1
|
Li YY, Geng RJ, Yu SY, Li GJ, Wang ZY, Li HF. Association Study of Polymorphisms in Neuronal Nicotinic Acetylcholine Receptor Subunit Genes With Schizophrenia in the Han Chinese Population. Psychiatry Investig 2021; 18:943-948. [PMID: 34555889 PMCID: PMC8542753 DOI: 10.30773/pi.2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the relation between nicotinic acetylcholine receptor subunit (nAChR) genes and schizophrenia, and the relation between tag single nucleotide polymorphism (rs1317286, rs1044396, rs6494212, rs16969968, and rs684513) and schizophrenia in Han Chinese people. METHODS The protein-protein interaction (PPI) network among nAChR protein and 350 proteins encoded by schizophrenia-related susceptibility genes was constructed through the String database to explore whether nAChR genes were associated with schizophrenia in these known databases. Then, five single nucleotide polymorphisms (SNPs) of CHRNA3 (rs1317286), CHRNA4 (rs1044396), CHRNA7 (rs6494212), and CHRNA5 (rs16969968, rs684513) were analyzed in a sample of 1,035 schizophrenic patients and 816 healthy controls. The interaction between the markers was analyzed using multifactor dimensionality reduction (MDR) software. Power analysis was performed using the Quanto program. RESULTS There are no significant differences in genotype or allele distribution were identified between the patients and controls (p>0.05). The haplotypes constructed by four markers rs1317286, rs6494212, rs16969968, and rs684513 were not associated with schizophrenia either. However, a significant association between models made of rs1317286, rs1044396, rs6494212, and rs684513 and schizophrenia was revealed in interaction analysis (p<0.05). CONCLUSION The nAChR protein may have effects on the development of schizophrenia through the interaction with proteins encoded by schizophrenia-related susceptibility genes, but no relation was found between selected polymorphisms and schizophrenia in the collected Han Chinese people. However, interaction analysis suggested four-SNP model has an important effect on schizophrenia.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui-Jie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shun-Ying Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guan-Jun Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou-Ye Wang
- Department of Medical Psychology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Fang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Neale SA, Kambara K, Salt TE, Bertrand D. Receptor variants and the development of centrally acting medications. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31636489 PMCID: PMC6787545 DOI: 10.31887/dcns.2019.21.2/dbertrand] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The progressive changes in research paradigms observed in the largest
pharmaceutical companies and the burgeoning of biotechnology startups over the
last 10 years have generated a need for outsourcing research facilities. In
parallel, progress made in the fields of genomics, protein expression in
recombinant systems, and electrophysiological recording methods have offered new
possibilities for the development of contract research organizations (CROs).
Successful partnering between pharmaceutical companies and CROs largely depends
upon the competences and scientific quality on offer for the discovery of novel
active molecules and targets. Thus, it is critical to review the knowledge in
the field of neuroscience research, how genetic approaches are augmenting our
knowledge, and how they can be applied in the translation from the
identification of potential molecules up to the first clinical trials. Taking
these together, it is apparent that CROs have an important role to play in the
neuroscience of drug discovery.
Collapse
Affiliation(s)
- Stuart A Neale
- Neurexpert Limited, The Core, Science Central, Newcastle Upon Tyne, UK
| | | | - Thomas E Salt
- Neurexpert Limited, The Core, Science Central, Newcastle Upon Tyne, UK; Honorary Professor, University of Newcastle, Newcastle, UK
| | - Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland; Emeritus Professor, Medical Faculty, Geneva, Switzerland
| |
Collapse
|
3
|
Arnold C, Schulte C, Moscovich M, Sünkel U, Zaunbrecher L, Metzger F, Gasser T, Eschweiler GW, Hauser AK, Berg D, Maetzler W. Cholinergic Pathway SNPs and Postural Control in 477 Older Adults. Front Aging Neurosci 2018; 10:260. [PMID: 30233352 PMCID: PMC6131592 DOI: 10.3389/fnagi.2018.00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Objective: To determine whether single nucleotide polymorphisms (SNPs) of the cholinergic system and quantitative parameters of postural control are associated in healthy older adults. This is a cross-sectional analysis from the TREND study. Methods: All participants performed a static postural control task for 30 s on a foam pad in semitandem stance and eyes closed. We analyzed mean power frequency (MPF), area, acceleration, jerk, and velocity from a mobile sensor worn at the lower back using a validated algorithm. Genotypes of four SNPs in genes involved in the cholinergic system (SLC5A7, CHAT, BCHE, CHRNA4) were extracted from the NeuroX chip. All participants present a normal neurological examination and a Minimental state examination score >24. Results: Four hundred and seventy seven participants were included. Mean age was 69 years, 41% were female. One SNP of the cholinergic pathway was significantly associated with a quantitative postural control parameter. The minor allele of rs6542746 in SLC5A7 was associated with lower MPF (4.04 vs. 4.22 Hz; p = 3.91 × 10-4). Moreover, the following associations showed trends toward significance: minor allele of rs6542746 in SLC5A7 with higher anteroposterior acceleration (318 vs. 287 mG; p = 0.005), and minor allele of rs3810950 in CHAT with higher mediolateral acceleration [1.77 vs. 1.65 log(mG); p = 0.03] and velocity [1.83 vs. 1.74 log(mm/s); p = 0.019]. Intraindividual occurrence of rs6542746 and rs3810950 minor alleles was dose-dependently related with lower MPF (p = 0.004). Conclusion: This observational study suggests an influence of SNPs of the cholinergic pathway on postural control in older adults.
Collapse
Affiliation(s)
- Carina Arnold
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Ulrike Sünkel
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Laura Zaunbrecher
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Florian Metzger
- Geriatric Center at the University Hospital of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Gerhard W Eschweiler
- Geriatric Center at the University Hospital of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| | - Ann-Kathrin Hauser
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Daniela Berg
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology, University of Kiel, Kiel, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology, University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Sadaghiani S, Ng B, Altmann A, Poline JB, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Burke Quinlan E, Conrod P, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Gallinat J, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Lemaitre H, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Napolioni V, Greicius M. Overdominant Effect of a CHRNA4 Polymorphism on Cingulo-Opercular Network Activity and Cognitive Control. J Neurosci 2017; 37:9657-9666. [PMID: 28877969 PMCID: PMC6596609 DOI: 10.1523/jneurosci.0991-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/17/2023] Open
Abstract
The nicotinic system plays an important role in cognitive control and is implicated in several neuropsychiatric conditions. However, the contributions of genetic variability in this system to individuals' cognitive control abilities are poorly understood and the brain processes that mediate such genetic contributions remain largely unidentified. In this first large-scale neuroimaging genetics study of the human nicotinic receptor system (two cohorts, males and females, fMRI total N = 1586, behavioral total N = 3650), we investigated a common polymorphism of the high-affinity nicotinic receptor α4β2 (rs1044396 on the CHRNA4 gene) previously implicated in behavioral and nicotine-related studies (albeit with inconsistent major/minor allele impacts). Based on our prior neuroimaging findings, we expected this polymorphism to affect neural activity in the cingulo-opercular (CO) network involved in core cognitive control processes including maintenance of alertness. Consistent across the cohorts, all cortical areas of the CO network showed higher activity in heterozygotes compared with both types of homozygotes during cognitive engagement. This inverted U-shaped relation reflects an overdominant effect; that is, allelic interaction (cumulative evidence p = 1.33 * 10-5). Furthermore, heterozygotes performed more accurately in behavioral tasks that primarily depend on sustained alertness. No effects were observed for haplotypes of the surrounding CHRNA4 region, supporting a true overdominant effect at rs1044396. As a possible mechanism, we observed that this polymorphism is an expression quantitative trait locus modulating CHRNA4 expression levels. This is the first report of overdominance in the nicotinic system. These findings connect CHRNA4 genotype, CO network activation, and sustained alertness, providing insights into how genetics shapes individuals' cognitive control abilities.SIGNIFICANCE STATEMENT The nicotinic acetylcholine system plays a central role in neuromodulatory regulation of cognitive control processes and is dysregulated in several neuropsychiatric disorders. Despite this functional importance, no large-scale neuroimaging genetics studies have targeted the contributions of genetic variability in this system to human brain activity. Here, we show the impact of a common polymorphism of the high-affinity nicotinic receptor α4β2 that is consistent across brain activity and behavior in two large human cohorts. We report a hitherto unknown overdominant effect (allelic interaction) at this locus, where the heterozygotes show higher activity in the cingulo-opercular network underlying alertness maintenance and higher behavioral alertness performance than both homozygous groups. This gene-brain-behavior relationship informs about the biological basis of interindividual differences in cognitive control.
Collapse
Affiliation(s)
- Sepideh Sadaghiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305,
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Bernard Ng
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
- Department of Statistics, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Andre Altmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT, United Kingdom
| | | | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Erin Burke Quinlan
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, United Kingdom
| | - Patricia Conrod
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, United Kingdom
| | - Sylvane Desrivières
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - Paris Saclay, 91400 Orsay, France
- University Paris Descartes, 75006 Paris, France
- Service Hospitalier Frédéric Joliot, 91400 Orsay, France
- Maison de Solenn, Cochin Hospital, 75014 Paris, France
| | - Marie-Laure Paillère Martinot
- University Paris Descartes, 75006 Paris, France
- AP-HP, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, 75014 Paris, France
| | - Hervé Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - Paris Saclay, 91400 Orsay, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, 37075 Göttingen, Germany
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, 01069 Dresden, Germany, and
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, 01069 Dresden, Germany, and
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin 2, Ireland
| | - Gunter Schumann
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, United Kingdom
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
5
|
Zhang M, Qiao X, Li Y, Fang B, Zuo Y, Chen M. Cloning of eight Rhopalosiphum padi (Hemiptera: Aphididae) nAChR subunit genes and mutation detection of the β1 subunit in field samples from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:89-95. [PMID: 27521918 DOI: 10.1016/j.pestbp.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 06/06/2023]
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most important wheat pests. This aphid damages through direct feeding and by transmitting the Barley yellow dwarf virus (BYDV). Both types of damage significantly reduce the quality and yield of wheat crops globally. Insecticides are the primary method of controlling the bird cherry-oat aphid in China, yet this aphid species has developed resistance to different types of insecticides, especially organophosphates and carbamates. In the last decade, control of R. padi depends primarily on the spray of neonicotinoid insecticides, however, research on the resistance of R. padi to neonicotinoids has been limited. In this study, the full lengths of seven α-subunit (Rpα1, Rpα2, Rpα3, Rpα4, Rpα5, Rpα7-1, and Rpα7-2) and one β-subunit (Rpβ1) genes from R. padi were obtained with RT-PCR and RACE techniques. Sequence analysis showed that these genes had all the characteristics of the nAChR gene family and were highly homologous with the reported nAChR genes from other insects, and alternative splicing was detected in Rpα3 and Rpα5 subunits. Analysis of the cDNA sequence of the extracellular region of the nicotinic acetylcholine receptor β1 subunit gene from 120 R. padi field samples collected in 11 Provinces revealed 17 single nucleotides polymorphism (SNP) sites, of which seven were amino acid polymorphism sites (V53I, V53G, N54T, A60T, F61L, W79C, and V83I) and two were in the loop D region (W79C and V83I). The current study will facilitate further studies on the molecular mechanisms of targeted resistance of the aphid to neonicotinoid insecticides.
Collapse
Affiliation(s)
- Meng Zhang
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianfeng Qiao
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuting Li
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bing Fang
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yayun Zuo
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maohua Chen
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Converging findings from linkage and association analyses on susceptibility genes for smoking and other addictions. Mol Psychiatry 2016; 21:992-1008. [PMID: 27166759 PMCID: PMC4956568 DOI: 10.1038/mp.2016.67] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Experimental approaches to genetic studies of complex traits evolve with technological advances. How do discoveries using different approaches advance our knowledge of the genetic architecture underlying complex diseases/traits? Do most of the findings of newer techniques, such as genome-wide association study (GWAS), provide more information than older ones, for example, genome-wide linkage study? In this review, we address these issues by developing a nicotine dependence (ND) genetic susceptibility map based on the results obtained by the approaches commonly used in recent years, namely, genome-wide linkage, candidate gene association, GWAS and targeted sequencing. Converging and diverging results from these empirical approaches have elucidated a preliminary genetic architecture of this intractable psychiatric disorder and yielded new hypotheses on ND etiology. The insights we obtained by putting together results from diverse approaches can be applied to other complex diseases/traits. In sum, developing a genetic susceptibility map and keeping it updated are effective ways to keep track of what we know about a disease/trait and what the next steps may be with new approaches.
Collapse
|
7
|
Mobascher A, Diaz-Lacava A, Wagner M, Gallinat J, Wienker TF, Drichel D, Becker T, Steffens M, Dahmen N, Gründer G, Thürauf N, Kiefer F, Kornhuber J, Toliat MR, Thiele H, Nürnberg P, Steinlein O, Winterer G. Association of Common Polymorphisms in the Nicotinic Acetylcholine Receptor Alpha4 Subunit Gene with an Electrophysiological Endophenotype in a Large Population-Based Sample. PLoS One 2016; 11:e0152984. [PMID: 27054571 PMCID: PMC4824511 DOI: 10.1371/journal.pone.0152984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/22/2016] [Indexed: 12/16/2022] Open
Abstract
Variation in genes coding for nicotinic acetylcholine receptor (nAChR) subunits affect cognitive processes and may contribute to the genetic architecture of neuropsychiatric disorders. Single nucleotide polymorphisms (SNPs) in the CHRNA4 gene that codes for the alpha4 subunit of alpha4/beta2-containing receptors have previously been implicated in aspects of (mostly visual) attention and smoking-related behavioral measures. Here we investigated the effects of six synonymous but functional CHRNA4 exon 5 SNPs on the N100 event-related potential (ERP), an electrophysiological endophenotype elicited by a standard auditory oddball. A total of N = 1,705 subjects randomly selected from the general population were studied with electroencephalography (EEG) as part of the German Multicenter Study on nicotine addiction. Two of the six variants, rs1044396 and neighboring rs1044397, were significantly associated with N100 amplitude. This effect was pronounced in females where we also observed an effect on reaction time. Sequencing of the complete exon 5 region in the population sample excluded the existence of additional/functional variants that may be responsible for the observed effects. This is the first large-scale population-based study investigation the effects of CHRNA4 SNPs on brain activity measures related to stimulus processing and attention. Our results provide further evidence that common synonymous CHRNA4 exon 5 SNPs affect cognitive processes and suggest that they also play a role in the auditory system. As N100 amplitude reduction is considered a schizophrenia-related endophenotype the SNPs studied here may also be associated with schizophrenia outcome measures.
Collapse
Affiliation(s)
- A. Mobascher
- Department of Psychiatry, Mainz University Hospital, Mainz, Germany
| | - A. Diaz-Lacava
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - M. Wagner
- Department of Psychiatry, Bonn University Hospital, Bonn, Germany
| | - J. Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
| | - T. F. Wienker
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - D. Drichel
- University of Greifswald, Greifswald, Germany
| | - T. Becker
- University of Greifswald, Greifswald, Germany
| | - M. Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - N. Dahmen
- Department of Psychiatry, Mainz University Hospital, Mainz, Germany
| | - G. Gründer
- Department of Psychiatry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, University Hospital, Aachen, Germany
| | - N. Thürauf
- Department of Psychiatry, Friedrich-Alexander University, University Hospital, Erlangen- Nürnberg, Erlangen, Germany
| | - F. Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Mannheim, Germany
| | - J. Kornhuber
- Department of Psychiatry, Friedrich-Alexander University, University Hospital, Erlangen- Nürnberg, Erlangen, Germany
| | - M. R. Toliat
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - H. Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - P. Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - O. Steinlein
- Department of Human Genetics, Ludwig-Maximilians University, Munich, Germany
| | - G. Winterer
- Experimental and Clinical Research Center (ECRC), Charité – University Medicine, Berlin, Germany
| |
Collapse
|
8
|
Replication of the association between CHRNA4 rs1044396 and harm avoidance in a large population-based sample. Eur Neuropsychopharmacol 2016; 26:150-155. [PMID: 26612384 DOI: 10.1016/j.euroneuro.2015.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/02/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022]
Abstract
Harm avoidance is a personality trait characterized by excessive worrying and fear of uncertainty, which has repeatedly been related to anxiety disorders. Converging lines of research in rodents and humans point towards an involvement of the nicotinic cholinergic system in the modulation of anxiety. Most notably, the rs1044396 polymorphism in the CHRNA4 gene, which codes for the α4 subunit of the nicotinic acetylcholine receptor, has been linked to negative emotionality traits including harm avoidance in a recent study. Against this background, we investigated the association between harm avoidance and the rs1044396 polymorphism using data from N=1673 healthy subjects, which were collected in the context of the German multi-centre study ׳Genetics of Nicotine Dependence and Neurobiological Phenotypes׳. Homozygous carriers of the C-allele showed significantly higher levels of harm avoidance than homozygous T-allele carriers, with heterozygous subjects exhibiting intermediate scores. The effect was neither modulated by age or gender nor by smoking status. By replicating previous findings in a large population-based sample for the first time, the present study adds to the growing evidence suggesting an involvement of nicotinic cholinergic mechanism in anxiety and negative emotionality, which may pose an effective target for medical treatment.
Collapse
|