pig in other parts of the world. A country wide study is needed to elucidate the identity, distribution, prevalence, cross transmission, genetic diversity and phylogeny of the Ascaris worms in Thailand.
Collapse
Affiliation(s)
- Praphathip Eamsobhana
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Hoi-Sen Yong
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sudarat Boonyong
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Darawan Wanachiwanawin
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
28
|
Prabh N, Rödelsperger C. Multiple Pristionchus pacificus genomes reveal distinct evolutionary dynamics between de novo candidates and duplicated genes. Genome Res 2022; 32:1315-1327. [PMID: 35618417 PMCID: PMC9341508 DOI: 10.1101/gr.276431.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/20/2022] [Indexed: 01/03/2023]
Abstract
The birth of new genes is a major molecular innovation driving phenotypic diversity across all domains of life. Although repurposing of existing protein-coding material by duplication is considered the main process of new gene formation, recent studies have discovered thousands of transcriptionally active sequences as a rich source of new genes. However, differential loss rates have to be assumed to reconcile the high birth rates of these incipient de novo genes with the dominance of ancient gene families in individual genomes. Here, we test this rapid turnover hypothesis in the context of the nematode model organism Pristionchus pacificus We extended the existing species-level phylogenomic framework by sequencing the genomes of six divergent P. pacificus strains. We used these data to study the evolutionary dynamics of different age classes and categories of origin at a population level. Contrasting de novo candidates with new families that arose by duplication and divergence from known genes, we find that de novo candidates are typically shorter, show less expression, and are overrepresented on the sex chromosome. Although the contribution of de novo candidates increases toward young age classes, multiple comparisons within the same age class showed significantly higher attrition in de novo candidates than in known genes. Similarly, young genes remain under weak evolutionary constraints with de novo candidates representing the fastest evolving subcategory. Altogether, this study provides empirical evidence for the rapid turnover hypothesis and highlights the importance of the evolutionary timescale when quantifying the contribution of different mechanisms toward new gene formation.
Collapse
Affiliation(s)
- Neel Prabh
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Huffmanela cf. huffmani (Nematoda: Trichosomoididae) infecting swim bladder, peritoneum, and gonad of variable platyfish, Xiphophorus variatus (Cyprinodontiformes: Poeciliidae) and eastern mosquitofish, Gambusia holbrooki (Poeciliidae) in Florida; taxonomy, phylogenetic analysis, and pathological changes. Parasitol Res 2022; 121:2307-2323. [PMID: 35754087 DOI: 10.1007/s00436-022-07570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
Variable platyfish, Xiphophorus variatus (Meek, 1904) (Cyprinodontiformes: Poeciliidae) and eastern mosquitofish, Gambusia holbrooki Girard, 1859 (Poeciliidae) from earthen ponds in west central Florida were examined for parasitic infections. At necropsy, we observed myriad nematodes (adults and eggs), which we identified as Huffmanela cf. huffmani, infecting the swim bladder, gonad, and visceral peritoneum. Nucleotide sequences (small subunit ribosomal DNA, 18S) of H. cf. huffmani from variable platyfish and eastern mosquitofish were identical; likewise for newly obtained 18S sequences of Huffmanela huffmani Moravec, 1987 from the swim bladder of red breast sunfish, Lepomis auritus (Linnaeus, 1758) (Centrarchiformes: Centrarchidae) and warmouth, Lepomis gulosus (Cuvier, 1829) from the San Marcos River (type locality for Huffmanela huffmani Moravec, 1987), Texas. The sequences of H. huffmani and H. cf. huffmani differed by 7 (1%) nucleotides. Pathological changes comprised proliferation of the tunica externa of the swim bladder in low-intensity infections in addition to inflammation, proliferation, and tissue necrosis of swim bladder, peritoneum, and gonad in high-intensity infections. The lesion was severe, affecting the cellular constituents of the swim bladder wall and reducing the size of the swim bladder lumen; potentially reducing swim bladder physiological efficiency. The present study is the first record of a freshwater species of Huffmanela Moravec, 1987 from beyond the San Marcos River, first record of a species of Huffmanela from a livebearer, first nucleotide sequences and phylogenetic analysis for Huffmanela, and first evidence that an infection by a species of Huffmanela causes pathological changes that could impact organ function.
Collapse
|
30
|
Cháves-González LE, Morales-Calvo F, Mora J, Solano-Barquero A, Verocai GG, Rojas A. What lies behind the curtain: Cryptic diversity in helminth parasites of human and veterinary importance. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100094. [PMID: 35800064 PMCID: PMC9253710 DOI: 10.1016/j.crpvbd.2022.100094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Parasite cryptic species are morphologically indistinguishable but genetically distinct organisms, leading to taxa with unclear species boundaries. Speciation mechanisms such as cospeciation, host colonization, taxon pulse, and oscillation may lead to the emergence of cryptic species, influencing host-parasite interactions, parasite ecology, distribution, and biodiversity. The study of cryptic species diversity in helminth parasites of human and veterinary importance has gained relevance, since their distribution may affect clinical and epidemiological features such as pathogenicity, virulence, drug resistance and susceptibility, mortality, and morbidity, ultimately affecting patient management, course, and outcome of treatment. At the same time, the need for recognition of cryptic species diversity has implied a transition from morphological to molecular diagnostic methods, which are becoming more available and accessible in parasitology. Here, we discuss the general approaches for cryptic species delineation and summarize some examples found in nematodes, trematodes and cestodes of medical and veterinary importance, along with the clinical implications of their taxonomic status. Lastly, we highlight the need for the correct interpretation of molecular information, and the correct use of definitions when reporting or describing new cryptic species in parasitology, since molecular and morphological data should be integrated whenever possible.
Collapse
Affiliation(s)
- Luis Enrique Cháves-González
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Fernando Morales-Calvo
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
31
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
32
|
Edwards A, Deberry K, Mariani H, Taylor DH, Cochran NJ, Barrios Sosa AC, Scott AR, Williamson RT, Tirla C, Sandefur C, Alexander CC. Myrica cerifera, a Medicinal Plant of the Lumbee Tribe, has Antibacterial and Nematicidal Properties. AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 2022; 19:3-11. [PMID: 36159598 PMCID: PMC9503373 DOI: 10.33697/ajur.2022.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Currently threatening the world of medicine is a growing number of antibiotic-resistant diseases. More specifically, bacteria and nematodes have gained resistance to many of the world's leading antibiotics and nematicides, respectively, making infections more difficult to treat. Subsequently, these parasitic organisms are able to continue damaging crops and other living organisms like humans without strong interference. To help people and the environment, the development of new and novel antibiotics is vital. Previous research suggests that phytochemicals are a potential solution that will not only help inhibit bacterial growth but also reduce nematode survival. We hypothesized that Myrica cerifera, a plant often used by the Lumbee tribe to treat illness, possesses antibacterial and nematicidal properties. To answer our hypothesis, we began by collecting plant specimens to extract material for biological assays and to subsequently isolate and elucidate the structures of active components. The extract was evaluated for antibacterial properties with an agar diffusion assay and then nematicidal properties using Caenorhabditis elegans. M. cerifera extract was added onto an agar lawn at various doses, and the nematodes' lifespans were scored. The findings of this study show that extracts of this plant, more commonly referred to as 'wax myrtle', do significantly decrease the lifespan of C. elegans and increase the zone of inhibition for Staphylococcus epidermidis and Staphylococcus aureus. In addition, two compounds were isolated and characterized through chemical extraction, chromatographic separation, and spectroscopic analysis. These compounds could potentially be used to treat bacterial and nematode infections.
Collapse
Affiliation(s)
- Ashley Edwards
- Department of Biology, University of North Carolina at Pembroke, Pembroke, NC
| | - Kazhmiri Deberry
- Department of Biology, University of North Carolina at Pembroke, Pembroke, NC
| | - Hannah Mariani
- Department of Biology, University of North Carolina at Pembroke, Pembroke, NC
| | - Darian H Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC
| | - Nicholas J Cochran
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC
| | - Ana C Barrios Sosa
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC
| | - Andrea Regan Scott
- Department of Biology, University of North Carolina at Pembroke, Pembroke, NC
| | - R Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC
| | - Cornelia Tirla
- Department of Chemistry, University of North Carolina at Pembroke, Pembroke, NC
| | - Conner Sandefur
- Department of Biology, University of North Carolina at Pembroke, Pembroke, NC
| | | |
Collapse
|
33
|
Sacco MA, Lau J, Godinez-Vidal D, Kaloshian I. Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. J Gen Virol 2022; 103. [PMID: 35550022 DOI: 10.1099/jgv.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Jonathan Lau
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Damaris Godinez-Vidal
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
34
|
Airs PM, Vaccaro K, Gallo KJ, Dinguirard N, Heimark ZW, Wheeler NJ, He J, Weiss KR, Schroeder NE, Huisken J, Zamanian M. Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi. PLoS Pathog 2022; 18:e1010399. [PMID: 35390105 PMCID: PMC9017939 DOI: 10.1371/journal.ppat.1010399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 02/25/2022] [Indexed: 01/24/2023] Open
Abstract
Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.
Collapse
Affiliation(s)
- Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathy Vaccaro
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiaye He
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Kurt R. Weiss
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Nathan E. Schroeder
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jan Huisken
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Ross GM, Berg MP, Salmon S, Nielsen UN. Phylogenies of traits and functions in soil invertebrate assemblages. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giles M. Ross
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW 2751 Australia
| | - Matty P. Berg
- Department of Ecological Science Vrije Universiteit Amsterdam, De Boelelaan 1085 Amsterdam HV 1081 The Netherlands
- Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences University of Groningen Nijenborgh 7 Groningen AG 9747 The Netherlands
| | - Sandrine Salmon
- Department of Living Adaptations UMR 7179 MECADEV, Muséum National d'Histoire Naturelle 1 Avenue du Petit Château, Brunoy Paris 91800 France
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
37
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
38
|
Zagoskin MV, Wang J, Neff AT, Veronezi GMB, Davis RE. Small RNA pathways in the nematode Ascaris in the absence of piRNAs. Nat Commun 2022; 13:837. [PMID: 35149688 PMCID: PMC8837657 DOI: 10.1038/s41467-022-28482-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Small RNA pathways play key and diverse regulatory roles in C. elegans, but our understanding of their conservation and contributions in other nematodes is limited. We analyzed small RNA pathways in the divergent parasitic nematode Ascaris. Ascaris has ten Argonautes with five worm-specific Argonautes (WAGOs) that associate with secondary 5’-triphosphate 22-24G-RNAs. These small RNAs target repetitive sequences or mature mRNAs and are similar to the C. elegans mutator, nuclear, and CSR-1 small RNA pathways. Even in the absence of a piRNA pathway, Ascaris CSR-1 may still function to “license” as well as fine-tune or repress gene expression. Ascaris ALG-4 and its associated 26G-RNAs target and likely repress specific mRNAs during testis meiosis. Ascaris WAGO small RNAs demonstrate target plasticity changing their targets between repeats and mRNAs during development. We provide a unique and comprehensive view of mRNA and small RNA expression throughout spermatogenesis. Overall, our study illustrates the conservation, divergence, dynamics, and flexibility of small RNA pathways in nematodes. The parasitic nematode Ascaris lacks piRNAs. Here the authors compare Argonaute proteins and small RNAs from C. elegans and Ascaris, expanding our understanding of the conservation, divergence, and flexibility of Argonautes and small RNA pathways in nematodes.
Collapse
Affiliation(s)
- Maxim V Zagoskin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.
| | - Ashley T Neff
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
39
|
Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Ontano AZ, Setton EVW, Arango CP, Gavish-Regev E, Harvey MS, Wheeler WC, Hormiga G, Giribet G, Sharma PP. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 2022; 39:6522129. [PMID: 35137183 PMCID: PMC8845124 DOI: 10.1093/molbev/msac021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Tauana J Cunha
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Claudia P Arango
- Office for Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western, Crawley, Western Australia, 6009, Australia; Australia
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
40
|
Ahmed M, Roberts NG, Adediran F, Smythe AB, Kocot KM, Holovachov O. Phylogenomic Analysis of the Phylum Nematoda: Conflicts and Congruences With Morphology, 18S rRNA, and Mitogenomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.769565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phylogenetic relationships within many lineages of the phylum Nematoda remain unresolved, despite numerous morphology-based and molecular analyses. We performed several phylogenomic analyses using 286 published genomes and transcriptomes and 19 new transcriptomes by focusing on Trichinellida, Spirurina, Rhabditina, and Tylenchina separately, and by analyzing a selection of species from the whole phylum Nematoda. The phylogeny of Trichinellida supported the division of Trichinella into encapsulated and non-encapsulated species and placed them as sister to Trichuris. The Spirurina subtree supported the clades formed by species from Ascaridomorpha and Spiruromorpha respectively, but did not support Dracunculoidea. The analysis of Tylenchina supported a clade that included all sampled species from Tylenchomorpha and placed it as sister to clades that included sampled species from Cephalobomorpha and Panagrolaimomorpha, supporting the hypothesis that postulates the single origin of the stomatostylet. The Rhabditina subtree placed a clade composed of all sampled species from Diplogastridae as sister to a lineage consisting of paraphyletic Rhabditidae, a single representative of Heterorhabditidae and a clade composed of sampled species belonging to Strongylida. It also strongly supported all suborders within Strongylida. In the phylum-wide analysis, a clade composed of all sampled species belonging to Enoplia were consistently placed as sister to Dorylaimia + Chromadoria. The topology of the Nematoda backbone was consistent with previous studies, including polyphyletic placement of sampled representatives of Monhysterida and Araeolaimida.
Collapse
|
41
|
Herranz M, Stiller J, Worsaae K, Sørensen MV. Phylogenomic analyses of mud dragons (Kinorhyncha). Mol Phylogenet Evol 2021; 168:107375. [PMID: 34952205 DOI: 10.1016/j.ympev.2021.107375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Mud dragons (Kinorhyncha) are microscopic invertebrates, inhabiting marine sediments across the globe from intertidal to hadal depths. They are segmented, moulting animals like arthropods, but grouping with the unsegmented priapulans and loriciferans within Ecdysozoa. There are more than 300 species of kinorhynchs described within 31 genera and 11 families, however, their evolutionary relationships have so far only been investigated using morphology and a few molecular markers. Here we aim to resolve the relationships and classification of major clades within Kinorhyncha using transcriptomic data. In addition, we wish to revisit the position of three indistinctly segmented, aberrant genera in order to reconstruct the evolution of distinct segmentation within the group. We conducted a phylogenomic analysis of Kinorhyncha including 21 kinorhynch transcriptomes (of which 18 are new) representing 15 genera, and seven outgroups including priapulan, loriciferan, nematode and nematomorph transcriptomes. Results show a congruent and robust tree that supports the division of Kinorhyncha into two major clades: Cyclorhagida and Allomalorhagida. Cyclorhagida is composed of three subclades: Xenosomata, Kentrorhagata comb. nov. (including the aberrant Zelinkaderes) and Echinorhagata. Allomalorhagida is composed of two subclades: Pycnophyidae and Anomoirhaga nom. nov. Anomoirhaga nom. nov. accommodates the aberrant genera Cateria (previously nested within Cyclorhagida) and Franciscideres together with five additional genera. The distant and derived positions of the aberrant Zelinkaderes, Cateria and Franciscideres species suggest that their less distinct trunk segmentation evolved convergently, and that segmentation evolved among kinorhynch stem groups.
Collapse
Affiliation(s)
- Maria Herranz
- Marine Biology section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Josefin Stiller
- Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Katrine Worsaae
- Marine Biology section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
42
|
Ahmed M, Holovachov O. Twenty Years after De Ley and Blaxter-How Far Did We Progress in Understanding the Phylogeny of the Phylum Nematoda? Animals (Basel) 2021; 11:3479. [PMID: 34944255 PMCID: PMC8697950 DOI: 10.3390/ani11123479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
Molecular phylogenetics brought radical changes to our understanding of nematode evolution, resulting in substantial modifications to nematode classification implemented by De Ley and Blaxter and widely accepted now. Numerous phylogenetic studies were subsequently published that both improved and challenged this classification. Here we present a summary of these changes. We created cladograms that summarise phylogenetic relationships within Nematoda using phylum-wide to superfamily-wide molecular phylogenies published in since 2005, and supplemented with the phylogenetic analyses for Enoplia and Chromadoria with the aim of clarifying the position of several taxa. The results show which parts of the Nematode tree are well resolved and understood, and which parts require more research, either by adding taxa that have not been included yet (increasing taxon coverage), or by changing the phylogenetic approach (improving data quality, using different types of data or different methods of analysis). The currently used classification of the phylum Nematoda in many cases does not reflect the phylogeny and in itself requires numerous improvements and rearrangements.
Collapse
Affiliation(s)
| | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, 114 18 Stockholm, Sweden;
| |
Collapse
|
43
|
What Is an “Arachnid”? Consensus, Consilience, and Confirmation Bias in the Phylogenetics of Chelicerata. DIVERSITY 2021. [DOI: 10.3390/d13110568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The basal phylogeny of Chelicerata is one of the opaquest parts of the animal Tree of Life, defying resolution despite application of thousands of loci and millions of sites. At the forefront of the debate over chelicerate relationships is the monophyly of Arachnida, which has been refuted by most analyses of molecular sequence data. A number of phylogenomic datasets have suggested that Xiphosura (horseshoe crabs) are derived arachnids, refuting the traditional understanding of arachnid monophyly. This result is regarded as controversial, not least by paleontologists and morphologists, due to the widespread perception that arachnid monophyly is unambiguously supported by morphological data. Moreover, some molecular datasets have been able to recover arachnid monophyly, galvanizing the belief that any result that challenges arachnid monophyly is artefactual. Here, we explore the problems of distinguishing phylogenetic signal from noise through a series of in silico experiments, focusing on datasets that have recently supported arachnid monophyly. We assess the claim that filtering by saturation rate is a valid criterion for recovering Arachnida. We demonstrate that neither saturation rate, nor the ability to assemble a molecular phylogenetic dataset supporting a given outcome with maximal nodal support, is a guarantor of phylogenetic accuracy. Separately, we review empirical morphological phylogenetic datasets to examine characters supporting Arachnida and the downstream implication of a single colonization of terrestrial habitats. We show that morphological support of arachnid monophyly is contingent upon a small number of ambiguous or incorrectly coded characters, most of these tautologically linked to adaptation to terrestrial habitats.
Collapse
|
44
|
Zograf JK, Trebukhova YA, Yushin VV, Yakovlev KV. Analysis of major sperm proteins in two nematode species from two classes, Enoplus brevis (Enoplea, Enoplida) and Panagrellus redivivus (Chromadorea, Rhabditida), reveals similar localization, but less homology of protein sequences than expected for Nematoda phylum. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths. Parasit Vectors 2021; 14:233. [PMID: 33933158 PMCID: PMC8088577 DOI: 10.1186/s13071-021-04737-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic markers are employed widely in molecular studies, and their utility depends on the degree of sequence variation, which dictates the type of application for which they are suited. Consequently, the suitability of a genetic marker for any specific application is complicated by its properties and usage across studies. To provide a yardstick for future users, in this study we assess the suitability of genetic markers for molecular systematics and species identification in helminths and provide an estimate of the cut-off genetic distances per taxonomic level. METHODS We assessed four classes of genetic markers, namely nuclear ribosomal internal transcribed spacers, nuclear rRNA, mitochondrial rRNA and mitochondrial protein-coding genes, based on certain properties that are important for species identification and molecular systematics. For molecular identification, these properties are inter-species sequence variation; length of reference sequences; easy alignment of sequences; and easy to design universal primers. For molecular systematics, the properties are: average genetic distance from order/suborder to species level; the number of monophyletic clades at the order/suborder level; length of reference sequences; easy alignment of sequences; easy to design universal primers; and absence of nucleotide substitution saturation. Estimation of the cut-off genetic distances was performed using the 'K-means' clustering algorithm. RESULTS The nuclear rRNA genes exhibited the lowest sequence variation, whereas the mitochondrial genes exhibited relatively higher variation across the three groups of helminths. Also, the nuclear and mitochondrial rRNA genes were the best possible genetic markers for helminth molecular systematics, whereas the mitochondrial protein-coding and rRNA genes were suitable for molecular identification. We also revealed that a general gauge of genetic distances might not be adequate, using evidence from the wide range of genetic distances among nematodes. CONCLUSION This study assessed the suitability of DNA genetic markers for application in molecular systematics and molecular identification of helminths. We provide a novel way of analyzing genetic distances to generate suitable cut-off values for each taxonomic level using the 'K-means' clustering algorithm. The estimated cut-off genetic distance values, together with the summary of the utility and limitations of each class of genetic markers, are useful information that can benefit researchers conducting molecular studies on helminths.
Collapse
|
46
|
Ahmed M, Adedidran F, Holovachov O. A draft transcriptome of a parasite Neocamacolaimus parasiticus (Camacolaimidae, Plectida). J Nematol 2021; 53:e2021-40. [PMID: 33860270 PMCID: PMC8040144 DOI: 10.21307/jofnem-2021-040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/02/2022] Open
Abstract
Camacolaimidae is a clade of nematodes that include both free-living epistrate feeding forms and parasites of marine protozoans and invertebrates. Neocamacolaimus parasiticus is a parasite of marine polychaete worms. Given its phylogenetic affinities to free-living species, Neocamacolaimus can be a reference for research of the origin of parasitism in an aquatic environment. Here, we present a draft transcriptome obtained from a single post-parasitic juvenile individual of this species. The final assembly consists of 19,180 protein coding sequences (including isoforms) with the following BUSCO scores for Nematoda: 65.38% complete, 9.06% partial, and 25.56% missing, and for Metazoa: 79.45% complete, 3.17% partial, and 17.38% missing.
Collapse
Affiliation(s)
- Mohammed Ahmed
- Department of Zoology, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | | | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| |
Collapse
|
47
|
Rödelsperger C. The community-curated Pristionchus pacificus genome facilitates automated gene annotation improvement in related nematodes. BMC Genomics 2021; 22:216. [PMID: 33765927 PMCID: PMC7992802 DOI: 10.1186/s12864-021-07529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 01/30/2023] Open
Abstract
Background The nematode Pristionchus pacificus is an established model organism for comparative studies with Caenorhabditis elegans. Over the past years, it developed into an independent animal model organism for elucidating the genetic basis of phenotypic plasticity. Community-based curations were employed recently to improve the quality of gene annotations of P. pacificus and to more easily facilitate reverse genetic studies using candidate genes from C. elegans. Results Here, I demonstrate that the reannotation of phylogenomic data from nine related nematode species using the community-curated P. pacificus gene set as homology data substantially improves the quality of gene annotations. Benchmarking of universal single copy orthologs (BUSCO) estimates a median completeness of 84% which corresponds to a 9% increase over previous annotations. Nevertheless, the ability to infer gene models based on homology already drops beyond the genus level reflecting the rapid evolution of nematode lineages. This also indicates that the highly curated C. elegans genome is not optimally suited for annotating non-Caenorhabditis genomes based on homology. Furthermore, comparative genomic analysis of apparently missing BUSCO genes indicates a failure of ortholog detection by the BUSCO pipeline due to the insufficient sample size and phylogenetic breadth of the underlying OrthoDB data set. As a consequence, the quality of multiple divergent nematode genomes might be underestimated. Conclusions This study highlights the need for optimizing gene annotation protocols and it demonstrates the benefit of a high quality genome for phylogenomic data of related species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07529-x.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
48
|
Wenzel MA, Müller B, Pettitt J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-Seq data. BMC Bioinformatics 2021; 22:140. [PMID: 33752599 PMCID: PMC7986045 DOI: 10.1186/s12859-021-04009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spliced leader (SL) trans-splicing replaces the 5' end of pre-mRNAs with the spliced leader, an exon derived from a specialised non-coding RNA originating from elsewhere in the genome. This process is essential for resolving polycistronic pre-mRNAs produced by eukaryotic operons into monocistronic transcripts. SL trans-splicing and operons may have independently evolved multiple times throughout Eukarya, yet our understanding of these phenomena is limited to only a few well-characterised organisms, most notably C. elegans and trypanosomes. The primary barrier to systematic discovery and characterisation of SL trans-splicing and operons is the lack of computational tools for exploiting the surge of transcriptomic and genomic resources for a wide range of eukaryotes. RESULTS Here we present two novel pipelines that automate the discovery of SLs and the prediction of operons in eukaryotic genomes from RNA-Seq data. SLIDR assembles putative SLs from 5' read tails present after read alignment to a reference genome or transcriptome, which are then verified by interrogating corresponding SL RNA genes for sequence motifs expected in bona fide SL RNA molecules. SLOPPR identifies RNA-Seq reads that contain a given 5' SL sequence, quantifies genome-wide SL trans-splicing events and predicts operons via distinct patterns of SL trans-splicing events across adjacent genes. We tested both pipelines with organisms known to carry out SL trans-splicing and organise their genes into operons, and demonstrate that (1) SLIDR correctly detects expected SLs and often discovers novel SL variants; (2) SLOPPR correctly identifies functionally specialised SLs, correctly predicts known operons and detects plausible novel operons. CONCLUSIONS SLIDR and SLOPPR are flexible tools that will accelerate research into the evolutionary dynamics of SL trans-splicing and operons throughout Eukarya and improve gene discovery and annotation for a wide range of eukaryotic genomes. Both pipelines are implemented in Bash and R and are built upon readily available software commonly installed on most bioinformatics servers. Biological insight can be gleaned even from sparse, low-coverage datasets, implying that an untapped wealth of information can be retrieved from existing RNA-Seq datasets as well as from novel full-isoform sequencing protocols as they become more widely available.
Collapse
Affiliation(s)
- Marius A Wenzel
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
49
|
Dulovic A, Renahan T, Röseler W, Rödelsperger C, Rose AM, Streit A. Rhabditophanes diutinus a parthenogenetic clade IV nematode with dauer larvae. PLoS Pathog 2020; 16:e1009113. [PMID: 33270811 PMCID: PMC7738172 DOI: 10.1371/journal.ppat.1009113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/15/2020] [Accepted: 10/30/2020] [Indexed: 01/13/2023] Open
Abstract
Comparative studies using non-parasitic model species such as Caenorhabditis elegans, have been very helpful in investigating the basic biology and evolution of parasitic nematodes. However, as phylogenetic distance increases, these comparisons become more difficult, particularly when outside of the nematode clade to which C. elegans belongs (V). One of the reasons C. elegans has nevertheless been used for these comparisons, is that closely related well characterized free-living species that can serve as models for parasites of interest are frequently not available. The Clade IV parasitic nematodes Strongyloides are of great research interest due to their life cycle and other unique biological features, as well as their medical and veterinary importance. Rhabditophanes, a closely related free-living genus, forms part of the Strongyloidoidea nematode superfamily. Rhabditophanes diutinus (= R. sp. KR3021) was included in the recent comparative genomic analysis of the Strongyloididae, providing some insight into the genomic nature of parasitism. However, very little is known about this species, limiting its usefulness as a research model. Here we provide a species description, name the species as R. diutinus and investigate its life cycle and subsequently gene expression in multiple life stages. We identified two previously unreported starvation induced life stages: dauer larvae and arrested J2 (J2A) larvae. The dauer larvae are morphologically similar to and are the same developmental stage as dauers in C. elegans and infective larvae in Strongyloides. As in C. elegans and Strongyloides, dauer formation is inhibited by treatment with dafachronic acid, indicating some genetic control mechanisms are conserved. Similarly, the expression patterns of putative dauer/infective larva control genes resemble each other, in particular between R. diutinus and Strongyloides spp. These findings illustrate and increase the usefulness of R. diutinus as a non-parasitic, easy to work with model species for the Strongyloididae for studying the evolution of parasitism as well as many aspects of the biology of Strongyloides spp, in particular the formation of infective larvae. Parasitic worms are an issue of great medical, veterinary, agricultural and economic importance, yet little is known about how worms become parasites. Comparative studies with non-parasitic model species like C. elegans have been useful, however, this usefulness decreases as the evolutionary distance between the species increases. One way to combat this is by having more well-studied closely related species to parasites of interest. To address this, we provide information about Rhabditophanes diutinus, a free-living nematode that is part of the same superfamily as the medically and veterinary important Strongyloides parasites. We provide analysis on its life cycle, in particular on two starvation induced life stages, along with gene expression data. Overall, this important information illustrates and improves the use of R. diutinus, as a non-parasitic model species for studying parasite evolution and basic biology within Strongyloides.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Tess Renahan
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Waltraud Röseler
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Christian Rödelsperger
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Ann M. Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
50
|
Eurmsirilerd E, Maduro MF. Evolution of Developmental GATA Factors in Nematodes. J Dev Biol 2020; 8:jdb8040027. [PMID: 33207804 PMCID: PMC7712238 DOI: 10.3390/jdb8040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
GATA transcription factors are found in animals, plants, and fungi. In animals, they have important developmental roles in controlling specification of cell identities and executing tissue-specific differentiation. The Phylum Nematoda is a diverse group of vermiform animals that inhabit ecological niches all over the world. Both free-living and parasitic species are known, including those that cause human infectious disease. To date, GATA factors in nematodes have been studied almost exclusively in the model system C. elegans and its close relatives. In this study, we use newly available sequences to identify GATA factors across the nematode phylum. We find that most species have fewer than six GATA factors, but some species have 10 or more. Comparisons of gene and protein structure suggest that there were at most two GATA factors at the base of the phylum, which expanded by duplication and modification to result in a core set of four factors. The high degree of structural similarity with the corresponding orthologues in C. elegans suggests that the nematode GATA factors share similar functions in development.
Collapse
Affiliation(s)
- Ethan Eurmsirilerd
- Undergraduate Program in Biology, Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA;
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Morris F. Maduro
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Correspondence:
| |
Collapse
|