1
|
Wang L, Hu X, Jiang J, Wang D, Qin C, Li L, Shi D, Liu Q, Wang J, Li H, Huang J, Li Z. Novel Insight into the Composition Differences Between Buffalo and Holstein Milk and Potential Anti-Inflammation and Antioxidant Effect on Caco-2 Cells. Foods 2024; 13:3915. [PMID: 39682987 DOI: 10.3390/foods13233915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Milk is one of the most common sources of nutrients in humans, however, the composition and healthy value of the milk derived from different animals are very different. Here, we systemically compared the protein and lipid profiles and evaluated the anti-inflammation and antioxidant effect of buffalo and Holstein-derived milk on Caco-2 cells. Results showed that 906 proteins and 1899 lipids were identified in the buffalo milk and Holstein milk samples including 161 significantly different proteins (DEPs) and 49 significantly different lipids. The DEPs were mainly enriched in defense response-related terms, while the differential lipids were mainly included in fat digestion and absorption and cholesterol metabolism pathways. In addition, the Caco-2 cells co-cultured with buffalo and Holstein milk components showed significant benefits in being resistant to LPS-induced inflammation stress and H2O2-induced ROS stress. The qRT-PCR and ELISA results showed that the expression of TNF-α, IL-1β, and IL-6 was significantly lower (p < 0.05) in the cells co-cultured with milk components. Further analysis showed that, after H2O2 treatment, the expression of keap1 and Nrf-2 in the Caco-2 cells co-cultured with milk components was significantly lower (p < 0.05). In addition, being co-cultured with milk components significantly decreased the SOD, MDA, CAT, and GSH-Px content (p < 0.05) in the Caco-2 cells induced by H2O2. This study provides a novel insight into the differences in proteins and lipids between buffalo milk and Holstein milk, and a reference understanding of the anti-inflammation and antioxidant effect of the consumption of milk on the intestines.
Collapse
Affiliation(s)
- Luyao Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Hu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaqi Jiang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Dong Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chaobin Qin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jieping Huang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhipeng Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
2
|
Wu X, Wang J, Hao Z, Zhen H, Hu J, Liu X, Li S, Zhao F, Li M, Zhao Z, Shi B, Ren C. Circular RNA_015343 sponges microRNA-25 to regulate viability, proliferation, and milk fat synthesis of ovine mammary epithelial cells via INSIG1. J Cell Physiol 2024; 239:e31332. [PMID: 38828915 DOI: 10.1002/jcp.31332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In our previous study, circ_015343 was found to inhibit the viability and proliferation of ovine mammary epithelial cells (OMECs) and the expression levels of milk fat synthesis marker genes, but the regulatory mechanism underlying the processes is still unclear. Accordingly in this study, the target relationships between circ_015343 with miR-25 and between miR-25 with insulin induced gene 1 (INSIG1) were verified, and the functions of miR-25 and INSIG1 were investigated in OMECs. The dual-luciferase reporter assay revealed that miR-25 mimic remarkably decreased the luciferase activity of circ_015343 in HEK293T cells cotransfected with a wild-type vector, while it did not change the activity of circ_015343 in HEK293T cells cotransfected with a mutant vector. These suggest that cic_015343 can adsorb and bind miR-25. The miR-25 increased the viability and proliferation of OMECs, and the content of triglycerides in OMECs. In addition, INSIG1 was found to be a target gene of miR-25 using a dual-luciferase reporter assay. Overexpression of INSIG1 decreased the viability, proliferation, and level of triglycerides of OMECs. In contrast, the inhibition of INSIG1 in expression had the opposite effect on activities and triglycerides of OMECs with overexpressed INSIG1. A rescue experiment revealed that circ_015343 alleviated the inhibitory effect of miR-25 on the mRNA and protein abundance of INSIG1. These results indicate that circ_015343 sponges miR-25 to inhibit the activities and content of triglycerides of OMECs by upregulating the expression of INSIG1 in OMECs. This study provided new insights for understanding the genetic molecular mechanism of lactation traits in sheep.
Collapse
Affiliation(s)
- Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huimin Zhen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Wang S, Ren H, Qin C, Su J, Song X, Li R, Cui K, Liu Y, Shi D, Liu Q, Li Z. A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland. Genes (Basel) 2024; 15:779. [PMID: 38927715 PMCID: PMC11203352 DOI: 10.3390/genes15060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARG) has various splicing variants and plays essential roles in the regulation of adipocyte differentiation and lipogenesis. However, little is known about the expression pattern and effect of the PPARG on milk fat synthesis in the buffalo mammary gland. In this study, we found that only PPARG-X17 and PPARG-X21 of the splicing variant were expressed in the buffalo mammary gland. Amino acid sequence characterization showed that the proteins encoded by PPARG-X17 and PPARG-X21 are endonuclear non-secreted hydrophilic proteins. Protein domain prediction found that only the PPARG-X21-encoded protein had PPAR ligand-binding domains (NR_LBD_PPAR), which may lead to functional differences between the two splices. RNA interference (RNAi) and the overexpression of PPARG-X17 and PPARG-X21 in buffalo mammary epithelial cells (BMECs) were performed. Results showed that the expression of fatty acid synthesis-related genes (ACACA, CD36, ACSL1, GPAT, AGPAT6, DGAT1) was significantly modified (p < 0.05) by the RNAi and overexpression of PPARG-X17 and PPARG-X21. All kinds of FAs detected in this study were significantly decreased (p < 0.05) after RNAi of PPARG-X17 or PPARG-X21. Overexpression of PPARG-X17 or PPARG-X21 significantly decreased (p < 0.05) the SFA content, while significantly increased (p < 0.05) the UFA, especially the MUFA in the BMECs. In conclusion, there are two PPARG splicing variants expressed in the BMECs that can regulate FA synthesis by altering the expression of diverse fatty acid synthesis-related genes. This study revealed the expression characteristics and functions of the PPARG gene in buffalo mammary glands and provided a reference for further understanding of fat synthesis in buffalo milk.
Collapse
Affiliation(s)
- Shuwan Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Honghe Ren
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Chaobin Qin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Jie Su
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Xinhui Song
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Ruijia Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (K.C.); (Q.L.)
| | - Yang Liu
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning 530022, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (K.C.); (Q.L.)
| | - Zhipeng Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| |
Collapse
|
4
|
Liu R, Fang X, Lu X, Liu Y, Li Y, Bai X, Ding X, Yang R. Polymorphisms of the SCD1 Gene and Its Association Analysis with Carcass, Meat Quality, Adipogenic Traits, Fatty Acid Composition, and Milk Production Traits in Cattle. Animals (Basel) 2024; 14:1759. [PMID: 38929378 PMCID: PMC11200384 DOI: 10.3390/ani14121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in the biosynthesis of monounsaturated fatty acids and is considered a candidate gene for improving milk and meat quality traits. Sanger sequencing was employed to investigate the genetic polymorphism of the fifth exon and intron of bovine SCD1, revealing four SNPs, g.21272246 A>G, g.21272306 T>C, g.21272422 C>T, and g.21272529 A>G. Further variance analysis and multiple comparisons were conducted to examine the relationship between variation sites and economic traits in Chinese Simmental cattle, as well as milk production traits in Holstein cows. The findings revealed these four loci exhibited significant associations with carcass traits (carcass weight, carcass length, backfat thickness, and waist meat thickness), meat quality (pH value, rib eye area, and marbling score), adipogenic traits (fat score and carcass fat coverage rate), and fatty acid composition (linoleic acid and α-linolenic acid). Furthermore, these loci were additionally found to be significantly associated with average milk yield and milk fat content in cows. In addition, a haplotype analysis of combinations of SNPs showed that H2H3 has a significant association with adipogenic traits and H2H2 was associated with higher levels of linoleic acid and α-linolenic acid than the other combinations. These results suggest that the four SNPs are expected to be prospective genetic markers for the above economic traits. In addition, the function of SNPs in exon 5 of SCD1 on gene expression and protein structure needs to be explored in the future.
Collapse
Affiliation(s)
- Ruimin Liu
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
| | - Xin Lu
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
| | - Yue Liu
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
| | - Yue Li
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
| | - Xue Bai
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun 130062, China (X.L.)
| |
Collapse
|
5
|
Chen X, Zhao Z, Jiang X, Li J, Miao F, Yu H, Lin Z, Jiang P. The Complement Component 4 Binding Protein α Gene: A Versatile Immune Gene That Influences Lipid Metabolism in Bovine Mammary Epithelial Cell Lines. Int J Mol Sci 2024; 25:2375. [PMID: 38397050 PMCID: PMC10889797 DOI: 10.3390/ijms25042375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Complement component 4 binding protein α (C4BPA) is an immune gene which is responsible for the complement regulation function of C4BP by binding and inactivating the Complement component C4b (C4b) component of the classical Complement 3 (C3) invertase pathway. Our previous findings revealed that C4BPA was differentially expressed by comparing the transcriptome in high-fat and low-fat bovine mammary epithelial cell lines (BMECs) from Chinese Holstein dairy cows. In this study, a C4BPA gene knockout BMECs line model was constructed via using a CRISPR/Cas9 system to investigate the function of C4BPA in lipid metabolism. The results showed that levels of triglyceride (TG) were increased, while levels of cholesterol (CHOL) and free fatty acid (FFA) were decreased (p < 0.05) after knocking out C4BPA in BMECs. Additionally, most kinds of fatty acids were found to be mainly enriched in the pathway of the biosynthesis of unsaturated fatty acids, linoleic acid metabolism, fatty acid biosynthesis, and regulation of lipolysis in adipocyte. Meanwhile, the RNA-seq showed that most of the differentially expressed genes (DEGs) are related to PI3K-Akt signaling pathway. The expressions of 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1), Carnitine Palmitoyltransferase 1A (CPT1A), Fatty Acid Desaturase 1 (FADS1), and Stearoyl-Coenzyme A desaturase 1 (SCD1) significantly changed when the C4BPA gene was knocked out. Collectively, C4BPA gene, which is an immune gene, played an important role in lipid metabolism in BMECs. These findings provide a new avenue for animal breeders: this gene, with multiple functions, should be reasonably utilized.
Collapse
Affiliation(s)
- Xuanxu Chen
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Zhihui Zhao
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xinyi Jiang
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Li
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Fengshuai Miao
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haibin Yu
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ping Jiang
- The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (Z.Z.); (X.J.); (J.L.); (F.M.); (H.Y.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
6
|
Tracz-Gaszewska Z, Sowka A, Dobrzyn P. Stearoyl-CoA desaturase 1 inhibition impairs triacylglycerol accumulation and lipid droplet formation in colorectal cancer cells. J Cell Physiol 2023; 238:2888-2903. [PMID: 37814830 DOI: 10.1002/jcp.31137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Li Z, Li R, Ren H, Qin C, Su J, Song X, Wang S, Liu Q, Liu Y, Cui K. Role of Different Members of the AGPAT Gene Family in Milk Fat Synthesis in Bubalus bubalis. Genes (Basel) 2023; 14:2072. [PMID: 38003015 PMCID: PMC10671497 DOI: 10.3390/genes14112072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
During triacylglycerol synthesis, the acylglycerol-3-phosphate acyltransferase (AGPAT) family catalyzes the conversion of lysophosphatidic acid to phosphatidic acid and the acylation of sn-2 fatty acids. However, the catalytic activity of different AGPAT members is different. Therefore, this study aimed to investigate the mechanism through which different AGPATs affect the efficiency of TAG synthesis and fatty acid composition. The conservation of amino acid sequences and protein domains of the AGPAT family was analyzed, and the functions of AGPAT1, AGPAT3, and AGPAT4 genes in buffalo mammary epithelial cells (BMECs) were studied using RNA interference and gene overexpression. Prediction of the protein tertiary structure of the AGPAT family demonstrated that four conservative motifs (motif1, motif2, motif3, and motif6) formed a hydrophobic pocket in AGPAT proteins, except AGPAT6. According to cytological studies, AGPAT1, AGPAT3, and AGPAT4 were found to promote the synthesis and fatty acid compositions of triacylglycerol, especially UFA compositions of triacylglycerol, by regulating ACSL1, FASN, GPAM, DGAT2, and PPARG gene expression. This study provides new insights into the role of different AGPAT gene family members involved in TAG synthesis, and a reference for improving the fatty acid composition of milk.
Collapse
Affiliation(s)
- Zhipeng Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Ruijia Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Honghe Ren
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Chaobin Qin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Jie Su
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Xinhui Song
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Shuwan Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (R.L.); (H.R.); (C.Q.); (J.S.); (X.S.); (S.W.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Q.L.); (K.C.)
| | - Yang Liu
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning 530022, China;
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Q.L.); (K.C.)
| |
Collapse
|
8
|
Su J, Li Z, Gao P, Ahmed I, Liu Q, Li R, Cui K, Rehman SU. Comparative evolutionary and molecular genetics based study of Buffalo lysozyme gene family to elucidate their antibacterial function. Int J Biol Macromol 2023; 234:123646. [PMID: 36775226 DOI: 10.1016/j.ijbiomac.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Lysozyme is used as a food preservative, biological medicine, and infant food additive as a natural anti-infective chemical having bactericidal activity and abundantly secreted in mammals' milk, saliva, etc. We systematically analyzed the 16 coding LYZ genes (C and G-type) in buffalo and cattle to elucidate their evolutionary perspective thoroughly by evaluating an evolutionary relationship, motif patterning, physicochemical attributes, gene, and protein structure, as well as the functional role of the mammary gland-specific expressed buffalo and cattle LYZ genes precisely while considering expression levels difference and the interaction sites variation with bacteria envisaged the potential ability of buffalo LYZ protein with enhanced antibacterial effect. Thus, we speculated that the buffalo mammary glands expressed lysozyme has good antibacterial activity. This study on the buffalo lysozyme gene family not only provides comprehensive insights into the genetic architecture and their antibacterial effect but also offers a theoretical basis for the development of new veterinary drugs and animal health care for mastitis, as well as a new molecular genetic basis to study food or medical lysozyme.
Collapse
Affiliation(s)
- Jie Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Peipei Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Ruijia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| | - Saif Ur Rehman
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| |
Collapse
|
9
|
Shi Y, Ning J, Norbu K, Hou X, Zheng H, Zhang H, Yu W, Zhou F, Li Y, Ding S, Zhang Q. The tibetan medicine Zuozhu-Daxi can prevent Helicobacter pylori induced-gastric mucosa inflammation by inhibiting lipid metabolism. Chin Med 2022; 17:126. [PMID: 36348469 PMCID: PMC9641849 DOI: 10.1186/s13020-022-00682-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Tibetan medicine has been used in clinical practice for more than 3800 years. Zuozhu-Daxi (ZZDX), a classic traditional Tibetan medicine, has been proved to be effective in the treatment of digestive diseases, such as chronic gastritis, gastric ulcer, etc. Helicobacter pylori (H. pylori), one of the most common pathogenic microbes, is regarded as the most common cause of gastritis. Researching on the effects of ZZDX on H. pylori-induced gastric mucosa inflammation could provide more evidences on H. pylori treatment and promote the development of Tibetan medicine. This study aimed to explore whether ZZDX could rescue H. pylori-induced gastric mucosa inflammation and its mechanism. Methods Male C57BL/6 mice were infected with H. pylori, and orally treated with ZZDX to rescue gastric mucosa inflammation induced by H. pylori infection. Pathology of gastric mucosa inflammation was evaluated under microscopy by hematoxylin–eosin (HE) staining. The infection status of H. pylori was evaluated by immunohistochemical (IHC) staining. The reactive oxygen species (ROS) level in serum was evaluated using a detection kit. IL-1α, IL-6, and PGE2 expression levels in serum were measured using ELISA. IL-1α, IL-8, TNF-α, and NOD1 expression levels in gastric tissues were measured using real-time PCR. RNA sequencing and gene certification of interest were performed to explore the mechanisms in vivo and in vitro. Results The results showed that ZZDX could significantly inhibit H. pylori-induced gastric mucosa inflammation using HE staining. IL-1α, IL-6, and PGE2 expression levels in serum were significantly decreased after treatment with ZZDX. ZZDX treatment significantly decreased the mRNA expression of IL-8 induced by H. pylori infection in gastric tissues. Elovl4, Acot1 and Scd1 might be involved in the mechanisms of ZZDX treatment. However, the H. pylori infection status in the gastric mucosa was not reduced after ZZDX treatment. Conclusions ZZDX reversed gastric mucosal injury and alleviated gastric mucosa inflammation induced by H. pylori infection.
Collapse
|
10
|
Xiaobo W, Hassan FU, Liu S, Yang S, Ahmad M, Ahmed I, Huang K, Iqbal HMN, Yu H, Liu Q, Rehman SU. De Novo Transcriptome Dataset Generation of the Swamp Buffalo Brain and Non-Brain Tissues. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4472940. [PMID: 36408285 PMCID: PMC9668446 DOI: 10.1155/2022/4472940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
The sequenced data availability opened new horizons related to buffalo genetic control of economic traits and genomic diversity. The visceral organs (brain, liver, etc.) significantly involved in energy metabolism, docility, or social interactions. We performed swamp buffalo transcriptomic profiling of 24 different tissues (brain and non-brain) to identify novel transcripts and analyzed the differentially expressed genes (DEGs) of brain vs. non-brain tissues with their functional annotation. We obtained 178.57 Gb clean transcriptomic data with GC contents 52.77%, reference genome alignment 95.36%, exonic coverage 88.49%. Totally, 26363 mRNAs transcripts including 5574 novel genes were obtained. Further, 7194 transcripts were detected as DEGs by comparing brain vs. non-brain tissues group, of which 3,999 were upregulated and 3,195 downregulated. These DEGs were functionally associated with cellular metabolic activities, signal transduction, cytoprotection, and structural and binding activities. The related functional pathways included cancer pathway, PI3k-Akt signaling, axon guidance, JAK-STAT signaling, basic cellular metabolism, thermogenesis, and oxidative phosphorylation. Our study provides an in-depth understanding of swamp buffalo transcriptomic data including DEGs potentially involved in basic cellular activities and development that helped to maintain their working capacity and social interaction with humans, and also, helpful to disclose the genetic architecture of different phenotypic traits and their gene expression regulation.
Collapse
Affiliation(s)
- Wang Xiaobo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, Victoria 3690, Australia
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Hafiz M. N. Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
11
|
Cheng J, Xu D, Chen L, Guo W, Hu G, Liu J, Fu S. CIDEA Regulates De Novo Fatty Acid Synthesis in Bovine Mammary Epithelial Cells by Targeting the AMPK/PPARγ Axis and Regulating SREBP1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11324-11335. [PMID: 36040348 DOI: 10.1021/acs.jafc.2c05226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell-death-inducing DNA fragmentation factor-α-like effector A (CIDEA) is a lipid-droplet-associated protein that helps to promote lipid metabolism in adipocytes of mice and humans. However, studies on the regulatory mechanism of CIDEA on lipid metabolism in the mammary glands of dairy cows are rare. Therefore, the role of CIDEA in bovine mammary epithelial cells (bMECs) was investigated in this study. The CIDEA expression levels in the mammary glands of high-fat-milk-producing cows were significantly higher compared to those in low-fat-milk-producing cows. Results of in vitro studies in bMECs showed that the inhibition of CIDEA inhibited the expression of fatty acid synthesis-related genes and triglyceride (TAG) synthesis-related genes. Conversely, the overexpression of CIDEA leads to an increase in the content of TAG and fatty acid. The results of mechanistic studies indicated that the overexpression of CIDEA inhibits AMP-activated protein kinase (AMPK) activity, which enhances the expression of peroxisome proliferator-activated receptor-γ (PPARγ) and consequently increases the TAG content. Furthermore, the overexpression of CIDEA promoted the nuclear translocation of sterol regulatory element-binding protein 1 (SREBP1). Therefore, a theoretical framework is provided by this study for the regulation of lipid metabolism in dairy cows by means of nutrition and the hormone targeting of CIDEA.
Collapse
Affiliation(s)
- Ji Cheng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Dianwen Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Lisha Chen
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| |
Collapse
|
12
|
Ge X, He X, Liu J, Zeng F, Chen L, Xu W, Shao R, Huang Y, Farag MA, Capanoglu E, El-Seedi HR, Zhao C, Liu B. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J Adv Res 2022; 46:173-188. [PMID: 35700921 PMCID: PMC10105086 DOI: 10.1016/j.jare.2022.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Luteolin is a plant-derived flavonoid that exhibits a broad range of pharmacological activities. Studies on luteolin have mainly focused on its use for hyperlipidaemia prevention, whereas the capacity of the flavonoid to hinder hyperglycaemia development remains underexplored. OBJECTIVES To probe the anti-hyperglycemic mechanism of 6,8-guanidyl luteolin quinone-chromium coordination (GLQ.Cr), and to assess its regulatory effect on intestinal microbiota in type 2 diabetes mellitus (T2DM) mice. METHODS High-sucrose/high-fat diet-induced and intraperitoneal injection of streptozotocin was used to develop a T2DM model. Glycometabolism related indicators, histopathology, and gut microbiota composition in caecum samples were evaluated, and RNA sequencing (RNA-seq) of liver samples was conducted. Faecal microbiota transplantation (FMT) was further used to verify the anti-hyperglycemic activity of intestinal microbiota. RESULTS The administration of GLQ.Cr alleviated hyperglycaemia symptoms by improving liver and pancreatic functions and modulating gut microbe communities (Lactobacillus, Alistipes, Parabacteroides, Lachnoclostridium, and Desulfovibrio). RNA-seq analysis showed that GLQ.Cr mainly affected the peroxisome proliferative activated receptor (PPAR) signalling pathway in order to regulate abnormal glucose metabolism. FMT significantly modulated the abundance of Lactobacillus, Alloprevotella, Alistipes, Bacteroides, Ruminiclostridium, Brevundimonas and Pseudomonas in the caecum to balance blood glucose levels and counteract T2DM mice inflammation. CONCLUSION GLQ.Cr improved the abnormal glucose metabolism in T2DM mice by regulating the PPAR signalling pathway and modulating intestinal microbial composition. FMT can improve the intestinal microecology of the recipient and in turn ameliorate the symptoms of T2DM-induced hyperglycaemia.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junwei Liu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Box 591, SE 751 24 Uppsala, Sweden
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
The Knockout of the ASIP Gene Altered the Lipid Composition in Bovine Mammary Epithelial Cells via the Expression of Genes in the Lipid Metabolism Pathway. Animals (Basel) 2022; 12:ani12111389. [PMID: 35681853 PMCID: PMC9179457 DOI: 10.3390/ani12111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Agouti signalling protein (ASIP) is a coat colour-related protein and also is a protein-related to lipid metabolism, which had first been found in agoutis. According to our previous study, ASIP is a candidate gene that affects the lipid metabolism in bovine adipocytes. However, its effect on milk lipid has not been reported yet. This study focused on the effect of the ASIP gene on the lipid metabolism of mammary epithelial cells in cattle. The ASIP gene was knocked out in bMECs by using CRISPR/Cas9 technology. The result of transcriptome sequencing showed that the differentially expressed genes associated with lipid metabolism were mainly enriched in the fatty acids metabolism pathways. Furthermore, the contents of intracellular triglycerides were significantly increased (p < 0.05), and cholesterol tended to rise (p > 0.05) in bMECs with the knockout of the ASIP gene. Fatty acid assays showed a significant alteration in medium and long-chain fatty acid content. Saturated and polyunsaturated fatty acids were significantly up-regulated (p < 0.05), and monounsaturated fatty acids were significantly decreased in the ASIP knockout bMECs (p < 0.05). The Q-PCR analysis showed that knockout of ASIP resulted in a significant reduction of gene expressions like PPARγ, FASN, SCD, and a significant up-regulation of genes like FABP4, ELOVL6, ACSL1, HACD4 prompted increased mid-to long-chain fatty acid synthesis. Overall, ASIP plays a pivotal role in regulating lipid metabolism in bMECs, which could further influence the component of lipid in milk.
Collapse
|
14
|
Yuan X, Shi W, Jiang J, Li Z, Fu P, Yang C, Rehman SU, Pauciullo A, Liu Q, Shi D. Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology. PLoS One 2022; 17:e0262878. [PMID: 35077464 PMCID: PMC8789157 DOI: 10.1371/journal.pone.0262878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
Buffalo and cow milk have a very different composition in terms of fat, protein, and total solids. For a better knowledge of such a difference, the milk metabolic profiles and characteristics of metabolites was investigated in Italian Mediterranean buffaloes and Chinese Holstein cows were investigated by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in this study. Totally, 23 differential metabolites were identified to be significantly different in the milk from the two species of which 15 were up-regulated and 8 down-regulated in Italian Mediterranean buffaloes. Metabolic pathway analysis revealed that 4 metabolites (choline, acetylcholine, nicotinamide and uric acid) were significantly enriched in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, as well as purine metabolism. The results provided further insights for a deep understanding of the potential metabolic mechanisms responsible for the different performance of Italian Mediterranean buffaloes' and Chinese Holstein cows' milk. The findings will offer new tools for the improvement and novel directions for the development of dairy industry.
Collapse
Affiliation(s)
- Xiang Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wen Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jianping Jiang
- Guangxi Engineering Technology Research Center of Chinese Medicinal Materials Stock Breeding, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Penghui Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Chunyan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy
- * E-mail: (AP); (QL); (DS)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (AP); (QL); (DS)
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (AP); (QL); (DS)
| |
Collapse
|
15
|
Fan M, Choi YJ, Wedamulla NE, Tang Y, Han KI, Hwang JY, Kim EK. Heat-Killed Enterococcus faecalis EF-2001 Attenuate Lipid Accumulation in Diet-Induced Obese (DIO) Mice by Activating AMPK Signaling in Liver. Foods 2022; 11:575. [PMID: 35206052 PMCID: PMC8870772 DOI: 10.3390/foods11040575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
To explore the inhibitory mechanism of heat-killed Enterococcus faecalis, EF-2001 on hepatic lipid deposition, a diet-induced obese (DIO) animal model was established by high-fat diet (HFD). The DIO C57BL/6 mice were divided into four groups: the normal group without HFD (ND, n = 8), obesity group (HFD, n = 8), experimental group (HFD + EF-2001, 200 mg/kg, n = 8), and positive control group (HFD + Orlistat, 60 mg/kg, n = 8). After 4 weeks, liver and adipose tissue were fixed in 10% paraformaldehyde, followed by embedding in paraffin for tissue sectioning. The differences in body mass, body fat ratio, fatty cell area, and lipid profiling of the liver (TC, LDL, and HDL) were also determined. Moreover, Western blot was performed to analyze the expression of lipid accumulation-related proteins, including AMPK, PPARγ, SREBP-1, ACC, and FAS. Compared with the HFD group, the HFD + EF-2001 group exhibited decreased fat mass, liver index, adipocyte area, TC, and LDL, and an increased level of HDL. The results of liver hematoxylin and eosin (H&E), and oil red O staining showed that the mice in each intervention group were improved on hepatic lipid accumulation, and the mice in the HFD + EF-2001 group were the most similar to those in the normal group when compared with the HFD group. From the Western blot results, we proved that EF-2001 activated the AMPK signaling pathway. EF-2001 significantly upregulated the expressions of p-AMPK and p-ACC and downregulated PPARγ, SREBP-1, and FAS in murine liver. Taken together, these results suggest that EF-2001 decrease lipid accumulation in the DIO model mice through the AMPK pathway and ameliorate liver damage by HFD.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea;
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China;
| | | | - Ji-Young Hwang
- Department of Food Science & Technology, Dong-Eui University, Busan 47340, Korea;
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Korea
| |
Collapse
|
16
|
Wu S, Hassan FU, Luo Y, Fatima I, Ahmed I, Ihsan A, Safdar W, Liu Q, Rehman SU. Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors. BIOLOGY 2021; 10:1207. [PMID: 34827201 PMCID: PMC8615036 DOI: 10.3390/biology10111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution of FN-III proteins and FNDC5/irisin as a ligand targeting the gonadal receptors including androgen (AR), DDB1 and CUL4 associated factor 6 (DCAF6), estrogen-related receptor β (ERR-β), estrogen-related receptor γ (ERR-γ), Krüppel-like factor 15 (KLF15), and nuclear receptor subfamily 3 group C member 1 (NR3C1). Moreover, the putative role of irisin in folliculogenesis and spermatogenesis was also elucidated. We presented the molecular structure and function of 29 FN-III genes widely distributed in the buffalo genome. Phylogenetic analysis, motif, and conserved domain pattern demonstrated the evolutionary well-conserved nature of FN-III proteins with a variety of stable to unstable, hydrophobic to hydrophilic, and thermostable to thermo-unstable properties. The comparative structural configuration of FNDC5 revealed amino acid variations but still the FNDC5 structure of humans, buffalo, and cattle was quite similar to each other. For the first time, we predicted the binding scores and interface residues of FNDC5/irisin as a ligand for six representative receptors having a functional role in energy homeostasis, and a significant involvement in folliculogenesis and spermatogenesis in buffalo.
Collapse
Affiliation(s)
- Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad 38000, Pakistan;
| | - Ishtiaq Ahmed
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan;
| | - Warda Safdar
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| |
Collapse
|
17
|
Rehman SU, Feng T, Wu S, Luo X, Lei A, Luobu B, Hassan FU, Liu Q. Comparative Genomics, Evolutionary and Gene Regulatory Regions Analysis of Casein Gene Family in Bubalus bubalis. Front Genet 2021; 12:662609. [PMID: 33833782 PMCID: PMC8021914 DOI: 10.3389/fgene.2021.662609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Buffalo is a luxurious genetic resource with multiple utilities (as a dairy, draft, and meat animal) and economic significance in the tropical and subtropical regions of the globe. The excellent potential to survive and perform on marginal resources makes buffalo an important source for nutritious products, particularly milk and meat. This study was aimed to investigate the evolutionary relationship, physiochemical properties, and comparative genomic analysis of the casein gene family (CSN1S1, CSN2, CSN1S2, and CSN3) in river and swamp buffalo. Phylogenetic, gene structure, motif, and conserved domain analysis revealed the evolutionarily conserved nature of the casein genes in buffalo and other closely related species. Results indicated that casein proteins were unstable, hydrophilic, and thermostable, although αs1-CN, β-CN, and κ-CN exhibited acidic properties except for αs2-CN, which behaved slightly basic. Comparative analysis of amino acid sequences revealed greater variation in the river buffalo breeds than the swamp buffalo indicating the possible role of these variations in the regulation of milk traits in buffalo. Furthermore, we identified lower transcription activators STATs and higher repressor site YY1 distribution in swamp buffalo, revealing its association with lower expression of casein genes that might subsequently affect milk production. The role of the main motifs in controlling the expression of casein genes necessitates the need for functional studies to evaluate the effect of these elements on the regulation of casein gene function in buffalo.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - An Lei
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Basang Luobu
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
| | - Faiz-ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
18
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|
19
|
LC-MS/MS Based Metabolomics Reveal Candidate Biomarkers and Metabolic Changes in Different Buffalo Species. Animals (Basel) 2021; 11:ani11020560. [PMID: 33672725 PMCID: PMC7924386 DOI: 10.3390/ani11020560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Consumers have shown more and more interest in high-quality and healthy dairy products and buffalo milk is commercially more viable than other milks in producing superior dairy products due to its higher contents of fat, crude protein, and total solids. Metabolomics is one of the most powerful strategies in molecular mechanism research however, little study has been focused on the milk metabolites in different buffalo species. Therefore, the aim of this study was to explore the underlying molecular mechanism of the fatty synthesis and candidate biomarkers by analyzing the metabolomic profiles. Milk of three groups of buffaloes, including 10 Mediterranean, 12 Murrah, and 10 crossbred buffaloes (Murrah × local swamp buffalo), were collected and UPLC-Q-Orbitrap HRMS was used to obtain the metabolomic profiles. Results showed that milk fatty acid in Mediterranean buffalo was significantly higher than Murrah buffalo and crossbred buffalo. A total of 1837/726 metabolites was identified in both positive and negative electrospray ionization (ESI±) mode, including 19 significantly different metabolites between Mediterranean and Murrah buffalo, and 18 different metabolites between Mediterranean and crossbred buffalo. We found 11 of the different metabolites were both significantly different between Mediterranean vs. Murrah group and Mediterranean vs crossbred group, indicating that they can be used as candidate biomarkers of Mediterranean buffalo milk. Further analysis found that the different metabolites were mainly enriched in fat synthesis related pathways such as fatty acid biosynthesis, unsaturated fatty acid biosynthesis, and linoleic acid metabolism, indicating that the priority of different pathways affected the milk fat content in different buffalo species. These specific metabolites may be used as biomarkers in the identification of milk quality and molecular breeding of high milk fat buffalo.
Collapse
|
20
|
Zhang Y, Zheng Y, Wang X, Qiu J, Liang C, Cheng G, Wang H, Zhao C, Yang W, Zan L, Li A. Bovine Stearoyl-CoA Desaturase 1 Promotes Adipogenesis by Activating the PPARγ Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12058-12066. [PMID: 33052678 DOI: 10.1021/acs.jafc.0c05147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that mainly catalyzes the saturated fatty acids (SFAs) into the monounsaturated fatty acids (MUFAs). The expression level of SCD1 is positively correlated with the marbling score. However, the functional mechanism of SCD1 in adipogenesis is still unclear. In this study, we identified SCD1 as highly expressed in subcutaneous and visceral fat, peaking at 2 days after differentiation in bovine stromal vascular fraction (SVF) cells. When the SCD1 was overexpressed in bovine SVF cells, lipid droplets accumulation was increased from 142.46 ± 21.77 to 254.89 ± 11.75 μg/mg (P < 0.01). Further, the expression levels of FABP4, FASN, and ACCα were increased (P < 0.01), while the expression of PPARγ or C/EBPα was not changed at mRNA or protein level (P > 0.05). Dual-luciferase reporter assay showed that the activity of the PPARγ receptor was enhanced by 3.69 times (P < 0.01). Moreover, the contents of palmitoleate (C16:1) and oleate (C18:1) were significantly increased (P < 0.05). Furthermore, 100 μM exogenous oleate increased the lipid accumulation by 22.28 times (P < 0.01). These results suggest that oleate is probably a strong ligand of the PPARγ receptor to enhance adipogenesis.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|