1
|
O'Connor J, Clark A, Herrera F, Yang X, Wang X, Zheng X, Hu H, Zhou Z. Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet. Curr Biol 2024; 34:4559-4566.e1. [PMID: 39260360 DOI: 10.1016/j.cub.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Diet is one of the most important aspects of an animal's ecology, as it reflects direct interactions with other organisms and shapes morphology, behavior, and other life history traits. Modern birds (Neornithes) have a highly efficient and phenotypically plastic digestive system, allowing them to utilize diverse trophic resources, and digestive function has been put forth as a factor in the selectivity of the end-Cretaceous mass extinction, in which only neornithine dinosaurs survived.1 Although diet is directly documented in several early-diverging avian lineages,2 only a single specimen preserves evidence of diet in Enantiornithes, the dominant group of terrestrial Cretaceous birds.3 Morphology-based predictions suggest enantiornithines were faunivores,4,5,6 although the absence of evidence contrasts with the high preservation potential and relatively longer gut-retention times of these diets. Longipteryx is an unusual Early Cretaceous enantiornithine with an elongate rostrum; distally restricted dentition7; large, recurved, and crenulated teeth8; and tooth enamel much thicker than other paravians.9 Statistical analysis of rostral length, body size, and tooth morphology predicts Longipteryx was primarily insectivorous.4,5 Contrasting with these results, two new specimens of Longipteryx preserve gymnosperm seeds within the abdominal cavity interpreted as ingesta. Like Jeholornis, their unmacerated preservation and the absence of gastroliths indicate frugivory.10 As in Neornithes,11 complex diets driven by the elevated energetic demands imposed by flight, secondary rostral functions, and phylogenetic influence impede the use of morphological proxies to predict diet in early-diverging avian lineages.
Collapse
Affiliation(s)
- Jingmai O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA.
| | - Alexander Clark
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Fabiany Herrera
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Xin Yang
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoli Wang
- Shandong Tianyu Museum of Nature, Pingyi 273300, P.R. China; Institute of Geology and Paleontology, Linyi University, Linyi 276005, P.R. China; College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| | - Xiaoting Zheng
- Shandong Tianyu Museum of Nature, Pingyi 273300, P.R. China
| | - Han Hu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, P.R. China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, P.R. China
| |
Collapse
|
2
|
Miller CV, Bright JA, Wang X, Zheng X, Pittman M. Synthetic analysis of trophic diversity and evolution in Enantiornithes with new insights from Bohaiornithidae. eLife 2024; 12:RP89871. [PMID: 38687200 PMCID: PMC11060716 DOI: 10.7554/elife.89871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.
Collapse
Affiliation(s)
| | - Jen A Bright
- School of Natural Sciences, University of HullHullUnited Kingdom
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi UniversityLinyiChina
- Shandong Tianyu Museum of NatureShandongChina
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi UniversityLinyiChina
- Shandong Tianyu Museum of NatureShandongChina
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Wu Y, Ge Y, Hu H, Stidham TA, Li Z, Bailleul AM, Zhou Z. Intra-gastric phytoliths provide evidence for folivory in basal avialans of the Early Cretaceous Jehol Biota. Nat Commun 2023; 14:4558. [PMID: 37507397 PMCID: PMC10382595 DOI: 10.1038/s41467-023-40311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Angiosperms became the dominant plant group in early to middle Cretaceous terrestrial ecosystems, coincident with the timing of the earliest pulse of bird diversification. While living birds and angiosperms exhibit strong interactions across pollination/nectivory, seed dispersal/frugivory, and folivory, documentation of the evolutionary origins and construction of that ecological complexity remains scarce in the Mesozoic. Through the first study of preserved in situ dietary derived phytoliths in a nearly complete skeleton of the early diverging avialan clade Jeholornithidae, we provide direct dietary evidence that Jeholornis consumed leaves likely from the magnoliid angiosperm clade, and these results lend further support for early ecological connections among the earliest birds and angiosperms. The broad diet of the early diverging avialan Jeholornis including at least fruits and leaves marks a clear transition in the early evolution of birds in the establishment of an arboreal (angiosperm) herbivore niche in the Early Cretaceous occupied largely by birds today. Morphometric reanalysis of the lower jaw of Jeholornis further supports a generalized morphology shared with other herbivorous birds, including an extant avian folivore, the hoatzin.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
| | - Yong Ge
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
- Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Han Hu
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China.
| | - Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
4
|
Wang Y, Li Z, Wang CC, Bailleul AM, Wang M, O'Connor J, Li J, Zheng X, Pei R, Teng F, Wang X, Zhou Z. Comparative microstructural study on the teeth of Mesozoic birds and non-avian dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230147. [PMID: 37206961 PMCID: PMC10189602 DOI: 10.1098/rsos.230147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Although it is commonly considered that, in birds, there is a trend towards reduced dentition, teeth persisted in birds for 90 Ma and numerous macroscopic morphologies are observed. However, the extent to which the microstructure of bird teeth differs from other lineages is poorly understood. To explore the microstructural differences of the teeth of birds in comparison with closely related non-avialan dinosaurs, the enamel and dentine-related features were evaluated in four Mesozoic paravian species from the Yanliao and Jehol biotas. Different patterns of dentinal tubular tissues with mineralized extensions of the odontoblast processes were revealed through the examination of histological sectioning under electron microscopy. Secondary modification of the tubular structures, forming reactive sclerotic dentin of Longipteryx, and the mineralization of peritubular dentin of Sapeornis were observed in the mantle dentin region. The new observed features combined with other dentinal-associated ultrastructure suggest that the developmental mechanisms controlling dentin formation are quite plastic, permitting the evolution of unique morphologies associated with specialized feeding behaviours in the toothed birds. Proportionally greater functional stress placed on the stem bird teeth may have induced reactive dentin mineralization, which was observed more often within tubules of these taxa. This suggests modifications to the dentin to counteract potential failure.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076
- Department of Geosciences, National Taiwan University, Taipei City 10617
| | - Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Jingmai O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences (IGGCAS), Beijing 100029
| | - Xiaoting Zheng
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300
| | - Rui Pei
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Fangfang Teng
- Xinghai Paleontological Museum of Dalian, Dalian, Liaoning 116023
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| |
Collapse
|
5
|
Clark AD, Hu H, Benson RBJ, O’Connor JK. Reconstructing the dietary habits and trophic positions of the Longipterygidae (Aves: Enantiornithes) using neontological and comparative morphological methods. PeerJ 2023; 11:e15139. [PMID: 37009163 PMCID: PMC10062354 DOI: 10.7717/peerj.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The Longipterygidae are a unique clade among the enantiornithines in that they exhibit elongate rostra (≥60% total skull length) with dentition restricted to the distal tip of the rostrum, and pedal morphologies suited for an arboreal lifestyle (as in other enantiornithines). This suite of features has made interpretations of this group’s diet and ecology difficult to determine due to the lack of analogous taxa that exhibit similar morphologies together. Many extant bird groups exhibit rostral elongation, which is associated with several disparate ecologies and diets (e.g., aerial insectivory, piscivory, terrestrial carnivory). Thus, the presence of rostral elongation in the Longipterygidae only somewhat refines trophic predictions of this clade. Anatomical morphologies do not function singularly but as part of a whole and thus, any dietary or ecological hypothesis regarding this clade must also consider other features such as their unique dentition. The only extant group of dentulous volant tetrapods are the chiropterans, in which tooth morphology and enamel thickness vary depending upon food preference. Drawing inferences from both avian bill proportions and variations in the dental morphology of extinct and extant taxa, we provide quantitative data to support the hypothesis that the Longipterygidae were animalivorous, with greater support for insectivory.
Collapse
Affiliation(s)
- Alexander D. Clark
- Cincinnati Museum Center, Geier Collections & Research Center, Cincinnati, Ohio, United States
| | - Han Hu
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Roger BJ Benson
- American Museum of Natural History, New York City, New York, United States
| | | |
Collapse
|
6
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Quantitative investigation of pengornithid enantiornithine diet reveals macrocarnivorous ecology evolved in birds by Early Cretaceous. iScience 2023; 26:106211. [PMID: 36923002 PMCID: PMC10009206 DOI: 10.1016/j.isci.2023.106211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The diet of Mesozoic birds is poorly known, limiting evolutionary understanding of birds' roles in modern ecosystems. Pengornithidae is one of the best understood families of Mesozoic birds, hypothesized to eat insects or only small amounts of meat. We investigate these hypotheses with four lines of evidence: estimated body mass, claw traditional morphometrics, jaw mechanical advantage, and jaw finite element analysis. Owing to limited data, the diets of Eopengornis and Chiappeavis remain obscure. Pengornis, Parapengornis, and Yuanchuavis show adaptations for vertebrate carnivory. Pengornis also has talons similar to living raptorial birds like caracaras that capture and kill large prey, which represents the earliest known adaptation for macrocarnivory in a bird. This supports the appearance of this ecology ∼35 million years earlier than previously thought. These findings greatly increase the niche breadth known for Early Cretaceous birds, and shift the prevailing view that Mesozoic birds mainly occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Jen A. Bright
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
7
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies. BMC Biol 2022; 20:101. [PMID: 35550084 PMCID: PMC9097364 DOI: 10.1186/s12915-022-01294-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birds are key indicator species in extant ecosystems, and thus we would expect extinct birds to provide insights into the nature of ancient ecosystems. However, many aspects of extinct bird ecology, particularly their diet, remain obscure. One group of particular interest is the bizarre toothed and long-snouted longipterygid birds. Longipterygidae is the most well-understood family of enantiornithine birds, the dominant birds of the Cretaceous period. However, as with most Mesozoic birds, their diet remains entirely speculative. RESULTS To improve our understanding of longipterygids, we investigated four proxies in extant birds to determine diagnostic traits for birds with a given diet: body mass, claw morphometrics, jaw mechanical advantage, and jaw strength via finite element analysis. Body mass of birds tended to correspond to the size of their main food source, with both carnivores and herbivores splitting into two subsets by mass: invertivores or vertivores for carnivores, and granivores + nectarivores or folivores + frugivores for herbivores. Using claw morphometrics, we successfully distinguished ground birds, non-raptorial perching birds, and raptorial birds from one another. We were unable to replicate past results isolating subtypes of raptorial behaviour. Mechanical advantage was able to distinguish herbivorous diets with particularly high values of functional indices, and so is useful for identifying these specific diets in fossil taxa, but overall did a poor job of reflecting diet. Finite element analysis effectively separated birds with hard and/or tough diets from those eating foods which are neither, though could not distinguish hard and tough diets from one another. We reconstructed each of these proxies in longipterygids as well, and after synthesising the four lines of evidence, we find all members of the family but Shengjingornis (whose diet remains inconclusive) most likely to be invertivores or generalist feeders, with raptorial behaviour likely in Longipteryx and Rapaxavis. CONCLUSIONS This study provides a 20% increase in quantitatively supported fossil bird diets, triples the number of diets reconstructed in enantiornithine species, and serves as an important first step in quantitatively investigating the origins of the trophic diversity of living birds. These findings are consistent with past hypotheses that Mesozoic birds occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Jen A Bright
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
8
|
Li Z, Wang M, Stidham TA, Zhou Z, Clarke J. Novel evolution of a hyper-elongated tongue in a Cretaceous enantiornithine from China and the evolution of the hyolingual apparatus and feeding in birds. J Anat 2022; 240:627-638. [PMID: 34854094 PMCID: PMC8930807 DOI: 10.1111/joa.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
The globally distributed extinct clade Enantiornithes comprises the most diverse early radiation of birds in the Mesozoic with species exhibiting a wide range of body sizes, morphologies, and ecologies. The fossil of a new enantiornithine bird, Brevirostruavis macrohyoideus gen. et sp. nov., from the Lower Cretaceous Jiufotang Formation in Liaoning Province, northeastern China, preserves a few important skeletal features previously unknown among early stem and extant birds, including an extremely elongate bony hyoid element (only slightly shorter than the skull), combined with a short cranial rostrum. The long hyoid provides direct evidence for the evolution of specialized feeding in this extinct species, and appears similar to the highly mobile tongue that is mobilized by the paired epibranchials present in living hummingbirds, honeyeaters, and woodpeckers. The likely linkage between food acquisition and tongue protrusion might have been a key factor in the independent evolution of particularly elongate hyobranchials in early birds.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Thomas A. Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Julia Clarke
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
9
|
Stidham TA, O'Connor JK. The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China. J Anat 2021; 239:1066-1074. [PMID: 34137030 PMCID: PMC8546525 DOI: 10.1111/joa.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
While the morphology and evolution of the quadrate among early birds and through the evolutionary origin of birds is not well known, we add to knowledge about that past diversity through description of the morphology of the quadrate in the unusually elongate skull of the Cretaceous enantiornithine bird Longipteryx chaoyangensis. The lateral and caudal surfaces of the quadrate are well exposed in two specimens revealing morphologies typical of early birds and their dinosaurian close relatives like a small otic head and two mandibular condyles. However, both skeletons exhibit quadrates with a unique, enlarged lateral crest that has not been previously described among Mesozoic birds. It is possible that the rostral surface of this lateral expansion served as the origination site for enlarged jaw musculature in a manner similar to the enlarged subcapitular tubercle in extant galloanserine birds. The caudally concave surface of the quadrate likely reflects some aspect of cranial pneumaticity, with its shape and position reminiscent of quadrates found in close non-avialan maniraptoran relatives. It is possible that this lateral crest has a wider distribution among enantiornithines and other early birds and that the crest has been misidentified as the orbital process in some more damaged specimens. In addition, the enlarged lateral mandibular condyle (relative to the medial condyle) differs from the condition typically reported among enantiornithines and could indicate a difference in jaw function or mechanics in this bird with an elongated rostrum, or simply misinterpretations of morphology. Further examination of the quadrate in temporally early and phylogenetically stemward birds, along with their close outgroups, could greatly impact the study of several different aspects of bird biology including assessment of phylogenetic relationships, interpretation of the function and kinematics of the skull, reconstruction of foraging paleoecology, and evolution of skull morphological diversity among Mesozoic birds.
Collapse
Affiliation(s)
- Thomas A. Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of SciencesInstitute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
10
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
11
|
Condamine FL, Guinot G, Benton MJ, Currie PJ. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat Commun 2021; 12:3833. [PMID: 34188028 PMCID: PMC8242047 DOI: 10.1038/s41467-021-23754-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The question why non-avian dinosaurs went extinct 66 million years ago (Ma) remains unresolved because of the coarseness of the fossil record. A sudden extinction caused by an asteroid is the most accepted hypothesis but it is debated whether dinosaurs were in decline or not before the impact. We analyse the speciation-extinction dynamics for six key dinosaur families, and find a decline across dinosaurs, where diversification shifted to a declining-diversity pattern ~76 Ma. We investigate the influence of ecological and physical factors, and find that the decline of dinosaurs was likely driven by global climate cooling and herbivorous diversity drop. The latter is likely due to hadrosaurs outcompeting other herbivores. We also estimate that extinction risk is related to species age during the decline, suggesting a lack of evolutionary novelty or adaptation to changing environments. These results support an environmentally driven decline of non-avian dinosaurs well before the asteroid impact.
Collapse
Affiliation(s)
- Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France.
| | - Guillaume Guinot
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France
| | - Michael J Benton
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Clark AD, O’Connor JK. Exploring the Ecomorphology of Two Cretaceous Enantiornithines With Unique Pedal Morphology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.654156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, ∼100 Ma amber from Myanmar has become an important source of information regarding the morphology of Late Cretaceous enantiornithines. Two specimens consisting of partial hindlimbs exhibit unusual morphologies when compared to both extant avian taxa and other Cretaceous enantiornithines. Pedal morphology is extremely ecologically informative in Aves as it represents the interface between body and substrate. These seemingly bizarre pedal morphologies represent adaptations that allowed these birds to utilize certain niches present in their paleoenvironment. Specific ecological niches apply the same general pressures to different species over time, and in doing so, through natural selection, produce morphologies that function much the same, although they may be anatomically dissimilar. As such, extant animals can provide useful information pertaining to the functional morphology of extinct animals, even in the absence of direct analogs, as in the case of these two Hukawng enantiornithines. Comparisons to extant taxa in the same predicted niches of these enantiornithines can be used to either support or contradict previous hypotheses regarding the in vivo function of these unique pedal morphologies. Elektorornis chenguangi exhibits a hypertrophied third pedal digit, originally interpreted as an appendage used for probing. We support this interpretation, which allows informed speculation as to the cranial anatomy of this taxon since extant animals that probe in woody substrates consistently pair elongate probing structures with a second robust structure that functions as a means to penetrate into this hard substrate. This suggests that the rostrum of Elektorornis would have been robust and most likely edentulous. The second specimen YLSNHM01001 exhibits an unusually mediolaterally robust fourth pedal digit, nearly double the width of digit II. Given that no such morphology is present in any other bird in the Mesozoic or Cenozoic we feel the unusual morphology justifies erection of a new taxon, Fortipesavis prehendens gen. et sp. nov. Although distinct, the morphology in F. prehendens resembles the syndactyl condition in some extant avian groups, and we hypothesize the robust digit similarly functioned to increase the surface area of the foot, facilitating grip on perches through increased friction. The necessity for increased grip and the lateral placement of this digit may suggest F. prehendens utilized mobile perches similar to extant kingfishers.
Collapse
|
13
|
Wu Y. Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds. Commun Biol 2021; 4:547. [PMID: 33986452 PMCID: PMC8119460 DOI: 10.1038/s42003-021-02067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| |
Collapse
|