1
|
Cabral AS, Lacerda FDF, Leite VLM, de Miranda FM, da Silva AB, Dos Santos BA, Lima JLDC, Teixeira LM, Neves FPG. CRISPR-Cas systems in enterococci. Braz J Microbiol 2024:10.1007/s42770-024-01549-x. [PMID: 39438415 DOI: 10.1007/s42770-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Enterococci are members of the microbiota of humans and other animals. They can also be found in the environment, associated with food, healthcare infections, and hospital settings. Due to their wide distribution, they are inserted in the One Health context. The selective pressure caused by the extensive use of antimicrobial agents in humans, animals, and agriculture has increased the frequency of resistance to various drugs among enterococcal species. CRISPR-Cas system, an important prokaryotic defense mechanism against the entry of mobile genetic elements, may prevent the acquisition of genes involved in antimicrobial resistance and virulence. This system has been increasingly used as a gene editing tool, which can be used as a way to recognize and inactivate genes of interest. Here, we conduct a review on CRISPR systems found in enterococci, considering their occurrence, structure and organization, mechanisms of action and use as a genetic engineering technology. Type II-A CRISPR-Cas systems were shown to be the most frequent among enterococcal species, and the orphan CRISPR2 was the most commonly found system (54.1%) among enterococcal species, especially in Enterococcus faecalis. Distribution of CRISPR systems varied among species. CRISPR systems had 1 to 20 spacers, with size between 23 and 37 bp and direct repeat sequences from 25 to 37 bp. Several applications of the CRISPR-Cas biotechnology have been described in enterococci, mostly in vitro, using this editing tool to target resistance- and virulence-related genes.
Collapse
Affiliation(s)
- Amanda Seabra Cabral
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Fernanda de Freitas Lacerda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Vitor Luis Macena Leite
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Filipe Martire de Miranda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Amanda Beiral da Silva
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Bárbara Araújo Dos Santos
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Jailton Lobo da Costa Lima
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Felipe Piedade Gonçalves Neves
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
2
|
Han KI, Shin HD, Lee Y, Baek S, Moon E, Park YB, Cho J, Lee JH, Kim TJ, Manoharan RK. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals (Basel) 2024; 17:1383. [PMID: 39459022 PMCID: PMC11510163 DOI: 10.3390/ph17101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Probiotics, which are live microorganisms that, when given in sufficient quantities, promote the host's health, have drawn a lot of interest for their ability to enhance gut health. Enterococcus faecalis, a member of the human gut microbiota, has shown promise as a probiotic candidate due to its functional attributes. However, safety concerns associated with certain strains warrant comprehensive evaluation before therapeutic application. MATERIALS AND METHODS In this study, E. faecalis EF-2001, originally isolated from fecal samples of a healthy human infant, was subjected to a multi-faceted assessment for its safety and probiotic potential. In silico analysis, CAZyme, biosynthetic, and stress-responsive proteins were identified. RESULTS The genome lacked biogenic amine genes but contained some essential amino acid and vitamin synthetic genes, and carbohydrate-related enzymes essential for probiotic properties. The negligible difference of 0.03% between the 1st and 25th generations indicates that the genetic information of the E. faecalis EF-2001 genome remained stable. The live E. faecalis EF-2001 (E. faecalis EF-2001L) demonstrated low or no virulence potential, minimal D-Lactate production, and susceptibility to most antibiotics except some aminoglycosides. No bile salt deconjugation or biogenic amine production was observed in an in vitro assay. Hemolytic activity assessment showed a β-hemolytic pattern, indicating no red blood cell lysis. Furthermore, the EF-2001L did not produce gelatinase and tolerated simulated gastric and intestinal fluids in an in vitro study. Similarly, heat-killed E. faecalis EF-2001 (E. faecalis EF-2001HK) exhibits tolerance in both acid and base conditions in vitro. Further, no cytotoxicity of postbiotic EF-2001HK was observed in human colorectal adenocarcinoma HT-29 cells. CONCLUSIONS These potential properties suggest that probiotic and postbiotic E. faecalis EF-2001 could be considered safe and retain metabolic activity suitable for human consumption.
Collapse
Affiliation(s)
- Kwon Il Han
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Hyun-Dong Shin
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Yura Lee
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Sunhwa Baek
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Eunjung Moon
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Youn Bum Park
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Junhui Cho
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Ranjith Kumar Manoharan
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| |
Collapse
|
3
|
Breidenstein A, Lamy A, Bader CP, Sun WS, Wanrooij PH, Berntsson RPA. PrgE: an OB-fold protein from plasmid pCF10 with striking differences to prototypical bacterial SSBs. Life Sci Alliance 2024; 7:e202402693. [PMID: 38811160 PMCID: PMC11137577 DOI: 10.26508/lsa.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.
Collapse
Affiliation(s)
- Annika Breidenstein
- https://ror.org/05kb8h459 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- https://ror.org/05kb8h459 Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anaïs Lamy
- https://ror.org/05kb8h459 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- https://ror.org/05kb8h459 Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Cyrielle Pj Bader
- https://ror.org/05kb8h459 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Wei-Sheng Sun
- https://ror.org/05kb8h459 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- https://ror.org/05kb8h459 Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Paulina H Wanrooij
- https://ror.org/05kb8h459 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ronnie P-A Berntsson
- https://ror.org/05kb8h459 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- https://ror.org/05kb8h459 Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Michaelis C, Berger TMI, Kuhlmann K, Ghulam R, Petrowitsch L, Besora Vecino M, Gesslbauer B, Pavkov-Keller T, Keller W, Grohmann E. Effect of TraN key residues involved in DNA binding on pIP501 transfer rates in Enterococcus faecalis. Front Mol Biosci 2024; 11:1268647. [PMID: 38380428 PMCID: PMC10877727 DOI: 10.3389/fmolb.2024.1268647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Conjugation is a major mechanism that facilitates the exchange of antibiotic resistance genes among bacteria. The broad-host-range Inc18 plasmid pIP501 harbors 15 genes that encode for a type IV secretion system (T4SS). It is a membrane-spanning multiprotein complex formed between conjugating donor and recipient cells. The penultimate gene of the pIP501 operon encodes for the cytosolic monomeric protein TraN. This acts as a transcriptional regulator by binding upstream of the operon promotor, partially overlapping with the origin of transfer. Additionally, TraN regulates traN and traO expression by binding upstream of the PtraNO promoter. This study investigates the impact of nine TraN amino acids involved in binding to pIP501 DNA through site-directed mutagenesis by exchanging one to three residues by alanine. For three traN variants, complementation of the pIP501∆traN knockout resulted in an increase of the transfer rate by more than 1.5 orders of magnitude compared to complementation of the mutant with native traN. Microscale thermophoresis (MST) was used to assess the binding affinities of three TraN double-substituted variants and one triple-substituted variant to its cognate pIP501 double-stranded DNA. The MST data strongly correlated with the transfer rates obtained by biparental mating assays in Enterococcus faecalis. The TraN variants TraN_R23A-N24A-Q28A, TraN_H82A-R86A, and TraN_G100A-K101A not only exhibited significantly lower DNA binding affinities but also, upon complementation of the pIP501∆traN knockout, resulted in the highest pIP501 transfer rates. This confirms the important role of the TraN residues R23, N24, Q28, H82, R86, G100, and K101 in downregulating pIP501 transfer. Although TraN is not part of the mating pair formation complex, TraE, TraF, TraH, TraJ, TraK, and TraM were coeluted with TraN in a pull-down. Moreover, TraN homologs are present not only in Inc18 plasmids but also in RepA_N and Rep_3 family plasmids, which are frequently found in enterococci, streptococci, and staphylococci. This points to a widespread role of this repressor in conjugative plasmid transfer among Firmicutes.
Collapse
Affiliation(s)
- Claudia Michaelis
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | | | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rangina Ghulam
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| |
Collapse
|
5
|
Gagetti P, Faccone D, Ceriana P, Lucero C, Menocal A, Argentina GL, Corso A. Emergence of optrA-mediated linezolid resistance in clinical isolates of Enterococcus faecalis from Argentina. J Glob Antimicrob Resist 2023; 35:335-341. [PMID: 37923130 DOI: 10.1016/j.jgar.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterize the first 14 optrA-carrying linezolid resistant E. faecalis clinical isolates recovered in seven Argentinian hospitals between 2016 and 2021. The epidemiology of optrA-carrying isolates and the optrA genetic context were determined. METHODS The isolates were phenotypically and genotypically characterized. Susceptibility to 13 antimicrobial agents was performed; clonal relationship was assessed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Data provided by the whole-genome sequencing were used for identification of sequence types, antimicrobial resistance genes, optrA variants, phylogenetic tree, and mobile genetic elements responsible to the dissemination of these strains. RESULTS All the optrA-carrying E. faecalis isolates were multidrug-resistant and harboured several antimicrobial resistance genes. They carried three optrA variants and belonged to different lineages; however, three of them belonged to the hyperepidemic CC16. Mobile genetic elements were detected in all the isolates. The analysis of the optrA flanking region suggests the plasmidic localization in most of the isolates. CONCLUSIONS To the best of our knowledge, this is the first report of optrA-mediated linezolid resistance in Argentina. The emergence and dissemination of the optrA genes in clinical E. faecalis isolates are of concern and highlights the importance of initiating the antimicrobial surveillance of Enterococcus spp. under a One Health strategy.
Collapse
Affiliation(s)
- Paula Gagetti
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Diego Faccone
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Paola Ceriana
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Celeste Lucero
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Menocal
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Grupo Lre Argentina
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| |
Collapse
|
6
|
Nüesch-Inderbinen M, Biggel M, Haussmann A, Treier A, Heyvaert L, Cernela N, Stephan R. Oxazolidinone resistance genes in florfenicol-resistant enterococci from beef cattle and veal calves at slaughter. Front Microbiol 2023; 14:1150070. [PMID: 37389336 PMCID: PMC10301837 DOI: 10.3389/fmicb.2023.1150070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Background Linezolid is a critically important oxazolidinone antibiotic used in human medicine. Although linezolid is not licensed for use in food-producing animals, the use of florfenicol in veterinary medicine co-selects for oxazolidinone resistance genes. Objective This study aimed to assess the occurrence of cfr, optrA, and poxtA in florfenicol-resistant isolates from beef cattle and veal calves from different herds in Switzerland. Methods A total of 618 cecal samples taken from beef cattle and veal calves at slaughter originating from 199 herds were cultured after an enrichment step on a selective medium containing 10 mg/L florfenicol. Isolates were screened by PCR for cfr, optrA, and poxtA which are genes known to confer resistance to oxazolidinones and phenicols. One isolate per PCR-positive species and herd was selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). Results Overall, 105 florfenicol-resistant isolates were obtained from 99 (16%) of the samples, corresponding to 4% of the beef cattle herds and 24% of the veal calf herds. Screening by PCR revealed the presence of optrA in 95 (90%) and poxtA in 22 (21%) of the isolates. None of the isolates contained cfr. Isolates included for AST and WGS analysis were Enterococcus (E.) faecalis (n = 14), E. faecium (n = 12), E. dispar (n = 1), E. durans (n = 2), E. gallinarum (n = 1), Vagococcus (V.) lutrae (n = 2), Aerococcus (A.) urinaeequi (n = 1), and Companilactobacillus (C.) farciminis (n = 1). Thirteen isolates exhibited phenotypic linezolid resistance. Three novel OptrA variants were identified. Multilocus sequence typing identified four E. faecium ST18 belonging to hospital-associated clade A1. There was a difference in the replicon profile among optrA- and poxtA-harboring plasmids, with rep9 (RepA_N) plasmids dominating in optrA-harboring E. faecalis and rep2 (Inc18) and rep29 (Rep_3) plasmids in poxtA-carrying E. faecium. Conclusion Beef cattle and veal calves are reservoirs for enterococci with acquired linezolid resistance genes optrA and poxtA. The presence of E. faecium ST18 highlights the zoonotic potential of some bovine isolates. The dispersal of clinically relevant oxazolidinone resistance genes throughout a wide variety of species including Enterococcus spp., V. lutrae, A. urinaeequi, and the probiotic C. farciminis in food-producing animals is a public health concern.
Collapse
Affiliation(s)
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Adrian Haussmann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Andrea Treier
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lore Heyvaert
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, University of Ghent, Ghent, Belgium
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Shobo CO, Amoako DG, Allam M, Ismail A, Essack SY, Bester LA. A Genomic Snapshot of Antibiotic-Resistant Enterococcus faecalis within Public Hospital Environments in South Africa. Glob Health Epidemiol Genom 2023; 2023:6639983. [PMID: 37342729 PMCID: PMC10279497 DOI: 10.1155/2023/6639983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Enterococci are among the most common opportunistic hospital pathogens. This study used whole-genome sequencing (WGS) and bioinformatics to determine the antibiotic resistome, mobile genetic elements, clone and phylogenetic relationship of Enterococcus faecalis isolated from hospital environments in South Africa. This study was carried out from September to November 2017. Isolates were recovered from 11 frequently touched sites by patients and healthcare workers in different wards at 4 levels of healthcare (A, B, C, and D) in Durban, South Africa. Out of the 245 identified E. faecalis isolates, 38 isolates underwent whole-genome sequencing (WGS) on the Illumina MiSeq platform, following microbial identification and antibiotic susceptibility tests. The tet(M) (31/38, 82%) and erm(C) (16/38, 42%) genes were the most common antibiotic-resistant genes found in isolates originating from different hospital environments which corroborated with their antibiotic resistance phenotypes. The isolates harboured mobile genetic elements consisting of plasmids (n = 11) and prophages (n = 14) that were mostly clone-specific. Of note, a large number of insertion sequence (IS) families were found on the IS3 (55%), IS5 (42%), IS1595 (40%), and Tn3 transposons the most predominant. Microbial typing using WGS data revealed 15 clones with 6 major sequence types (ST) belonging to ST16 (n = 7), ST40 (n = 6), ST21 (n = 5), ST126 (n = 3), ST23 (n = 3), and ST386 (n = 3). Phylogenomic analysis showed that the major clones were mostly conserved within specific hospital environments. However, further metadata insights revealed the complex intraclonal spread of these E. faecalis major clones between the sampling sites within each specific hospital setting. The results of these genomic analyses will offer insights into antibiotic-resistantE. faecalis in hospital environments relevant to the design of optimal infection prevention strategies in hospital settings.
Collapse
Affiliation(s)
- Christiana O. Shobo
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, UAE
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| |
Collapse
|
8
|
Kirsch JM, Ely S, Stellfox ME, Hullahalli K, Luong P, Palmer KL, Van Tyne D, Duerkop BA. Targeted IS-element sequencing uncovers transposition dynamics during selective pressure in enterococci. PLoS Pathog 2023; 19:e1011424. [PMID: 37267422 PMCID: PMC10266640 DOI: 10.1371/journal.ppat.1011424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/14/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis, indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Ely
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Madison E. Stellfox
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karthik Hullahalli
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Phat Luong
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Kelli L. Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Aswal M, Singhal N, Kumar M. Comprehensive genomic analysis of hypocholesterolemic probiotic Enterococcus faecium LR13 reveals unique proteins involved in cholesterol-assimilation. Front Nutr 2023; 10:1082566. [PMID: 37081914 PMCID: PMC10110904 DOI: 10.3389/fnut.2023.1082566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases (CVDs). Chemotherapeutic agents for CVDs exhibit several side effects. Specific probiotics with hypocholesterolemic effects can be safe and effective alternatives to chemotherapeutics. Here, we have analyzed and compared the genome of a novel rhizospheric Enterococcus faecium LR13 cholesterol-assimilating probiotic with other probiotic/pathogenic E. faecium strains to discern genetic factors underlying probiotic efficacy and cholesterol-assimilation. Genomic analyses of E. faecium probiotic strains revealed that LR13 and WEFA23 (cholesterol-assimilating probiotics) harbored 21 unique proteins absent in non-cholesterol-assimilating probiotics. Of these, 14 proteins could directly help in cholesterol-assimilation by producing short chain fatty acids, lipid (sterol) transport and membrane stabilization, and bile salt hydrolase activity. This suggests that cholesterol-assimilation is an intrinsic, strain-specific trait exhibited by probiotics with a specific genetic constitution. Moreover, the unique proteins identified in this study can serve as biomarkers for discerning/characterizing cholesterol-assimilating probiotics as novel biotherapeutics against CVDs.
Collapse
|
10
|
Kazi TA, Mukhopadhyay BC, Mandal S, Biswas SR. Molecular characterization of five novel plasmids from Enterococcus italicus SD1 isolated from fermented milk: An insight into understanding plasmid incompatibility. Gene 2023; 856:147154. [PMID: 36574936 DOI: 10.1016/j.gene.2022.147154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMβ1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
11
|
Zaghloul HAH, El Halfawy NM. Genomic insights into antibiotic-resistance and virulence genes of Enterococcus faecium strains from the gut of Apis mellifera. Microb Genom 2022; 8:mgen000896. [PMID: 36374179 PMCID: PMC9836096 DOI: 10.1099/mgen.0.000896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enterococcus faecium is a lactic acid bacterium that confers beneficial health effects in humans. However, lately, a number of E. faecium strains have been linked to the spread of nosocomial infections in the hospital environment. Therefore, any potential commercial usage of E. faecium isolates should be preceded by an assessment of infection risk. In the current study, the genomes of two novel E. faecium strains Am1 (larval isolate) and Bee9 (adult bee isolate) isolated from the gut of Apis mellifera L. (honeybee) were sequenced to allow evaluation of their safety. In particular, their genomes were screened for antibiotic-resistance and virulence genes. In addition, their potential to spread resistance in the environment was evaluated. The analysis revealed that Am1 and Bee9 possess 2832 and 2844 protein-encoding genes, respectively. In each case, the genome size was 2.7 Mb with a G+C content of 37.9 mol%. Comparative analysis with probiotic, non-pathogenic and pathogenic enterococci revealed that there are variations between the two bee E. faecium isolates and pathogenic genomes. They were, however, closely linked to the probiotic comparison strains. Phenotypically, the Am1 and Bee9 strains were susceptible to most antibiotics tested, but showed intermediate sensitivity towards erythromycin, linezolid and trimethoprim/sulfamethoxazole. Notably, no genes associated with antibiotic resistance in clinical isolates (e.g. vancomycin resistance: vanA, vanB, vanS, vanX and vanY) were present. In addition, the insertion sequences (IS16, ISEfa11 and ISEfa5), acting as molecular pathogenicity markers in clinically relevant E. faecium strains, were also absent. Moreover, the analysis revealed the absence of three key pathogenicity-associated genes (acm, sgrA, ecbA) in the Am1 and Bee9 strains that are found in the prominent clinical isolates DO, V1836, Aus0004 and Aus0085. Overall, the findings of this investigation suggest that the E. faecium isolates from the bee gut have not suffered any recent clinically relevant antibiotic exposure. It also suggests that E. faecium Am1 and Bee9 are safe potential probiotic strains, because they lack the phenotypic and genetic features associated with strains eliciting nosocomial infections.
Collapse
Affiliation(s)
- Heba A. H. Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Nancy M. El Halfawy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt,*Correspondence: Nancy M. El Halfawy,
| |
Collapse
|
12
|
Zhang X, Wu K, Han Z, Chen Z, Liu Z, Sun Z, Shao L, Zhao Z, Zhou L. Microbial diversity and biogeochemical cycling potential in deep-sea sediments associated with seamount, trench, and cold seep ecosystems. Front Microbiol 2022; 13:1029564. [PMID: 36386615 PMCID: PMC9650238 DOI: 10.3389/fmicb.2022.1029564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2023] Open
Abstract
Due to their extreme water depths and unique physicochemical conditions, deep-sea ecosystems develop uncommon microbial communities, which play a vital role in biogeochemical cycling. However, the differences in the compositions and functions of the microbial communities among these different geographic structures, such as seamounts (SM), marine trenches (MT), and cold seeps (CS), are still not fully understood. In the present study, sediments were collected from SM, MT, and CS in the Southwest Pacific Ocean, and the compositions and functions of the microbial communities were investigated by using amplicon sequencing combined with in-depth metagenomics. The results revealed that significantly higher richness levels and diversities of the microbial communities were found in SM sediments, followed by CS, and the lowest richness levels and diversities were found in MT sediments. Acinetobacter was dominant in the CS sediments and was replaced by Halomonas and Pseudomonas in the SM and MT sediments. We demonstrated that the microbes in deep-sea sediments were diverse and were functionally different (e.g., carbon, nitrogen, and sulfur cycling) from each other in the seamount, trench, and cold seep ecosystems. These results improved our understanding of the compositions, diversities and functions of microbial communities in the deep-sea environment.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiying Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zuwang Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liyi Shao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Messele YE, Hasoon MF, Trott DJ, Veltman T, McMeniman JP, Kidd SP, Low WY, Petrovski KR. Longitudinal Analysis of Antimicrobial Resistance among Enterococcus Species Isolated from Australian Beef Cattle Faeces at Feedlot Entry and Exit. Animals (Basel) 2022; 12:2690. [PMID: 36230431 PMCID: PMC9559632 DOI: 10.3390/ani12192690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Enterococcus faecium are commensal bacteria inhabiting the gastrointestinal tract of animals and humans and an important cause of drug-resistant nosocomial infections. This longitudinal study aimed to determine whether changes in the antimicrobial resistance (AMR) phenotype and genotype occurred among Enterococcus spp. isolated from cattle rectal samples obtained at the entry to and exit from an Australian feedlot. The samples obtained at the feedlot induction yielded enterococci (104/150; 69.3%), speciated as E. hirae (90/104; 86.5%), E. faecium (9/104; 8.7%), E. mundtii (3/104; 2.9%), E. durans, and E. casseliflavus (1/104; 1.0% each). AMR was observed to lincomycin (63/104; 60.6%), daptomycin (26/104; 25.0%), nitrofurantoin (9/104; 8.7%), ciprofloxacin (7/104; 6.7%), tetracycline (5/104; 4.8%), tigecycline (4/104; 3.9%), and quinupristin/dalfopristin (3/104; 2.9%). From the rectal swab samples collected at the abattoir from the same animals (i.e., the feedlot exit), the enterococci recovery was significantly higher (144/150; 96.0%), with a marked shift in species distribution dominated by E. faecium (117/144; 81.3%). However, the prevalence of AMR to individual antimicrobials remained largely static between the entry and exit except for the increased resistance to nitrofurantoin (77/144; 53.5%) and quinupristin/dalfopristin (26/144; 18.1%). Overall, 13 AMR genes were observed among the 62 E. faecium isolates. These included aac(6')Ii, aac(6')-Iid, and ant(6)-Ia (aminoglycosides); eatAv, lnu(G), vat(E), msr(C), and erm(B) (macrolides, lincosamides, and streptogramins); efmA (fluoroquinolones); and tet(45), tet(L), tet(M), and tet(S) (tetracyclines). The results confirm the presence of fluoroquinolone- and streptogramin-resistant enterococci in cattle faeces at the feedlot entry in the absence of antimicrobial selection pressure. E. faecium, exhibiting increased nitrofurantoin resistance, became the dominant Enterococcus spp. during the feeding period.
Collapse
Affiliation(s)
- Yohannes E. Messele
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mauida F. Hasoon
- The Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Darren J. Trott
- The Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tania Veltman
- The Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joe P. McMeniman
- Meat & Livestock Australia, Level 1, 40 Mount Street, North Sydney, NSW 2060, Australia
| | - Stephen P. Kidd
- The Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Disease, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Wai Y. Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kiro R. Petrovski
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Draft Genome Sequences of Two Commensal Enterococcus faecalis Strains Isolated from American Black Vultures (Coragyps atratus) in Brazil. Microbiol Resour Announc 2022; 11:e0005722. [PMID: 35862905 PMCID: PMC9387230 DOI: 10.1128/mra.00057-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequences of two commensal
Enterococcus faecalis
strains (designated Ca-2 and Ca-18) recovered from the cloacae of two healthy American black vultures (
Coragyps atratus
) in Rio de Janeiro, Brazil. The strains were found to carry a variety of antimicrobial resistance and virulence-associated genes.
Collapse
|
15
|
Udaondo Z, Abram KZ, Kothari A, Jun SR. Insertion sequences and other mobile elements associated with antibiotic resistance genes in Enterococcus isolates from an inpatient with prolonged bacteraemia. Microb Genom 2022; 8. [PMID: 35921144 PMCID: PMC9484755 DOI: 10.1099/mgen.0.000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved Enterococcus faecium and Enterococcus faecalis genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of E. faecium isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in E. faecalis isolates likely implicated in a vancomycin genotype–phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in liaSR genes and a putative composite transposon in E. faecium, offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Z Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Dept of Health, Healthcare Associated Infections and Outbreak Response Sections, Little Rock, AR 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
16
|
Su Z, Yang S, Li M, Chen Y, Wang S, Yun Y, Li G, Ma T. Complete Genome Sequences of One Salt-Tolerant and Petroleum Hydrocarbon-Emulsifying Terribacillus saccharophilus Strain ZY-1. Front Microbiol 2022; 13:932269. [PMID: 35966672 PMCID: PMC9366552 DOI: 10.3389/fmicb.2022.932269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Salt tolerance is one of the most important problems in the field of environmental governance and restoration. Among the various sources of factors, except temperature, salinity is a key factor that interrupts bacterial growth significantly. In this regard, constant efforts are made for the development of salt-tolerant strains, but few strains with salt tolerance, such as Terribacillus saccharophilus, were found, and there are still few relevant reports about their salt tolerance from complete genomic analysis. Furthermore, with the development of the economy, environmental pollution caused by oil exploitation has attracted much attention, so it is crucial to find the bacteria from T. saccharophilus which could degrade petroleum hydrocarbon even under high-salt conditions. Herein, one T. saccharophilus strain named ZY-1 with salt tolerance was isolated by increasing the salinity on LB medium step by step with reservoir water as the bacterial source. Its complete genome was sequenced, which was the first report of the complete genome for T. saccharophilus species with petroleum hydrocarbon degradation and emulsifying properties. In addition, its genome sequences were compared with the other five strains that are from the same genus level. The results indicated that there really exist some differences among them. In addition, some characteristics were studied. The salt-tolerant strain ZY-1 developed in this study and its emulsification and degradation performance of petroleum hydrocarbons were studied, which is expected to widely broaden the research scope of petroleum hydrocarbon-degrading bacteria in the oil field environment even in the extreme environment. The experiments verified that ZY-1 could significantly grow not only in the salt field but also in the oil field environment. It also demonstrated that the developed salt-tolerant strain can be applied in the petroleum hydrocarbon pollution field for bioremediation. In addition, we expect that the identified variants which occurred specifically in the high-salt strain will enhance the molecular biological understanding and be broadly applied to the biological engineering field.
Collapse
|
17
|
Belloso Daza MV, Milani G, Cortimiglia C, Pietta E, Bassi D, Cocconcelli PS. Genomic Insights of Enterococcus faecium UC7251, a Multi-Drug Resistant Strain From Ready-to-Eat Food, Highlight the Risk of Antimicrobial Resistance in the Food Chain. Front Microbiol 2022; 13:894241. [PMID: 35814695 PMCID: PMC9262338 DOI: 10.3389/fmicb.2022.894241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, β-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance.
Collapse
|
18
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|
19
|
Miguel-Arribas A, Wu LJ, Michaelis C, Yoshida KI, Grohmann E, Meijer WJJ. Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms 2022; 10:microorganisms10030587. [PMID: 35336162 PMCID: PMC8955417 DOI: 10.3390/microorganisms10030587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical Faculty, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK;
| | - Claudia Michaelis
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Elisabeth Grohmann
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| |
Collapse
|
20
|
Gargis AS, Spicer LM, Kent AG, Zhu W, Campbell D, McAllister G, Ewing TO, Albrecht V, Stevens VA, Sheth M, Padilla J, Batra D, Johnson JK, Halpin AL, Rasheed JK, Elkins CA, Karlsson M, Lutgring JD. Sentinel Surveillance Reveals Emerging Daptomycin-Resistant ST736 Enterococcus faecium and Multiple Mechanisms of Linezolid Resistance in Enterococci in the United States. Front Microbiol 2022; 12:807398. [PMID: 35178041 PMCID: PMC8846945 DOI: 10.3389/fmicb.2021.807398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and faecium with resistance to daptomycin and/or linezolid are emerging globally. We present the genomic characterization of daptomycin- and linezolid-resistant E. faecalis and E. faecium surveillance isolates from the United States, 2013-2016. Daptomycin resistance was low among E. faecalis (2/364, 0.5%) and E. faecium (17/344, 5%). The majority (71%, 12/17) of daptomycin-resistant E. faecium isolates belonged to the emerging ST736 clone and contained mutations in liaFSR and cls previously associated with resistance. However, 1/2 E. faecalis and 3/17 E. faecium did not contain these mutations previously associated with daptomycin resistance. Linezolid resistance was rare among E. faecalis (1/364, 0.3%) and E. faecium (2/344, 0.6%). These two E. faecium isolates, one of which was also resistant to daptomycin and vancomycin, contained the 23S rRNA nucleotide mutation (G2576T) associated with linezolid resistance. Long-read sequencing revealed the linezolid-resistant E. faecalis isolate contained chromosomal- and plasmid-encoded copies of optrA. The chromosomal optrA was located on the recently described Tn6674 multiresistance transposon. The second copy of optrA was encoded on an ∼65 kb mosaic plasmid, with component regions sharing high sequence identity to optrA-encoding multiresistance plasmids of animal origin. The optrA-encoding plasmid contained open reading frames predicted to encode proteins associated with a pheromone-responsive plasmid transfer system, and filter mating experiments confirmed the plasmid was conjugative. Continued surveillance of enterococci is necessary to assess the prevalence and trends of daptomycin and linezolid resistance in the United States, characterize resistance mechanisms and how they transfer, and monitor for emerging sequence types associated with resistance.
Collapse
Affiliation(s)
- Amy S. Gargis
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lori M. Spicer
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Goldbelt C6, LLC, Chesapeake, VA, United States
| | - Alyssa G. Kent
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Goldbelt C6, LLC, Chesapeake, VA, United States
| | - Wenming Zhu
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Davina Campbell
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gillian McAllister
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Thomas O. Ewing
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Goldbelt C6, LLC, Chesapeake, VA, United States
| | - Valerie Albrecht
- Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Valerie A. Stevens
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jasmine Padilla
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States
- ASRT Incorporated, Atlanta, GA, United States
| | - Dhwani Batra
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - J. Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - J. Kamile Rasheed
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Christopher A. Elkins
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joseph D. Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
21
|
Conwell M, Dooley J, Naughton PJ. Enterococcal biofilm - a nidus for antibiotic resistance transfer? J Appl Microbiol 2022; 132:3444-3460. [PMID: 34990042 PMCID: PMC9306868 DOI: 10.1111/jam.15441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Enterococci, important agents of hospital acquired infection, are listed on the WHO list of multi-drug resistant pathogens commonly encountered in hospital acquired infections are now of increasing importance, due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilm such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilm and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.
Collapse
Affiliation(s)
- M Conwell
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - Jsg Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| |
Collapse
|
22
|
Lisotto P, Couto N, Rosema S, Lokate M, Zhou X, Bathoorn E, Harmsen HJM, Friedrich AW, Rossen JWA, Chlebowicz-Fliss MA. Molecular Characterisation of Vancomycin-Resistant Enterococcus faecium Isolates Belonging to the Lineage ST117/CT24 Causing Hospital Outbreaks. Front Microbiol 2021; 12:728356. [PMID: 34646248 PMCID: PMC8503688 DOI: 10.3389/fmicb.2021.728356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm) is a successful nosocomial pathogen. The current molecular method recommended in the Netherlands for VREfm typing is based on core genome Multilocus sequence typing (cgMLST), however, the rapid emergence of specific VREfm lineages challenges distinguishing outbreak isolates solely based on their core genome. Here, we explored if a detailed molecular characterisation of mobile genetic elements (MGEs) and accessory genes could support and expand the current molecular typing of VREfm isolates sharing the same genetic background, enhancing the discriminatory power of the analysis. Materials/Methods: The genomes of 39 VREfm and three vancomycin-susceptible E. faecium (VSEfm) isolates belonging to ST117/CT24, as assessed by cgMLST, were retrospectively analysed. The isolates were collected from patients and environmental samples from 2011 to 2017, and their genomes were analysed using short-read sequencing. Pangenome analysis was performed on de novo assemblies, which were also screened for known predicted virulence factors, antimicrobial resistance genes, bacteriocins, and prophages. Two representative isolates were also sequenced using long-read sequencing, which allowed a detailed analysis of their plasmid content. Results: The cgMLST analysis showed that the isolates were closely related, with a minimal allelic difference of 10 between each cluster’s closest related isolates. The vanB-carrying transposon Tn1549 was present in all VREfm isolates. However, in our data, we observed independent acquisitions of this transposon. The pangenome analysis revealed differences in the accessory genes related to prophages and bacteriocins content, whilst a similar profile was observed for known predicted virulence and resistance genes. Conclusion: In the case of closely related isolates sharing a similar genetic background, a detailed analysis of MGEs and the integration point of the vanB-carrying transposon allow to increase the discriminatory power compared to the use of cgMLST alone. Thus, enabling the identification of epidemiological links amongst hospitalised patients.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.,IDbyDNA Inc., Salt Lake City, UT, United States
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
24
|
Mlaga KD, Garcia V, Colson P, Ruimy R, Rolain JM, Diene SM. Extensive Comparative Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR-Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium. Microorganisms 2021; 9:1118. [PMID: 34064241 PMCID: PMC8224324 DOI: 10.3390/microorganisms9061118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we performed a comparative genomic analysis of all available genomes of E. faecalis (n = 1591) and E. faecium (n = 1981) and investigated the association between the presence or absence of CRISPR-Cas systems, endonuclease/anti-endonuclease systems and the acquisition of antimicrobial resistance, especially vancomycin resistance genes. Most of the analysed Enterococci were isolated from humans and less than 14% of them were from foods and animals. We analysed and detected CRISPR-Cas systems in 75.36% of E. faecalis genomes and only 4.89% of E. faecium genomes with a significant difference (p-value < 10-5). We found a negative correlation between the number of CRISPR-Cas systems and genome size (r = -0.397, p-value < 10-5) and a positive correlation between the genome %GC content and the number of CRISPR-Cas systems (r = 0.215, p-value < 10-5). Our findings showed that the presence of the anti-endonuclease ardA gene may explain the decrease in the number of CRISPR-Cas systems in E. faecium, known to deactivate the endonucleases' protective activities and enable the E. faecium genome to be versatile in acquiring mobile genetic elements, including carriers of antimicrobial resistance genes, especially vanB. Most importantly, we observed that there was a direct association between the absence of CRISPR-Cas, the presence of the anti-CRISPR ardA gene and the acquisition of vancomycin resistance genes.
Collapse
Affiliation(s)
- Kodjovi D. Mlaga
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranee Infection, 13005 Marseille, France; (K.D.M.); (V.G.); (P.C.); (J.-M.R.)
| | - Vincent Garcia
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranee Infection, 13005 Marseille, France; (K.D.M.); (V.G.); (P.C.); (J.-M.R.)
| | - Philippe Colson
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranee Infection, 13005 Marseille, France; (K.D.M.); (V.G.); (P.C.); (J.-M.R.)
- IHU-Mediterranee Infection, Aix-Marseille University, 13005 Marseille, France
| | - Raymond Ruimy
- Department of Bacteriology at Nice Academic Hospital, Nice Medical University, 06003 Nice, France;
| | - Jean-Marc Rolain
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranee Infection, 13005 Marseille, France; (K.D.M.); (V.G.); (P.C.); (J.-M.R.)
- IHU-Mediterranee Infection, Aix-Marseille University, 13005 Marseille, France
| | - Seydina M. Diene
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranee Infection, 13005 Marseille, France; (K.D.M.); (V.G.); (P.C.); (J.-M.R.)
- IHU-Mediterranee Infection, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
25
|
Wagner TM, Janice J, Sivertsen A, Sjögren I, Sundsfjord A, Hegstad K. Alternative vanHAX promoters and increased vanA-plasmid copy number resurrect silenced glycopeptide resistance in Enterococcus faecium. J Antimicrob Chemother 2021; 76:876-882. [PMID: 33367710 PMCID: PMC7953315 DOI: 10.1093/jac/dkaa541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
Abstract
Background Vancomycin variable enterococci (VVE) are van-positive isolates with a susceptible phenotype that can convert to a resistant phenotype during vancomycin selection. Objectives To describe a vancomycin-susceptible vanA-PCR positive ST203 VVE Enterococcus faecium isolate (VVESwe-S) from a liver transplantation patient in Sweden which reverted to resistant (VVESwe-R) during in vitro vancomycin exposure. Methods WGS analysis revealed the genetic differences between the isolates. Expression of the van-operon was investigated by qPCR. Fitness and stability of the revertant were investigated by growth measurements, competition and serial transfer. Results The VVESwe-R isolate gained high-level vancomycin (MIC >256 mg/L) and teicoplanin resistance (MIC = 8 mg/L). VVESwe-S has a 5′-truncated vanR activator sequence and the VVESwe-R has in addition acquired a 44 bp deletion upstream of vanHAX in a region containing alternative putative constitutive promoters. In VVESwe-R the vanHAX-operon is constitutively expressed at a level comparable to the non-induced prototype E. faecium BM4147 strain. The vanHAX operon of VVESwe is located on an Inc18-like plasmid, which has a 3–4-fold higher copy number in VVESwe-R compared with VVESwe-S. Resistance has a low fitness cost and the vancomycin MIC of VVESwe-R decreased during in vitro serial culture without selection. The reduction in MIC was associated with a decreased vanA-plasmid copy number. Conclusions Our data support a mechanism by which vancomycin-susceptible VVE strains may revert to a resistant phenotype through the use of an alternative, constitutive, vanR-activator-independent promoter and a vanA-plasmid copy number increase.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Audun Sivertsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Ingegerd Sjögren
- Department of Clinical Microbiology and Infection Control, Hospital of Halland, Halmstad, Sweden
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| |
Collapse
|
26
|
Salvetti E, Campedelli I, Larini I, Conedera G, Torriani S. Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the lsaA Gene. Microorganisms 2021; 9:microorganisms9030491. [PMID: 33652718 PMCID: PMC7996808 DOI: 10.3390/microorganisms9030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
Leuconostoc spp. are environmental microorganisms commonly associated with fermented foods. Absence of antibiotic resistance (AR) in bacteria is a critical issue for global food safety. Herein, we updated the occurrence of AR genes in the Leuconostoc genus through in silico analyses of the genomes of 17 type strains. A total of 131 putative AR traits associated with the main clinically relevant antibiotics were detected. We found, for the first time, the lsaA gene in L. fallax ATCC 700006T and L. pseudomesenteroides NCDO 768T. Their amino acid sequences displayed high similarities (59.07% and 52.21%) with LsaA of Enterococcusfaecalis V583, involved in clindamycin (CLI) and quinupristin-dalfopristin (QUD) resistance. This trait has different distribution patterns in Leuconostoc nontype strains-i.e., L. pseudomesenteroides, L. lactis and L. falkenbergense isolates from fermented vegetables, cheeses, and starters. To better explore the role of lsaA, MIC for CLI and QUD were assessed in ATCC 700006T and NCDO 768T; both strains were resistant towards CLI, potentially linking lsaA to their resistant phenotype. Contrarily, NCDO 768T was sensitive towards QUD; however, expression of lsaA increased in presence of this antibiotic, indicating an active involvement of this trait and thus suggesting a revision of the QUD thresholds for this species.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | | | - Ilaria Larini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Giada Conedera
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
- Correspondence:
| |
Collapse
|
27
|
Freitas-Silva J, de Oliveira BFR, Vigoder FDM, Muricy G, Dobson ADW, Laport MS. Peeling the Layers Away: The Genomic Characterization of Bacillus pumilus 64-1, an Isolate With Antimicrobial Activity From the Marine Sponge Plakina cyanorosea (Porifera, Homoscleromorpha). Front Microbiol 2021; 11:592735. [PMID: 33488540 PMCID: PMC7820076 DOI: 10.3389/fmicb.2020.592735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Microbiology, University College Cork, Cork, Ireland
| | - Felipe de Mello Vigoder
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Min B, Yoo D, Lee Y, Seo M, Kim H. Complete Genomic Analysis of Enterococcus faecium Heat-Resistant Strain Developed by Two-Step Adaptation Laboratory Evolution Method. Front Bioeng Biotechnol 2020; 8:828. [PMID: 32793575 PMCID: PMC7391244 DOI: 10.3389/fbioe.2020.00828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Stress resistance is an important trait expected of lactic acid bacteria used in food manufacturing. Among the various sources of stress, high temperature is a key factor that interrupts bacterial growth. In this regards, constant efforts are made for the development of heat-resistant strains, but few studies were done accompanying genomic analysis to identify the causal factors of the resistance mechanisms. Furthermore, it is also thought that tolerance to multiple stresses are equally important. Herein, we isolated one Enterococcus faecium strain named BIOPOP-3 and completed a full-length genome sequence. Using this strain, a two-step adaptive laboratory evolution (ALE) method was applied to obtain a heat-resistant strain, BIOPOP-3 ALE. After sequencing the whole genome, we compared the two full-length sequences and identified one non-synonymous variant and four indel variants that could potentially confer heat resistance, which were technically validated by resequencing. We experimentally verified that the evolved strain was significantly enhanced in not only heat resistance but also acid and bile resistance. We demonstrated that the developed heat-resistant strain can be applied in animal feed manufacturing processes. The multi-stress-resistant BIOPOP-3 ALE strain developed in this study and the two-step ALE method are expected to be widely applied in industrial and academic fields. In addition, we expect that the identified variants which occurred specifically in heat-resistant strain will enhance molecular biological understanding and be broadly applied to the biological engineering field.
Collapse
Affiliation(s)
- Bonggyu Min
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Youngho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Minseok Seo
- Department of Computer Convergence Software, Korea University, Sejong, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.,C&K Genomics Inc., Seoul, South Korea
| |
Collapse
|
29
|
Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Comparative genomics of vancomycin-resistant Enterococcus spp. revealed common resistome determinants from hospital wastewater to aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137275. [PMID: 32109727 DOI: 10.1016/j.scitotenv.2020.137275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The rise of vancomycin-resistant Enterococcus spp. (VRE) has led to treatment challenges in hospital settings worldwide. Hospital wastewater (HW) might disseminate this threat to the aquatic environment. Thus, this study elucidates the VRE resistance quotient (RQ) of different environmental matrixes in wastewater and compares genomic determinants of VRE strains recovered from HW to water resources. Presumptive Enterococcus spp. and VRE were quantified and isolated using standard microbiological procedures. Fourteen VRE genomes were then sequenced using an Illumina HiSeq X™ Ten platform. Subsequently, VRE genomes were compared based on antibiotic resistance genes, plasmids, bacteriophages, insertion sequences, transposons, virulence and pathogenicity. Wastewater effluent showed the highest RQ among all sampled matrixes. The phylogeny of vancomycin-resistant E. faecalis (VREfs) and E. faecium (VREfm) revealed a tree structure based on their respective sequence type. A comparative genomic analysis of 14 genomes highlighted regions encoding phage protein, phage holin, phage integrase, integrase and transposase on both query genomes and the reference genome. Acquired resistance to vancomycin was conferred by vanA, vanN, vanL, vanG and the intrinsic resistance vanC operons. Plasmids were dominated by the presence of conserved areas of the replication initiating genes (rep). The Tn3-like and Tn917 transposons were present in all erythromycin-carrying erm(B) isolated VRE genomes. All VRE genomes expect one were putatively predicted as human pathogens with varying degrees of virulence. The presence of such resistant bacteria in African water resource is of great public health concern. It is, therefore, recommended that these bacteria be tracked and characterised from different environments to contribute to improved epidemiological containment action.
Collapse
Affiliation(s)
- Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology; University of South Africa, Johannesburg, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
30
|
Abstract
Enterococcus faecium is one of the most frequent nosocomial pathogens of hospital-acquired infections. E. faecium has gained resistance against most commonly available antibiotics, most notably, against ampicillin, gentamicin, and vancomycin, which renders infections difficult to treat. Many antibiotic resistance traits, in particular, vancomycin resistance, can be encoded in autonomous and extrachromosomal elements called plasmids. These sequences can be disseminated to other isolates by horizontal gene transfer and confer novel mechanisms to source specificity. In our study, we elucidated the total plasmid content, referred to as the plasmidome, of 1,644 E. faecium isolates by using short- and long-read whole-genome technologies with the combination of a machine-learning classifier. This was fundamental to investigate the full collection of plasmid sequences present in our collection (pan-plasmidome) and to observe the potential transfer of plasmid sequences between E. faecium hosts. We observed that E. faecium isolates from hospitalized patients carried a larger number of plasmid sequences compared to that from other sources, and they elucidated different configurations of plasmidome populations in the hospital environment. We assessed the contribution of different genomic components and observed that plasmid sequences have the highest contribution to source specificity. Our study suggests that E. faecium plasmids are regulated by complex ecological constraints rather than physical interaction between hosts. Enterococcus faecium is a gut commensal of humans and animals but is also listed on the WHO global priority list of multidrug-resistant pathogens. Many of its antibiotic resistance traits reside on plasmids and have the potential to be disseminated by horizontal gene transfer. Here, we present the first comprehensive population-wide analysis of the pan-plasmidome of a clinically important bacterium, by whole-genome sequence analysis of 1,644 isolates from hospital, commensal, and animal sources of E. faecium. Long-read sequencing on a selection of isolates resulted in the completion of 305 plasmids that exhibited high levels of sequence modularity. We further investigated the entirety of all plasmids of each isolate (plasmidome) using a combination of short-read sequencing and machine-learning classifiers. Clustering of the plasmid sequences unraveled different E. faecium populations with a clear association with hospitalized patient isolates, suggesting different optimal configurations of plasmids in the hospital environment. The characterization of these populations allowed us to identify common mechanisms of plasmid stabilization such as toxin-antitoxin systems and genes exclusively present in particular plasmidome populations exemplified by copper resistance, phosphotransferase systems, or bacteriocin genes potentially involved in niche adaptation. Based on the distribution of k-mer distances between isolates, we concluded that plasmidomes rather than chromosomes are most informative for source specificity of E. faecium.
Collapse
|
31
|
Shanmugakani RK, Fujiya Y, Akeda Y, Hamaguchi S, Hamada S, Tomono K. Rapid multiplex detection of the resistance genes mecA, vanA and vanB from Gram-positive cocci-positive blood cultures using a PCR-dipstick technique. J Med Microbiol 2020; 69:249-255. [PMID: 32003712 DOI: 10.1099/jmm.0.001159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Among the causative agents of bloodstream infections (BSIs), methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) are the key causative pathogens. Their rapid detection directly from Gram-positive cocci-positive blood culture specimens will promote timely treatment and help to implement effective infection control measures.Aim. We aim to develop a PCR-dipstick technique for the rapid detection of MRSA and VRE directly from positive blood culture specimens.Methodology. PCR-dipstick is a PCR-based multiplex detection technique where DNA-DNA hybridization is employed, and the results are interpreted with the naked eye. It was designed to target three drug resistance genes: mecA in MRSA and vanA/vanB in VRE from positive blood culture specimens. A total of 120 clinical isolates were used to evaluate the sensitivity and specificity of PCR-dipstick. Then, PCR-dipstick was examined for MRSA and VRE detection directly from positive blood cultures.Results. PCR-dipstick showed 100 % sensitivity and specificity in detecting mecA, vanA and vanB genes directly from bacterial colonies in comparison with multiplex PCR for genomic DNA followed by agarose gel electrophoresis. Further, it could differentially detect multiple resistant genes in pooled bacterial colonies (n=10). Ultimately, PCR-dipstick could detect MRSA and VRE in positive blood cultures in ~3 h.Conclusion. The results of the current study substantiate that PCR-dipstick can be used as an efficient detection system for MRSA and VRE directly from Gram-positive cocci-positive blood cultures. Its affordability and rapidity indicate that PCR-dipstick can be an effective tool for controlling nosocomial pathogens.
Collapse
Affiliation(s)
- Rathina Kumar Shanmugakani
- Present address: College of Human Ecology, Cornell University, Ithaca, USA.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshihiro Fujiya
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeto Hamaguchi
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Kim YB, Seo KW, Shim JB, Son SH, Noh EB, Lee YJ. Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. Poult Sci 2020; 98:5892-5899. [PMID: 31180127 DOI: 10.3382/ps/pez288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) are ubiquitous intestinal bacteria in humans and animals that can easily acquire antimicrobial resistance, which allows them to have roles as antimicrobial resistance indicators. In addition, layer parent stock produces thousands of eggs for the production of commercial laying hens and can transfer a variety of viral and bacterial agents to chicks. The objective of this study was to determine the prevalence and characteristics of antimicrobial-resistant E. faecalis and E. faecium isolated in the layer parent stock level of the egg-layer operating system in South Korea. A total of 129 E. faecalis and 166 E. faecium isolates from 74 flocks of 30 layer parent stock were tested for resistance in this study. The prevalence of doxycycline- (51.9%), erythromycin- (53.5%), high-level gentamicin- (13.2%), high-level kanamycin- (31.0%), high-level streptomycin- (30.2%), and tetracycline- (64.3%) resistant E. faecalis isolates were higher than those for E. faecium isolates (P < 0.05). The ermB gene was detected in 66 (95.7%) erythromycin-resistant E. faecalis isolates, which was higher than that of 32 (71.7%) erythromycin-resistant E. faecium isolates. Twenty-one high-level gentamicin-resistant Enterococcus spp. (17 E. faecalis and 4 E. faecium) carried at least one aminoglycoside-modifying enzyme gene, aac(6')Ie-aph(2')-Ia or ant(6)-Ia. Fourteen isolates that harbored both aac(6')Ie-aph(2')-Ia and ant(6)-Ia exhibited pattern A with IS256 at both ends. Ten high-level ciprofloxacin-resistant Enterococcus spp. (8 E. faecalis and 2 E. faecium) showed amino acid changes from serine to isoleucine at codons 83 in gyrA, and 80 in parC. Also, the virulence genes ace, asa1, efaA, and gelE were detected in this study. To the best of our knowledge, this is the first study to examine the prevalence and characteristics of antimicrobial-resistant E. faecalis and E. faecium isolates in the layer parent stock. Our findings support the need for a surveillance program to monitor the emergence of antimicrobial-resistant E. faecalis and E. faecium in layer operating system.
Collapse
Affiliation(s)
- Yeong Bin Kim
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Bo Shim
- Korean Poultry TS Co., Ltd., Incheon 17415, Republic of Korea
| | - Se Hyun Son
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Monteiro da Silva BN, Faria AR, Souza SDSR, Colodette SS, Morais JM, Teixeira LM, Merquior VLC. Expression of VanA-type vancomycin resistance in a clinical isolate of Enterococcus faecium showing insertion of IS19 in the vanS gene. Int J Antimicrob Agents 2020; 55:105897. [PMID: 31931148 DOI: 10.1016/j.ijantimicag.2020.105897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/03/2019] [Accepted: 01/04/2020] [Indexed: 11/25/2022]
Abstract
The characteristics of an unusual clinical isolate of Enterococcus faecium (CL-6729) showing insertion of IS19 (also known as ISEfm1) in the vanS gene while maintaining a constitutive VanA phenotype are described. This isolate was obtained from a hospital-acquired urinary tract infection, showed multidrug resistance by antimicrobial susceptibility testing, and belongs to ST78 based on multilocus sequence typing (MLST). Except for the vanS gene, all the other genes of the vanA gene cluster were intact according to conventional PCR, overlapping PCR and genome sequencing. By quantitative reverse transcription PCR (RT-qPCR), the isolate showed similar expression of the vanA, vanR and vanS genes in the presence and absence of vancomycin. The results suggest that insertion of IS19 in the vanS gene may be associated with constitutive expression of resistance to vancomycin in clinical isolate CL-6729, either by not impairing VanS activity or by inducing the emergence of another pathway that acts on vanA expression, which still needs to be fully investigated.
Collapse
Affiliation(s)
- Beatriz Nascimento Monteiro da Silva
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida Vinte e Oito de Setembro, 87 fundos / 3° andar - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Adriana Rocha Faria
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida Vinte e Oito de Setembro, 87 fundos / 3° andar - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Stephanie da Silva Rodrigues Souza
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida Vinte e Oito de Setembro, 87 fundos / 3° andar - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Sabrina Santos Colodette
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida Vinte e Oito de Setembro, 87 fundos / 3° andar - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jaqueline Martins Morais
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida Vinte e Oito de Setembro, 87 fundos / 3° andar - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vânia Lúcia Carreira Merquior
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida Vinte e Oito de Setembro, 87 fundos / 3° andar - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
34
|
Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. mSphere 2019; 4:4/4/e00464-19. [PMID: 31341074 PMCID: PMC6656873 DOI: 10.1128/msphere.00464-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis. We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids. CRISPR-Cas systems are barriers to horizontal gene transfer (HGT) in bacteria. Little is known about CRISPR-Cas interactions with conjugative plasmids, and studies investigating CRISPR-Cas/plasmid interactions in in vivo models relevant to infectious disease are lacking. These are significant gaps in knowledge because conjugative plasmids disseminate antibiotic resistance genes among pathogens in vivo, and it is essential to identify strategies to reduce the spread of these elements. We use enterococci as models to understand the interactions of CRISPR-Cas with conjugative plasmids. Enterococcus faecalis is a native colonizer of the mammalian intestine and harbors pheromone-responsive plasmids (PRPs). PRPs mediate inter- and intraspecies transfer of antibiotic resistance genes. We assessed E. faecalis CRISPR-Cas anti-PRP activity in the mouse intestine and under different in vitro conditions. We observed striking differences in CRISPR-Cas efficiency in vitro versus in vivo. With few exceptions, CRISPR-Cas blocked intestinal PRP dissemination, while in vitro, the PRP frequently escaped CRISPR-Cas defense. Our results further the understanding of CRISPR-Cas biology by demonstrating that standard in vitro experiments do not adequately model the in vivo antiplasmid activity of CRISPR-Cas. Additionally, our work identifies several variables that impact the apparent in vitro antiplasmid activity of CRISPR-Cas, including planktonic versus biofilm settings, different donor-to-recipient ratios, production of a plasmid-encoded bacteriocin, and the time point at which matings are sampled. Our results are clinically significant because they demonstrate that barriers to HGT encoded by normal (healthy) human microbiota can have significant impacts on in vivo antibiotic resistance dissemination. IMPORTANCE CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis. We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.
Collapse
|
35
|
Kohler V, Goessweiner-Mohr N, Aufschnaiter A, Fercher C, Probst I, Pavkov-Keller T, Hunger K, Wolinski H, Büttner S, Grohmann E, Keller W. TraN: A novel repressor of an Enterococcus conjugative type IV secretion system. Nucleic Acids Res 2019; 46:9201-9219. [PMID: 30060171 PMCID: PMC6158623 DOI: 10.1093/nar/gky671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022] Open
Abstract
The dissemination of multi-resistant bacteria represents an enormous burden on modern healthcare. Plasmid-borne conjugative transfer is the most prevalent mechanism, requiring a type IV secretion system that enables bacteria to spread beneficial traits, such as resistance to last-line antibiotics, among different genera. Inc18 plasmids, like the Gram-positive broad host-range plasmid pIP501, are substantially involved in propagation of vancomycin resistance from Enterococci to methicillin-resistant strains of Staphylococcus aureus. Here, we identified the small cytosolic protein TraN as a repressor of the pIP501-encoded conjugative transfer system, since deletion of traN resulted in upregulation of transfer factors, leading to highly enhanced conjugative transfer. Furthermore, we report the complex structure of TraN with DNA and define the exact sequence of its binding motif. Targeting this protein–DNA interaction might represent a novel therapeutic approach against the spreading of antibiotic resistances.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Nikolaus Goessweiner-Mohr
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,Institute of Biophysics, Johannes Kepler University, Linz 4020, Austria
| | | | - Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ines Probst
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg 79106, Germany
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Kristin Hunger
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg 79106, Germany.,Life Sciences and Technology, Beuth University of Applied Sciences, Berlin 13353, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Austria
| |
Collapse
|
36
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
|
37
|
Chajęcka-Wierzchowska W, Zadernowska A, Zarzecka U, Zakrzewski A, Gajewska J. Enterococci from ready-to-eat food - horizontal gene transfer of antibiotic resistance genes and genotypic characterization by PCR melting profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1172-1179. [PMID: 30047163 DOI: 10.1002/jsfa.9285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the possibility of the horizontal transfer of genes encoding resistance to aminoglycosides (aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(4')-Ia and ant(6')-Ia), tetracyclines (tetM, tetL, tetK, tetO and tetW), and macrolides (ermA, ermB, ermC, msrC, mefAB) in Enterococcus strains isolated from ready-to-eat dishes purchased in bars and restaurants in Olsztyn, Poland. RESULTS It was found that 74% of tested strains were able to conjugal transfer at least one of the antibiotic resistance genes. Transfer of resistance to tetracyclines in strains was observed with a frequency ranging from 1.3 × 10-6 to 8.7 × 10-7 transconjugants/donor. The int gene and the tetM gene were transferred simultaneously, which indicated that a transposon of the Tn916/Tn1545 also participated in the conjugation process. The frequency of transferring genes of resistance to macrolides ranged from 3.2 × 10-6 to 2.4 × 10-8 transconjugants/donor. The ermB gene was transferred the most frequently. The frequency of acquisition of genes encoding aminoglycosides in strains isolated from food ranged from 1.7 × 10-6 to 3,2 × 10-8 transconjugants/donor. Transfer of the aac(6')-Ie-aph(2″) gene was the most frequent. In all reactions, the clonal character of transconjugants and recipients was confirmed by the polymerase chain reaction melting profile (PCR MP) method, which is an alternative to the pulsed field gel electrophoresis (PFGE) method. CONCLUSION The findings of this study indicate that Enterococcus isolated from ready-to-eat food is able to horizontally transfer genes encoding various antibiotic resistance mechanisms. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Arkadiusz Zakrzewski
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Gajewska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
38
|
Abstract
Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, Enterococcus is an important opportunistic pathogen, especially the species E. faecalis and E. faecium, causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted. The molecular epidemiology and the population structure of E. faecalis and E. faecium isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.
Collapse
|
39
|
Morroni G, Brenciani A, Litta-Mulondo A, Vignaroli C, Mangiaterra G, Fioriti S, Citterio B, Cirioni O, Giovanetti E, Biavasco F. Characterization of a new transferable MDR plasmid carrying thepbp5gene from a clade B commensalEnterococcus faecium. J Antimicrob Chemother 2019; 74:843-850. [DOI: 10.1093/jac/dky549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Gianluca Morroni
- Infectious Disease Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Alice Litta-Mulondo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Fioriti
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Science, Biotechnology Section, University of Urbino ‘Carlo Bo’, Urbino, Italy
| | - Oscar Cirioni
- Infectious Disease Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
40
|
Draft Genome Sequence of Enterococcus faecium CL-6729, a Clinical Isolate Showing Constitutive Vancomycin Resistance. Microbiol Resour Announc 2018; 7:MRA00888-18. [PMID: 30533817 PMCID: PMC6256616 DOI: 10.1128/mra.00888-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome sequence of an unusual Enterococcus faecium isolate (CL-6729) showing constitutive expression of the VanA type of vancomycin resistance. The isolate was recovered from a patient with a nosocomial urinary tract infection in Brazil. Here, we present the draft genome sequence of an unusual Enterococcus faecium isolate (CL-6729) showing constitutive expression of the VanA type of vancomycin resistance. The isolate was recovered from a patient with a nosocomial urinary tract infection in Brazil.
Collapse
|
41
|
Melegh S, Nyul A, Kovács K, Kovács T, Ghidán Á, Dombrádi Z, Szabó J, Berta B, Lesinszki V, Pászti J, Tóth Á, Mestyán G. Dissemination of VanA-TypeEnterococcus faeciumIsolates in Hungary. Microb Drug Resist 2018; 24:1376-1390. [DOI: 10.1089/mdr.2017.0296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Szilvia Melegh
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Adrienn Nyul
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | | | - Ágoston Ghidán
- Department of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Dombrádi
- Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary
| | | | | | - Judit Pászti
- National Public Health Institute, Budapest, Hungary
| | - Ákos Tóth
- National Public Health Institute, Budapest, Hungary
| | - Gyula Mestyán
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| |
Collapse
|
42
|
Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018; 99:89-98. [PMID: 30253132 DOI: 10.1016/j.plasmid.2018.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci.
Collapse
|
43
|
Amachawadi RG, Giok F, Shi X, Soto J, Narayanan SK, Tokach MD, Apley MD, Nagaraja TG. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine. J Anim Sci 2018; 96:912-920. [PMID: 29584914 DOI: 10.1093/jas/sky056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 01/07/2023] Open
Abstract
Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E. faecium strains were positive for any of the virulence genes tested. The clonal relationships among the 22 E. faecium strains were determined by pulsed-field gel electrophoresis (PFGE) typing. A total of 10 PFGE patterns were observed with 22 strains and a few of the strains from different probiotic products had identical (100% Dice similarity) PFGE patterns. In conclusion, the E. faecium strains in a few commercial probiotics exhibited AMR to medically-important antimicrobials, but none contained virulence genes.
Collapse
Affiliation(s)
| | - Felicia Giok
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS
| | - Xiaorong Shi
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS
| | - Jose Soto
- Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | | | - Mike D Tokach
- Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Mike D Apley
- Departments of Clinical Sciences, Kansas State University, Manhattan, KS
| | - T G Nagaraja
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS
| |
Collapse
|
44
|
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O, Shouche YS, Pawar SP, Dhotre DP. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018; 19:652. [PMID: 30180794 PMCID: PMC6122445 DOI: 10.1186/s12864-018-5043-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. RESULTS E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. CONCLUSIONS Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.
Collapse
Affiliation(s)
- Vikas C. Ghattargi
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Meghana A. Gaikwad
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Bharati S. Meti
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Yogesh S. Nimonkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Kunal Dixit
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Shrikant P. Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Dhiraj P. Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| |
Collapse
|
45
|
Hasan KA, Ali SA, Rehman M, Bin-Asif H, Zahid S. The unravelled Enterococcus faecalis zoonotic superbugs: Emerging multiple resistant and virulent lineages isolated from poultry environment. Zoonoses Public Health 2018; 65:921-935. [PMID: 30105884 DOI: 10.1111/zph.12512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the zoonotic potential by virtue of phylogenetic analysis, virulence and resistance gene profiles of Enterococcus faecalis originating from poultry environment. The ERIC, BOX and RAPD PCR analysis showed the clustering of E. faecalis strains (n = 74) into five groups (G1-G5) and fifteen sub-clusters (B1-B15), which share 50%-80% similarities with ATCC E. faecalis and clinical strains of human infection. E. faecalis strains harboured seven enterocins genes including ent1097 (85%), entB (84%), enterolysinA (51%), entSEK4 (51%), entL50 (31%), entA (25.7%) and ent1071 (14.9%). The highest prevalence of gelE-sprE (90%), lip-fl (90%) followed by cylL (62%), hyl (60%), katA (16%) and cylA (5.4%) was observed in poultry isolates. The fsr operon and gelE-sprE was co-associated in 66.2% strains. E. faecalis also harboured biofilm and endocarditis-associated genes, including efaAfs (97%), ebp-pilli (ebpABC and srtC 69.9%-80%), asa1 (71%), agg (55%), ace (54%) and esp-Tim (3%). Despite all found sensitive to vancomycin, 98.6% strains were multi-drug resistant to five to twelve tested antimicrobials. An increased-level of resistance (≥32 μg/ml) was observed to ampicillin (8.1%), meropenem (21.6%), chloramphenicol (73.4%), erythromycin (90.5%), tetracycline (100%) and high-level resistance to kanamycin (79.7%) and gentamicin (52.7%). The multi-drug resistant E. faecalis (MDRe.f) were carried pbp4 (90%), tetL (90%), tetM (70%), ermB (81%), cat (52.7%), acc6-aph2 (58.1%), aaph(3)-III (49.9%), gyrA (97%) and parC (98%) genes. Moreover, these MDRe.f were also harboured, hospital-associated marker IS16 (58%) and pheromone responsive genes, that is ccf (88%), cpd (74%), cob (62%) and eep (66%). Thus, regardless of the distinct phylogenetic background of E. faecalis of poultry origin, ATCC E. faecalis and clinical strains of human origin, we found major similarities in virulence, resistance gene profiles and mobile genetic elements (IS16 and pheromone responsive plasmids), supporting the zoonotic/reverse zoonotic risk associated with this organism.
Collapse
Affiliation(s)
- Khwaja A Hasan
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Syed A Ali
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Marium Rehman
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Hassaan Bin-Asif
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sindhu Zahid
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
46
|
Chen Y, Hammer EE, Richards VP. Phylogenetic signature of lateral exchange of genes for antibiotic production and resistance among bacteria highlights a pattern of global transmission of pathogens between humans and livestock. Mol Phylogenet Evol 2018; 125:255-264. [DOI: 10.1016/j.ympev.2018.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
|
47
|
Kohler V, Vaishampayan A, Grohmann E. Broad-host-range Inc18 plasmids: Occurrence, spread and transfer mechanisms. Plasmid 2018; 99:11-21. [PMID: 29932966 DOI: 10.1016/j.plasmid.2018.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022]
Abstract
Conjugative plasmid transfer is one of the major mechanisms responsible for the spread of antibiotic resistance and virulence genes. The incompatibility (Inc) 18 group of plasmids is a family of plasmids replicating by the theta-mechanism, whose members have been detected frequently in enterococci and streptococci. Inc18 plasmids encode a variety of antibiotic resistances, including resistance to vancomycin, chloramphenicol and the macrolide-lincosamide-streptogramine (MLS) group of antibiotics. These plasmids comprising insertions of Tn1546 were demonstrated to be responsible for the transfer of vancomycin resistance encoded by the vanA gene from vancomycin resistant enterococci (VRE) to methicillin resistant Staphylococcus aureus (MRSA). Thereby vancomycin resistant S. aureus (VRSA) were generated, which are serious multi-resistant pathogens challenging the health care system. Inc18 plasmids are widespread in the clinic and frequently have been detected in the environment, especially in domestic animals and wastewater. pIP501 is one of the best-characterized conjugative Inc18 plasmids. It was originally isolated from a clinical Streptococcus agalactiae strain and is, due to its small size and simplicity, a model to study conjugative plasmid transfer in Gram-positive bacteria. Here, we report on the occurrence and spread of Inc18-type plasmids in the clinic and in different environments as well as on the exchange of the plasmids among them. In addition, we discuss molecular details on the transfer mechanism of Inc18 plasmids and its regulation, as exemplified by the model plasmid pIP501. We finish with an outlook on promising approaches on how to reduce the emerging spread of antibiotic resistances.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, D-13347 Berlin, Germany
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, D-13347 Berlin, Germany.
| |
Collapse
|
48
|
Genomic and physiological analyses of an indigenous strain, Enterococcus faecium 17OM39. Funct Integr Genomics 2018; 18:385-399. [PMID: 29556852 DOI: 10.1007/s10142-018-0596-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 12/30/2022]
Abstract
The human gut microbiome plays a crucial role in human health and efforts need to be done for cultivation and characterisation of bacteria with potential health benefits. Here, we isolated a bacterium from a healthy Indian adult faeces and investigated its potential as probiotic. The cultured bacterial strain 17OM39 was identified as Enterococcus faecium by 16S rRNA gene sequencing. The strain 17OM39 exhibited tolerance to acidic pH, showed antimicrobial activity and displayed strong cell surface traits such as hydrophobicity and autoaggregation capacity. The strain was able to tolerate bile salts and showed bile salt hydrolytic (BSH) activity, exopolysaccharide production and adherence to human HT-29 cell line. Importantly, partial haemolytic activity was detected and the strain was susceptible to the human serum. Genomics investigation of strain 17OM39 revealed the presence of diverse genes encoding for proteolytic enzymes, stress response systems and the ability to produce essential amino acids, vitamins and antimicrobial compound Bacteriocin-A. No virulence factors and plasmids were found in this genome of the strain 17OM39. Collectively, these physiological and genomic features of 17OM39 confirm the potential of this strain as a candidate probiotic.
Collapse
|
49
|
Suriyanarayanan T, Qingsong L, Kwang LT, Mun LY, Truong T, Seneviratne CJ. Quantitative Proteomics of Strong and Weak Biofilm Formers of Enterococcus faecalis Reveals Novel Regulators of Biofilm Formation. Mol Cell Proteomics 2018; 17:643-654. [PMID: 29358339 DOI: 10.1074/mcp.ra117.000461] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a bacterial pathogen associated with both endodontic and systemic infections. The biofilm formation ability of E. faecalis plays a key role in its virulence and drug resistance attributes. The formation of E. faecalis biofilms on implanted medical devices often results in treatment failure. In the present study, we report protein markers associated with the biofilm formation ability of E. faecalis using iTRAQ-based quantitative proteomics approach. In order to elucidate the biofilm-associated protein markers, we investigated the proteome of strong and weak biofilm-forming E. faecalis clinical isolates in comparison with standard American Type Culture Collection (ATCC) control strains. Comparison of E. faecalis strong and weak biofilm-forming clinical isolates with ATCC control strains showed that proteins associated with shikimate kinase pathway and sulfate transport were up-regulated in the strong biofilm former, while proteins associated with secondary metabolites, cofactor biosynthesis, and tetrahydrofolate biosynthesis were down-regulated. In the weak biofilm former, proteins associated with nucleoside and nucleotide biosynthesis were up-regulated, whereas proteins associated with sulfate and sugar transport were down-regulated. Further pathway and gene ontology analyses revealed that the major differences in biofilm formation arise from differences in metabolic activity levels of the strong and weak biofilm formers, with higher levels of metabolic activity observed in the weak biofilm former. The differences in metabolic activity could therefore be a major determinant of the biofilm ability of E. faecalis The new markers identified from this study can be further characterized in order to understand their exact role in E. faecalis biofilm formation ability. This, in turn, can lead to numerous therapeutic benefits in the treatment of this oral and systemic pathogen. The data has been deposited to the ProteomeXchange with identifier PXD006542.
Collapse
Affiliation(s)
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lim Teck Kwang
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lee Yew Mun
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Thuyen Truong
- From the Oral Sciences, Faculty of Dentistry, National University of Singapore
| | | |
Collapse
|
50
|
Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 2017; 41:76-82. [PMID: 29227922 DOI: 10.1016/j.mib.2017.11.030] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
Abstract
Enterococci are long-standing members of the human microbiome and they are also widely distributed in nature. However, with the surge of antibiotic-resistance in recent decades, two enterococcal species (Enterococcus faecalis and Enterococcus faecium) have emerged to become significant nosocomial pathogens, acquiring extensive antibiotic resistance. In this review, we summarize what is known about the evolution of virulence in E. faecium, highlighting a specific clone of E. faecium called ST796 that has emerged recently and spread globally.
Collapse
Affiliation(s)
- Wei Gao
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|