1
|
Liu Z, Pang J, Li Y, Wei D, Yang J, Wang X, Luo Y. Catalytic selectivity and evolution of cytochrome P450 enzymes involved in monoterpene indole alkaloids biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14515. [PMID: 39252390 DOI: 10.1111/ppl.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 enzyme (CYP)-catalyzed functional group transformations are pivotal in the biosynthesis of metabolic intermediates and products, as exemplified by the CYP-catalyzed C7-hydroxylation and the subsequent C7-C8 bond cleavage reaction responsible for the biosynthesis of the well-known antitumor monoterpene indole alkaloid (MIA) camptothecin. To determine the key amino acid residues responsible for the catalytic selectivity of the CYPs involved in MIA biosynthesis, we characterized the enzymes CYP72A728 and CYP72A729 as stereoselective 7-deoxyloganic acid 7-hydroxylases (7DLHs). We then conducted a comparative analysis of the amino acid sequences and the predicted structures of the CYP72A homologs involved in camptothecin biosynthesis, as well as those of the CYP72A homologs implicated in the pharmaceutically significant MIAs biosynthesis in Catharanthus roseus. The crucial amino acid residues for the catalytic selectivity of the CYP72A-catalyzed reactions were identified through fragmental and individual residue replacement, catalytic activity assays, molecular docking, and molecular dynamic simulations analysis. The fragments 1 and 3 of CYP72A565 were crucial for its C7-hydroxylation and C7-C8 bond cleavage activities. Mutating fragments 1 and 2 of CYP72A565 transformed the bifunctional CYP72A565 into a monofunctional 7DLH. Evolutionary analysis of the CYP72A homologs suggested that the bifunctional CYP72A in MIA-producing plants may have evolved into a monofunctional CYP72A. The gene pairs CYP72A728-CYP72A610 and CYP72A729-CYP72A565 may have originated from a whole genome duplication event. This study provides a molecular basis for the CYP72A-catalyzed hydroxylation and C-C bond cleavage activities of CYP72A565, as well as evolutionary insights of CYP72A homologs involved in MIAs biosynthesis.
Collapse
Affiliation(s)
- Zhan Liu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Pang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daijing Wei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinggang Luo
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
2
|
El-Hady NAAA, ElSayed AI, Wadan KM, El-Saadany SS, El-Sayed ASA. Bioprocessing of camptothecin from Alternaria brassicicola, an endophyte of Catharanthus roseus, with a strong antiproliferative activity and inhibition to Topoisomerases. Microb Cell Fact 2024; 23:214. [PMID: 39060918 PMCID: PMC11282713 DOI: 10.1186/s12934-024-02471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Suppression of fungal camptothecin (CPT) biosynthesis with the preservation and successive subculturing is the challenge that impedes fungi from the industrial application, so, screening for a novel fungal isolate with a conceivable stable producing potency of CPT was the main objective of this work. Catharanthus roseus with diverse contents of bioactive metabolites could have a plethora of novel endophytes with unique metabolic properties. Among the endophytes of C. roseus, Alternaria brassicicola EFBL-NV OR131587.1 was the highest CPT producer (96.5 μg/L). The structural identity of the putative CPT was verified by HPLC, FTIR, HNMR and LC-MS/MS, with a molecular mass 349 m/z, and molecular fragmentation patterns that typically identical to the authentic one. The purified A. brassicicola CPT has a strong antiproliferative activity towards UO-31 (0.75 μM) and MCF7 (3.2 μM), with selectivity index 30.8, and 7.1, respectively, in addition to resilient activity to inhibit Topo II (IC50 value 0.26 nM) than Topo 1 (IC50 value 3.2 nM). The purified CPT combat the wound healing of UO-31 cells by ~ 52%, stops their matrix formation, cell migration and metastasis. The purified CPT arrest the cellular division of the UO-31 at the S-phase, and inducing their cellular apoptosis by ~ 20.4 folds, compared to the control cells. Upon bioprocessing with the surface response methodology, the CPT yield by A. brassicicola was improved by ~ 3.3 folds, compared to control. The metabolic potency of synthesis of CPT by A. brassicicola was attenuated with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by the 6th month of storage and 6th generation. Practically, the CPT productivity of the attenuated A. brassicicola was restored by addition of 1% surface sterilized leaves of C. roseus, ensuring the eliciting of cryptic gene cluster of A. brassicicola CPT via the plant microbiome-A. brassicicola interactions. So, for the first time, a novel endophytic isolate A. brassicicola, from C. roseus, was explored to have a relatively stable CPT biosynthetic machinery, with an affordable feasibility to restore their CPT productivity using C. roseus microbiome, in addition to the unique affinity of the extracted CPT to inhibit Topoisomerase I and II.
Collapse
Affiliation(s)
- Nouran A A Abd El-Hady
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khalid M Wadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Sayed S El-Saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Zhou P, Dang J, Jiang Z, Dai S, Qu C, Wu Q. Transcriptome and metabolome analysis revealed the dynamic change of bioactive compounds of Fructus Ligustri Lucidi. BMC PLANT BIOLOGY 2024; 24:489. [PMID: 38825671 PMCID: PMC11145772 DOI: 10.1186/s12870-024-05096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.
Collapse
Affiliation(s)
- Peina Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Jingjie Dang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Zheng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Shilin Dai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Cheng Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Cuello C, Jansen HJ, Abdallah C, Zamar Mbadinga DL, Birer Williams C, Durand M, Oudin A, Papon N, Giglioli-Guivarc'h N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism. Heliyon 2024; 10:e28078. [PMID: 38533072 PMCID: PMC10963385 DOI: 10.1016/j.heliyon.2024.e28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Hans J. Jansen
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Cécile Abdallah
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | | | - Ron P. Dirks
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
5
|
Jamal QMS, Ahmad V. Identification of Metabolites from Catharanthus roseus Leaves and Stem Extract, and In Vitro and In Silico Antibacterial Activity against Food Pathogens. Pharmaceuticals (Basel) 2024; 17:450. [PMID: 38675411 PMCID: PMC11054124 DOI: 10.3390/ph17040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The plant produced powerful secondary metabolites and showed strong antibacterial activities against food-spoiling bacterial pathogens. The present study aimed to evaluate antibacterial activities and to identify metabolites from the leaves and stems of Catharanthus roseus using NMR spectroscopy. The major metabolites likely to be observed in aqueous extraction were 2,3-butanediol, quinic acids, vindoline, chlorogenic acids, vindolinine, secologanin, and quercetin in the leaf and stem of the Catharanthus roseus. The aqueous extracts from the leaves and stems of this plant have been observed to be most effective against food spoilage bacterial strains, followed by methanol and hexane. However, leaf extract was observed to be most significant in terms of the content and potency of metabolites. The minimum inhibitory concentration (20 µg/mL) and bactericidal concentrations (35 g/mL) of leaf extract were observed to be significant as compared to the ampicillin. Molecular docking showed that chlorogenic acid and vindolinine strongly interacted with the bacterial penicillin-binding protein. The docking energies of chlorogenic acid and vindolinine also indicated that these could be used as food preservatives. Therefore, the observed metabolite could be utilized as a potent antibacterial compound for food preservation or to treat their illness, and further research is needed to perform.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
6
|
El-Sayed ASA, ElSayed AI, Wadan KM, El-Saadany SS, Abd El-Hady NAA. Camptothecin bioprocessing from Aspergillus terreus, an endophyte of Catharanthus roseus: antiproliferative activity, topoisomerase inhibition and cell cycle analysis. Microb Cell Fact 2024; 23:15. [PMID: 38183118 PMCID: PMC10768243 DOI: 10.1186/s12934-023-02270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 μg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 μM) and UO-31 (2.2 μM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 μg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khalid M Wadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Sayed S El-Saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Nouran A A Abd El-Hady
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Parveen S, Maurya N, Meena A, Luqman S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr Top Med Chem 2024; 24:343-363. [PMID: 38031797 DOI: 10.2174/0115680266270796231109171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. AIM AND OBJECTIVE This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. METHODOLOGY A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. RESULTS Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anti-cancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-κB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. CONCLUSION Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
Collapse
Affiliation(s)
- Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nidhi Maurya
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Guedes JG, Ribeiro R, Carqueijeiro I, Guimarães AL, Bispo C, Archer J, Azevedo H, Fonseca NA, Sottomayor M. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:274-299. [PMID: 37804484 PMCID: PMC10735432 DOI: 10.1093/jxb/erad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rogério Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês Carqueijeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ana Luísa Guimarães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno A Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Rady AM, El-Sayed ASA, El-Baz AF, Abdel-Fattah GG, Magdeldin S, Ahmed E, Osama A, Hassanein SE, Saed H, Yassin M. Proteomics and metabolomics analyses of camptothecin-producing Aspergillus terreus reveal the integration of PH domain-containing proteins and peptidylprolyl cis/trans isomerase in restoring the camptothecin biosynthesis. Microbiol Spectr 2023; 11:e0228123. [PMID: 37855596 PMCID: PMC10714794 DOI: 10.1128/spectrum.02281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.
Collapse
Affiliation(s)
- Amgad M. Rady
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Ashraf S. A. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ashraf F. El-Baz
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | | | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital, Cairo, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital, Cairo, Egypt
| | - Sameh E. Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Cairo, Egypt
| | - Hend Saed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Rao P, Yaroslavsky MA, Miller JC, Schuler MA. Catalytic Site Constraints in the P450s Mediating Loganic Acid (7DLH) and Secologanic Acid Synthesis (SLAS) in Camptotheca. Biochemistry 2023; 62:2763-2774. [PMID: 37656055 DOI: 10.1021/acs.biochem.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Terpene indole alkaloids (TIAs) are plant-derived natural products synthesized in low levels in medicinal plants such as Catharanthus roseus and Camptotheca acuminata. TIA pathways species utilize several CYP72A subfamily members to form loganic acid from 7-deoxyloganic acid (a simple hydroxylation) as well as secologanin and secologanic acid from loganin and loganic acid (a C-C bond scission). Divergences in the specificities of these P450s have allowed Camptotheca secologanic acid synthases (SLASs) to become bifunctional enzymes capable of performing both reactions. In contrast, Catharanthus 7-deoxyloganic acid hydroxylase (7DLH) and secologanin synthase (SLS) have remained monofunctional enzymes capable either of monooxygenation or C-C bond scission. Our in vitro reconstitutions have now demonstrated that Camptotheca also contains a monofunctional 7DLH capable only of hydroxylating 7-deoxyloganic acid. Mutageneses aimed at evaluating residues important for the tight specificity of Camptotheca 7DLH (CYP72A729) and the broad specificity of SLAS (CYP72A564) have identified several residues where reciprocal switches substantially affect their activities: Lys128His in 7DLH increases hydroxylation of 7-deoxyloganic acid, and His132Lys in SLAS decreases this hydroxylation and C-C bond scissions of loganic acid and loganin; Gly321Ser in 7DLH does not affect hydroxylation of 7-deoxyloganic acid, whereas Ser324Gly in SLAS significantly increases C-C bond scission of loganic acid; Asp332Glu in the acid-alcohol pair of 7DLH increases hydroxylation of 7-deoxyloganic acid, whereas Glu335Asp in SLAS completely eliminates both of its activities. These mutations that enhance or eliminate these respective activities have significant potential to aid engineering efforts aimed at increasing TIA production in cell cultures, microbial systems, and/or other plants.
Collapse
Affiliation(s)
- Priya Rao
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mark A Yaroslavsky
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Justin C Miller
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mary A Schuler
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V. Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. PROTOPLASMA 2023; 260:607-624. [PMID: 35947213 DOI: 10.1007/s00709-022-01801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Ines Carqueijeiro
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Emily Amor Stander
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Cécile Abdallah
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR, ICAT, F-49000, Angers, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
12
|
Singh G, Sharma S, Rawat S, Sharma RK. Plant Specialised Glycosides (PSGs): their biosynthetic enzymatic machinery, physiological functions and commercial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1009-1028. [PMID: 36038144 DOI: 10.1071/fp21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plants, the primary producers of our planet, have evolved from simple aquatic life to very complex terrestrial habitat. This habitat transition coincides with evolution of enormous chemical diversity, collectively termed as 'Plant Specialised Metabolisms (PSMs)', to cope the environmental challenges. Plant glycosylation is an important process of metabolic diversification of PSMs to govern their in planta stability, solubility and inter/intra-cellular transport. Although, individual category of PSMs (terpenoids, phenylpropanoids, flavonoids, saponins, alkaloids, phytohormones, glucosinolates and cyanogenic glycosides) have been well studied; nevertheless, deeper insights of physiological functioning and genomic aspects of plant glycosylation/deglycosylation processes including enzymatic machinery (CYPs, GTs, and GHs) and regulatory elements are still elusive. Therefore, this review discussed the paradigm shift on genomic background of enzymatic machinery, transporters and regulatory mechanism of 'Plant Specialised Glycosides (PSGs)'. Current efforts also update the fundamental understanding about physiological, evolutionary and adaptive role of glycosylation/deglycosylation processes during the metabolic diversification of PSGs. Additionally, futuristic considerations and recommendations for employing integrated next-generation multi-omics (genomics, transcriptomics, proteomics and metabolomics), including gene/genome editing (CRISPR-Cas) approaches are also proposed to explore commercial potential of PSGs.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India; and Present address: Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Sandeep Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Present address: G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Functional characterization of secologanin synthase-like homologous genes suggests their involvement in the biosynthesis of diverse metabolites in the secoiridoid biosynthetic pathway of Camptotheca acuminata Decne. Int J Biol Macromol 2022; 222:2594-2602. [DOI: 10.1016/j.ijbiomac.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
14
|
Miller JC, Schuler MA. Single mutations toggle the substrate selectivity of multifunctional Camptotheca secologanic acid synthases (CYP72As). J Biol Chem 2022; 298:102237. [PMID: 35809640 PMCID: PMC9424959 DOI: 10.1016/j.jbc.2022.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Terpene indole alkaloids (TIAs) are plant-derived specialized metabolites with widespread use in medicine. Species-specific pathways derive various TIAs from common intermediates, strictosidine or strictosidinic acid, produced by coupling tryptamine with secologanin or secologanic acid. The penultimate reaction in this pathway is catalyzed by either secologanin synthase (SLS) or secologanic acid synthase (SLAS) according to whether plants produce secologanin from loganin or secologanic acid from loganic acid. Previous work has identified SLSs and SLASs from different species, but the determinants of selectivity remain unclear. Here, combining molecular modeling, ancestral sequence reconstruction, and biochemical methodologies, we identified key residues that toggle SLS and SLAS selectivity in two CYP72A (cytochrome P450) subfamily enzymes from Camptotheca acuminata. We found that the positions of foremost importance are in substrate recognition sequence 1 (SRS1), where mutations to either of two adjacent histidine residues switched selectivity; His131Phe selects for and increases secologanin production whereas His132Asp selects for secologanic acid production. Furthermore, a change in SRS3 in the predicted substrate entry channel (Arg/Lys270Thr) and another in SRS4 at the start of the I-helix (Ser324Glu) decreased enzyme activity toward either substrate. We propose that the Camptotheca SLASs have maintained the broadened activities found in a common asterid ancestor, even as the Camptotheca lineage lost its ability to produce loganin while the campanulid and lamiid lineages specialized to produce secologanin by acquiring mutations in SRS1. The identification here of the residues essential for the broad substrate scope of SLASs presents opportunities for more tailored heterologous production of TIAs.
Collapse
Affiliation(s)
- Justin C Miller
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801
| | - Mary A Schuler
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801.
| |
Collapse
|
15
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
16
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
17
|
Xu C, Ye P, Wu Q, Liang S, Wei W, Yang J, Chen W, Zhan R, Ma D. Identification and functional characterization of three iridoid synthases in Gardenia jasminoides. PLANTA 2022; 255:58. [PMID: 35118554 DOI: 10.1007/s00425-022-03824-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The discovery of three iridoid synthases (GjISY, GjISY2 and GjISY4) from Gardenia jasminoides and their functional characterization increase the understanding of iridoid scaffold/iridoid glycoside biosynthesis in iridoid-producing plants. Iridoids are a class of noncanonical monoterpenes that are found naturally in the plant kingdom mostly as glycosides. Over 40 iridoid glycosides (e.g., geniposide, gardenoside and shanzhiside) have been isolated from Gardenia jasminoides. They have multiple pharmacological properties and health-promoting effects. However, their biosynthetic pathway is poorly understood, and the iridoid synthase (ISY) responsible for the cyclization of the core scaffold remains unclear. In this study, three homologs of ISYs from G. jasminoides (GjISY, GjISY2 and GjISY4) were identified on the basis of transcriptomic data and functionally characterized. The genomic structure and intron-exon arrangement revealed that all three ISYs contained an intron. Biochemical assays indicated that all three recombinant enzymes reduced 8-oxogeranial to nepetalactol and its open forms (iridodials) as the products of the classical CrISY (Catharanthus roseus). In addition, all three enzymes reduced progesterone to 5-β-prognane-3,20-dione. However, only GjISY2 and GjISY4 reduced 2-cyclohexen-1-one to cyclohexanone. Overall, the GjISY2 expression levels in the flowers and fruits were similar to the GjISY and GjISY4 expression levels. By contrast, the GjISY2 expression levels in the upper and lower leaves were substantially higher than the GjISY and GjISY4 expression levels. Among the three, GjISY2 exhibited the highest catalytic efficiency for 8-oxogeranial. GjISY2 might be the major contributor to iridoid biosynthesis in G. jasminoides. Collectively, our results advance the understanding of iridoid scaffold/iridoid glycoside biosynthesis in G. jasminoides and provide a potential target for metabolic engineering and breeding.
Collapse
Affiliation(s)
- Chong Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Peng Ye
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qingwen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Shuangcheng Liang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Wuke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jinfen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Zhu H, Cai Y, Ma S, Futamura Y, Li J, Zhong W, Zhang X, Osada H, Zou H. Privileged Biorenewable Secologanin-Based Diversity-Oriented Synthesis for Pseudo-Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. CHEMSUSCHEM 2021; 14:5320-5327. [PMID: 34636473 DOI: 10.1002/cssc.202101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bioprivileged molecules hold great promise for supplementing petrochemicals in sustainable organic synthesis of a diverse bioactive products library. Secologanin, a biorenewable monoterpenoid glucoside with unique structural elements, is the key precursor for thousands of natural monoterpenoid alkaloids. Inspired by its inherent highly congested functional groups, a secologanin-based diversity-oriented synthesis (DOS) strategy for novel pseudo-natural alkaloids was developed. All the reactive units of secologanin were involved in these operation simplicity protocols under mild reaction conditions, including the one-step enantioselective transformation of exocyclic C8, C8/C11, and C8/C9/C10 as well as the chemoenzymatic manipulation of endocyclic C2/C6 via the attack by various nucleophiles. A combinatory scenario of the aforementioned reactions further provided diverse polycyclic products with multiple chiral centers. Preliminary activity screening of these newly constructed molecules led to the discovery of antimalarial and highly potent neuroprotective skeletons. The application of green biorenewable secologanin in diversity-oriented pseudo-natural monoterpenoid alkaloid synthesis might encourage the pursuit of valuable bioactive frameworks.
Collapse
Affiliation(s)
- Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunrui Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shijia Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wen Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
19
|
Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Sepúlveda LJ, Mosquera A, Bomzan DP, Oudin A, Lanoue A, Besseau S, Lemos Cruz P, Kulagina N, Stander EA, Eymieux S, Burlaud-Gaillard J, Blanchard E, Clastre M, Atehortùa L, St-Pierre B, Giglioli-Guivarc’h N, Papon N, Nagegowda DA, O’Connor SE, Courdavault V. Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2021; 185:836-856. [PMID: 33793899 PMCID: PMC8133614 DOI: 10.1093/plphys/kiaa075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks β-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of β-glucosidase multimerization, an organization common to many defensive GH1 members.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Angela Mosquera
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Emily A Stander
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Eymieux
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
- Centre Hospitalier Régional de Tours, 37170 Tours, France
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Benoit St-Pierre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- EA3142 “Groupe d'Etude des Interactions Hôte-Pathogène,” Université d’Angers, 49035 Angers, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Sarah E O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Author for communication:
| |
Collapse
|
20
|
Miller JC, Hollatz AJ, Schuler MA. P450 variations bifurcate the early terpene indole alkaloid pathway in Catharanthus roseus and Camptotheca acuminata. PHYTOCHEMISTRY 2021; 183:112626. [PMID: 33445145 DOI: 10.1016/j.phytochem.2020.112626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Divergent terpene indole alkaloid (TIA) pathways in Catharanthus roseus and Camptotheca acuminata generate vinblastine and vincristine, and camptothecin, respectively. In contrast to Catharanthus which feeds secologanin (from methylated loganin) into its species-specific late pathway, Camptotheca feeds secologanic acid (from unmethylated loganic acid) into its late pathway. Having identified putative Camptotheca secologanic acid synthases (SLASs) and cytochrome P450 reductases (CPRs) in transcriptome databases, we have demonstrated that two P450s, CYP72A564 and CYP72A565, are capable of utilizing both loganic acid and loganin to generate secologanic acid and secologanin. We have extended the previous report of these activities by CYP72A565 and CYP72A610 (Yang et al., 2019) by demonstrating that both Arabidopsis CPRs (ATR1, ATR2) couple with these CYP72A proteins in yeast microsomal assays and that purified Camptotheca CPR1 couples with them in in vitro reconstitution assays. Kinetic analyses of purified full-length Camptotheca SLASs have indicated that both process loganic acid with nearly identical catalytic rates and efficiencies as measured by their kcat and kcat/KM. In contrast, CYP72A564 processes loganin with two-fold greater efficiency than CYP72A565 correlating with the former's 3-fold greater affinity for loganin. The closely-related CYP72A730 does not bind or process either compound. Molecular modeling of these three proteins and comparisons with Catharanthus secologanin synthase (SLS) have identified key differences that likely determine their SLAS versus SLS selectivities. Our ability to reconstitute these SLAS/SLS activities provides valuable tools for further examinations of the residues involved in substrate recognition and determinations of their unusual mechanism of C-C bond scission.
Collapse
Affiliation(s)
- Justin C Miller
- Department of Chemistry, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., 162 Edward R. Madigan Laboratory (ERML), Urbana, IL, 61801, USA
| | - Allison J Hollatz
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., 162 ERML, Urbana, IL, 61801, USA
| | - Mary A Schuler
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., 162 ERML, Urbana, IL, 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., 162 ERML, Urbana, IL, 61801, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., 162 ERML, Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Rodríguez-López CE, Hong B, Paetz C, Nakamura Y, Koudounas K, Passeri V, Baldoni L, Alagna F, Calderini O, O'Connor SE. Two bi-functional cytochrome P450 CYP72 enzymes from olive (Olea europaea) catalyze the oxidative C-C bond cleavage in the biosynthesis of secoxy-iridoids - flavor and quality determinants in olive oil. THE NEW PHYTOLOGIST 2021; 229:2288-2301. [PMID: 33124697 DOI: 10.1111/nph.16975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Olive (Olea europaea) is an important crop in Europe, with high cultural, economic and nutritional significance. Olive oil flavor and quality depend on phenolic secoiridoids, but the biosynthetic pathway of these iridoids remains largely uncharacterized. We discovered two bifunctional cytochrome P450 enzymes, catalyzing the rare oxidative C-C bond cleavage of 7-epi-loganin to produce oleoside methyl ester (OeOMES) and secoxyloganin (OeSXS), both through a ketologanin intermediary. Although these enzymes are homologous to the previously reported Catharanthus roseus secologanin synthase (CrSLS), the substrate and product profiles differ. Biochemical assays provided mechanistic insights into the two-step OeOMES and CrSLS reactions. Model-guided mutations of OeOMES changed the product profile in a predictable manner, revealing insights into the molecular basis for this change in product specificity. Our results suggest that, in contrast to published hypotheses, in planta production of secoxy-iridoids is secologanin-independent. Notably, sequence data of cultivated and wild olives point to a relation between domestication and OeOMES expression. Thus, the discovery of this key biosynthetic gene suggests a link between domestication and secondary metabolism, and could potentially be used as a genetic marker to guide next-generation breeding programs.
Collapse
Affiliation(s)
- Carlos E Rodríguez-López
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | | | - Valentina Passeri
- Institute of Biosciences and Bioresources, CNR, Perugia, 06128, Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources, CNR, Perugia, 06128, Italy
| | | | - Ornella Calderini
- Institute of Biosciences and Bioresources, CNR, Perugia, 06128, Italy
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
22
|
Soltani N, Nazarian-Firouzabadi F, Shafeinia A, Sadr AS, Shirali M. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Mol Biol Rep 2020; 47:7009-7016. [PMID: 32886329 DOI: 10.1007/s11033-020-05759-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023]
Abstract
Vinblastine and vincristine are two important anti-cancer drugs that are synthesized by the Terpenoid Indole Alkaloids (TIAs) pathway in periwinkle (Catharanthus roseus). The major challenge in the pharmaceutical industry is the low production rate of these Alkaloids. TIA pathway is affected by elicitors, such as salicylic acid (SA). This study aimed to investigate the expression pattern of some key genes in TIAs pathway under SA treatment. Foliar application of SA (0.01 and 0.1 mM) was used and leaves samples were taken at 0, 12, 18, 24 and 48 h after the treatment. qRT-PCR was used to investigate the expression pattern of Chorismate mutase (Cm), tryptophan decarboxylase (Tdc), Geraniol-10-hydroxylase (G10h), Secologanin synthase (Sls), Strictosidine synthase (Str), Desacetoxyvindoline-4-hydroxylase (D4h) and Deacetylvindoline-4-O-acetyltransferase (Dat) genes, following the SA treatment. The results of this experiment showed that transcript levels of Tdc, G10h, Sls, Str, D4h and Dat genes were significantly up-regulated in both SA concentration treatments. Furthermore, the highest transcript levels of Dat was observed after 48 h of the SA treatments. qRT-PCR results suggests that SA induces transcription of major genes involved in Alkaloids biosynthesis in Catharanthus roseus. It can be concluded that up-regulation of Tdc, G10h, Sls, Str, D4h and Dat genes can result in a higher production rate of Vinblastine and vincristine Alkaloids.
Collapse
Affiliation(s)
- Narges Soltani
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Alireza Shafeinia
- Production Engineering and Plant Genetics Department, Ramin Agriculture and Natural Resource University of Khuzestan, Mollasani, Iran
| | - Ayeh Sadat Sadr
- Aquaculture Research Center-South of Iran, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AJ, UK
| |
Collapse
|
23
|
Dugé de Bernonville T, Maury S, Delaunay A, Daviaud C, Chaparro C, Tost J, O’Connor SE, Courdavault V. Developmental Methylome of the Medicinal Plant Catharanthus roseus Unravels the Tissue-Specific Control of the Monoterpene Indole Alkaloid Pathway by DNA Methylation. Int J Mol Sci 2020; 21:E6028. [PMID: 32825765 PMCID: PMC7503379 DOI: 10.3390/ijms21176028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Catharanthus roseus produces a wide spectrum of monoterpene indole alkaloids (MIAs). MIA biosynthesis requires a tightly coordinated pathway involving more than 30 enzymatic steps that are spatio-temporally and environmentally regulated so that some MIAs specifically accumulate in restricted plant parts. The first regulatory layer involves a complex network of transcription factors from the basic Helix Loop Helix (bHLH) or AP2 families. In the present manuscript, we investigated whether an additional epigenetic layer could control the organ-, developmental- and environmental-specificity of MIA accumulation. We used Whole-Genome Bisulfite Sequencing (WGBS) together with RNA-seq to identify differentially methylated and expressed genes among nine samples reflecting different plant organs and experimental conditions. Tissue specific gene expression was associated with specific methylation signatures depending on cytosine contexts and gene parts. Some genes encoding key enzymatic steps from the MIA pathway were found to be simultaneously differentially expressed and methylated in agreement with the corresponding MIA accumulation. In addition, we found that transcription factors were strikingly concerned by DNA methylation variations. Altogether, our integrative analysis supports an epigenetic regulation of specialized metabolisms in plants and more likely targeting transcription factors which in turn may control the expression of enzyme-encoding genes.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Faculté des Sciences et Techniques, Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France;
| | - Stéphane Maury
- INRA, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, F-45067 Orléans, France;
| | - Alain Delaunay
- INRA, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, F-45067 Orléans, France;
| | - Christian Daviaud
- Laboratoire Epigénétique et Environnement, LEE, Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, F-92265 Evry, France; (C.D.); (J.T.)
| | - Cristian Chaparro
- CNRS, IFREMER, UMR5244 Interactions Hôtes-Pathogènes-Environnments, Université de Montpellier, Université de Perpignan Via Domitia, F-66860 Perpignan, France;
| | - Jörg Tost
- Laboratoire Epigénétique et Environnement, LEE, Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, F-92265 Evry, France; (C.D.); (J.T.)
| | - Sarah Ellen O’Connor
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany;
| | - Vincent Courdavault
- Faculté des Sciences et Techniques, Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France;
| |
Collapse
|
24
|
Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 2020; 47:815-828. [PMID: 32772209 DOI: 10.1007/s10295-020-02300-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 01/26/2023]
Abstract
Microbial fermentation platforms offer a cost-effective and sustainable alternative to plant cultivation and chemical synthesis for the production of many plant-derived pharmaceuticals. Plant alkaloids, particularly benzylisoquinoline alkaloids and monoterpene indole alkaloids, and recently cannabinoids have become attractive targets for microbial biosynthesis owing to their medicinal importance. Recent advances in the discovery of pathway components, together with the application of synthetic biology tools, have facilitated the assembly of plant alkaloid and cannabinoid pathways in the microbial hosts Escherichia coli and Saccharomyces cerevisiae. This review highlights key aspects of these pathways in the framework of overcoming bottlenecks in microbial production to further improve end-product titers. We discuss the opportunities that emerge from a better understanding of the pathway components by further study of the plant, and strategies for generation of new and advanced medicinal compounds.
Collapse
|
25
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
26
|
Guirimand G, Guihur A, Perello C, Phillips M, Mahroug S, Oudin A, Dugé de Bernonville T, Besseau S, Lanoue A, Giglioli-Guivarc’h N, Papon N, St-Pierre B, Rodríguez-Concepcíon M, Burlat V, Courdavault V. Cellular and Subcellular Compartmentation of the 2 C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. PLANTS (BASEL, SWITZERLAND) 2020; 9:E462. [PMID: 32272573 PMCID: PMC7238098 DOI: 10.3390/plants9040462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
The Madagascar periwinkle (Catharanthus roseus) synthesizes the highly valuable monoterpene indole alkaloids (MIAs) through a long metabolic route initiated by the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. In leaves, a complex compartmentation of the MIA biosynthetic pathway occurs at both the cellular and subcellular levels, notably for some gene products of the MEP pathway. To get a complete overview of the pathway organization, we cloned four genes encoding missing enzymes involved in the MEP pathway before conducting a systematic analysis of transcript distribution and protein subcellular localization. RNA in situ hybridization revealed that all MEP pathway genes were coordinately and mainly expressed in internal phloem-associated parenchyma of young leaves, reinforcing the role of this tissue in MIA biosynthesis. At the subcellular level, transient cell transformation and expression of fluorescent protein fusions showed that all MEP pathway enzymes were targeted to plastids. Surprisingly, two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase initially exhibited an artifactual aggregated pattern of localization due to high protein accumulation. Immunogold combined with transmission electron microscopy, transient transformations performed with a low amount of transforming DNA and fusion/deletion experiments established that both enzymes were rather diffuse in stroma and stromules of plastids as also observed for the last six enzymes of the pathway. Taken together, these results provide new insights into a potential role of stromules in enhancing MIA precursor exchange with other cell compartments to favor metabolic fluxes towards the MIA biosynthesis.
Collapse
Affiliation(s)
- Grégory Guirimand
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
| | - Anthony Guihur
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland
| | - Catalina Perello
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Michael Phillips
- Department of Biology, University of Toronto–Mississauga, Mississauga, 3359 Mississauga Road, ON L5L 1C6, Canada;
| | - Samira Mahroug
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Environment Sciences, University of Sidi-Bel-Abbes, 22000 Sidi Bel Abbès, Algeria
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nathalie Giglioli-Guivarc’h
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université d’Angers, UNIV. Brest, F-49333 Angers, France;
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Manuel Rodríguez-Concepcíon
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France;
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| |
Collapse
|
27
|
Rather GA, Sharma A, Misra P, Kumar A, Kaul V, Lattoo SK. Molecular characterization and overexpression analyses of secologanin synthase to understand the regulation of camptothecin biosynthesis in Nothapodytes nimmoniana (Graham.) Mabb. PROTOPLASMA 2020; 257:391-405. [PMID: 31701251 DOI: 10.1007/s00709-019-01440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Camptothecin is a high-value anti-cancerous compound produced in many taxonomically unrelated species. Its biosynthesis involves a complex network of pathways and a diverse array of intermediates. Here, we report the functional characterization and regulation of secologanin synthase (NnCYP72A1), a cytochrome P450 involved in camptothecin biosynthesis from Nothapodytes nimmoniana. It comprises an open reading frame of 1566 bp in length. Heterologous expression in Saccharomyces cerevisiae and in vitro enzymatic assays using loganin as substrate confirmed the formation of secologanin. In planta transient overexpression analysis of NnCYP72A1 resulted in 4.21- and 2.73-fold increase in transcript levels of NnCYP72A1 on days 3 and 6 respectively. Phytochemical analysis of transformed tissues revealed ~ 1.13-1.43- and 2.02-2.86-fold increase in secologanin and CPT accumulation, respectively. Furthermore, promoter analysis of NnCYP72A1 resulted in the identification of several potential cis-regulatory elements corresponding to different stress-related components. Methyl jasmonate, salicylic acid, and wounding treatments resulted in considerable modulation of mRNA transcripts of NnCYP72A1 gene. Chemical analysis of elicitor-treated samples showed a significant increase in CPT content which was concordant with the mRNA transcript levels. Overall, the functional characterization and overexpression of NnCYP72A1 may plausibly enhance the pathway intermediates and serve as prognostic tool for enhancing CPT accumulation.
Collapse
Affiliation(s)
- Gulzar A Rather
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Prashant Misra
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Veenu Kaul
- Department of Botany, University of Jammu, Jammu Tawi, 180006, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
| |
Collapse
|
28
|
Guodong R, Jianguo Z, Xiaoxia L, Ying L. Identification of putative genes for polyphenol biosynthesis in olive fruits and leaves using full-length transcriptome sequencing. Food Chem 2019; 300:125246. [PMID: 31357017 DOI: 10.1016/j.foodchem.2019.125246] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Olive (Olea europaea) is a rich source of valuable bioactive polyphenols, which has attracted widespread interest. In this study, we combined targeted metabolome, Pacbio ISOseq transcriptome, and Illumina RNA-seq transcriptome to investigate the association between polyphenols and gene expression in the developing olive fruits and leaves. A total of 12 main polyphenols were measured, and 122 transcripts of 17 gene families, 101 transcripts of 9 gene families, and 106 transcripts of 6 gene families that encode for enzymes involved in flavonoid, oleuropein, and hydroxytyrosol biosynthesis were separately identified. Additionally, 232 alternative splicing events of 18 genes related to polyphenol synthesis were analyzed. This is the first time that the third generations of full-length transcriptome technology were used to study the gene expression pattern of olive fruits and leaves. The results of transcriptome combined with targeted metabolome can help us better understand the polyphenol biosynthesis pathways in the olive.
Collapse
Affiliation(s)
- Rao Guodong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhang Jianguo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Liu Xiaoxia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luo Ying
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
29
|
Yang Y, Li W, Pang J, Jiang L, Qu X, Pu X, Zhang G, Luo Y. Bifunctional Cytochrome P450 Enzymes Involved in Camptothecin Biosynthesis. ACS Chem Biol 2019; 14:1091-1096. [PMID: 31117393 DOI: 10.1021/acschembio.8b01124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Camptothecin (CAM) is a well-known, complex, plant-derived antitumor monoterpenoid indole alkaloid (MIA). Featuring a unique pentacyclic pyrroloquinoline scaffold, CAM is biosynthetically distinct from the other known MIAs, such as antitumor vincristine and vinblastine. Herein, CaCYP72A565 and CaCYP72A610 enzymes involved in the biosynthesis of the monoterpenoid moiety of CAM were cloned from CAM-producing Camptotheca acuminata. Heterologous overexpression and functional characterization assays showed that CaCYP72As catalyzes two consecutive reactions, the stereoselective hydroxylation at C-7 of 7-deoxyloganic acid and the subsequent carbon-carbon (C-C) bond cleavage between C-7 and C-8 of iridoid glucoside, to generate the intramolecular cyclopentane ring-opening secoiridoid glucoside. Comparative metabolite profiling analyses suggested that C. acuminata synthesizes loganic acid, secologanic acid, and strictosidinic acid as its MIA carboxylic acid intermediates. CaCYP72As are novel bifunctional enzymes that catalyze stereoselective hydroxylation and subsequent C-C bond cleavage reactions to give a ring-opening product with two functional groups, an aldehyde and a double bond.
Collapse
Affiliation(s)
- Yun Yang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Wei Li
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
| | - Jing Pang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liangzhen Jiang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
| | - Xixing Qu
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
| | - Xiang Pu
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
| | - Guolin Zhang
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
| | - Yinggang Luo
- Center for Natural Products Research, Chinese Academy of Sciences, Chengdu Institute of Biology, 9 Section 4, Renmin Road South, Chengdu 610041, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
30
|
She J, Yan H, Yang J, Xu W, Su Z. croFGD: Catharanthus roseus Functional Genomics Database. Front Genet 2019; 10:238. [PMID: 30967897 PMCID: PMC6438902 DOI: 10.3389/fgene.2019.00238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023] Open
Abstract
Catharanthus roseus is a medicinal plant, which can produce monoterpene indole alkaloid (MIA) metabolites with biological activity and is rich in vinblastine and vincristine. With release of the scaffolded genome sequence of C. roseus, it is necessary to annotate gene functions on the whole-genome level. Recently, 53 RNA-seq datasets are available in public with different tissues (flower, root, leaf, seedling, and shoot) and different treatments (MeJA, PnWB infection and yeast elicitor). We used in-house data process pipeline with the combination of PCC and MR algorithms to construct a co-expression network exploring multi-dimensional gene expression (global, tissue preferential, and treat response) through multi-layered approaches. In the meanwhile, we added miRNA-target pairs, predicted PPI pairs into the network and provided several tools such as gene set enrichment analysis, functional module enrichment analysis, and motif analysis for functional prediction of the co-expression genes. Finally, we have constructed an online croFGD database (http://bioinformatics.cau.edu.cn/croFGD/). We hope croFGD can help the communities to study the C. roseus functional genomics and make novel discoveries about key genes involved in some important biological processes.
Collapse
Affiliation(s)
- Jiajie She
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Kang KB, Kang SJ, Kim MS, Lee DY, Han SI, Kim TB, Park JY, Kim J, Yang TJ, Sung SH. Chemical and genomic diversity of six Lonicera species occurring in Korea. PHYTOCHEMISTRY 2018; 155:126-135. [PMID: 30121427 DOI: 10.1016/j.phytochem.2018.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/15/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Lonicera spp. (Caprifoliaceae) are important not only as a common medicinal herb in East Asia but also as one of the most problematic invasive species in North America. In the present study, we performed a systemic analysis of genomic and chemical diversity among six Lonicera species occurring in Korea, L. japonica, L. maackii, L. insularis, L. sachalinensis, L. praeflorens, and L. vesicaria, using chloroplast DNA whole genome shotgun (WGS) sequencing and LC-MS analyses. The phylogenetic and phylochemical relationships did not coincide with each other, but partial consistency could be found among them. InDel-based cDNA marker for authentication was developed based on the genome sequences. Flavonoids, iridoids, and organic acids were identified in the LC-MS analyses, and their inter-species distribution and localization were also revealed.
Collapse
Affiliation(s)
- Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Shin-Jae Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Song Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Il Han
- Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, 12045, Republic of Korea
| | - Tae Bum Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, 12045, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
32
|
Carqueijeiro I, Brown S, Chung K, Dang TT, Walia M, Besseau S, Dugé de Bernonville T, Oudin A, Lanoue A, Billet K, Munsch T, Koudounas K, Melin C, Godon C, Razafimandimby B, de Craene JO, Glévarec G, Marc J, Giglioli-Guivarc'h N, Clastre M, St-Pierre B, Papon N, Andrade RB, O'Connor SE, Courdavault V. Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2018; 177:1473-1486. [PMID: 29934299 PMCID: PMC6084683 DOI: 10.1104/pp.18.00549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 05/07/2023]
Abstract
Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (Catharanthus roseus). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. TEX1 and TEX2 displayed complementary expression profiles, with TEX1 expressed mainly in roots and TEX2 in aerial organs. Our results suggest that TEX1 and TEX2 originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of TEX1 and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Stephanie Brown
- John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom
| | - Khoa Chung
- John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom
| | - Thu-Thuy Dang
- John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom
| | - Manish Walia
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Sébastien Besseau
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | | | - Audrey Oudin
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Kevin Billet
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Thibaut Munsch
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Konstantinos Koudounas
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Céline Melin
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Charlotte Godon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, F-49933, France
| | - Bienvenue Razafimandimby
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, F-49933, France
| | - Johan-Owen de Craene
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Gaëlle Glévarec
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Jillian Marc
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | | | - Marc Clastre
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Benoit St-Pierre
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France
| | - Nicolas Papon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, F-49933, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Sarah E O'Connor
- John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom sarah.o'
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, F-37200, France sarah.o'
| |
Collapse
|
33
|
Caputi L, Franke J, Farrow SC, Chung K, Payne RME, Nguyen TD, Dang TTT, Soares Teto Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Ameyaw B, Jones DM, Vieira IJC, Courdavault V, O'Connor SE. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 2018; 360:1235-1239. [PMID: 29724909 DOI: 10.1126/science.aat4100] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
Abstract
Vinblastine, a potent anticancer drug, is produced by Catharanthus roseus (Madagascar periwinkle) in small quantities, and heterologous reconstitution of vinblastine biosynthesis could provide an additional source of this drug. However, the chemistry underlying vinblastine synthesis makes identification of the biosynthetic genes challenging. Here we identify the two missing enzymes necessary for vinblastine biosynthesis in this plant: an oxidase and a reductase that isomerize stemmadenine acetate into dihydroprecondylocarpine acetate, which is then deacetoxylated and cyclized to either catharanthine or tabersonine via two hydrolases characterized herein. The pathways show how plants create chemical diversity and also enable development of heterologous platforms for generation of stemmadenine-derived bioactive compounds.
Collapse
Affiliation(s)
- Lorenzo Caputi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jakob Franke
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott C Farrow
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Khoa Chung
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard M E Payne
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Trinh-Don Nguyen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thu-Thuy T Dang
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Konstantinos Koudounas
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Parc de Grandmont 37200 Tours, France
| | - Thomas Dugé de Bernonville
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Parc de Grandmont 37200 Tours, France
| | - Belinda Ameyaw
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - D Marc Jones
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Parc de Grandmont 37200 Tours, France.
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
34
|
Carqueijeiro I, Dugé de Bernonville T, Lanoue A, Dang TT, Teijaro CN, Paetz C, Billet K, Mosquera A, Oudin A, Besseau S, Papon N, Glévarec G, Atehortùa L, Clastre M, Giglioli-Guivarc'h N, Schneider B, St-Pierre B, Andrade RB, O'Connor SE, Courdavault V. A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:469-484. [PMID: 29438577 DOI: 10.1111/tpj.13868] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/13/2017] [Accepted: 02/05/2018] [Indexed: 05/19/2023]
Abstract
While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | | | - Arnaud Lanoue
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Thu-Thuy Dang
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Christian Paetz
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Kevin Billet
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Angela Mosquera
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, Medellin, Colombia
| | - Audrey Oudin
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Sébastien Besseau
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Nicolas Papon
- EA3142 'Groupe d'Etude des Interactions Hôte-Pathogène', Université d'Angers, Angers, France
| | - Gaëlle Glévarec
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Lucía Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, Medellin, Colombia
| | - Marc Clastre
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | | | - Bernd Schneider
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Benoit St-Pierre
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Sarah E O'Connor
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK
| | - Vincent Courdavault
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| |
Collapse
|
35
|
A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 2017; 8:316. [PMID: 28827772 PMCID: PMC5566405 DOI: 10.1038/s41467-017-00154-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 11/08/2022] Open
Abstract
Monoterpene indole alkaloids comprise a diverse family of over 2000 plant-produced natural products. This pathway provides an outstanding example of how nature creates chemical diversity from a single precursor, in this case from the intermediate strictosidine. The enzymes that elicit these seemingly disparate products from strictosidine have hitherto been elusive. Here we show that the concerted action of two enzymes commonly involved in natural product metabolism—an alcohol dehydrogenase and a cytochrome P450—produces unexpected rearrangements in strictosidine when assayed simultaneously. The tetrahydro-β-carboline of strictosidine aglycone is converted into akuammicine, a Strychnos alkaloid, an elusive biosynthetic transformation that has been investigated for decades. Importantly, akuammicine arises from deformylation of preakuammicine, which is the central biosynthetic precursor for the anti-cancer agents vinblastine and vincristine, as well as other biologically active compounds. This discovery of how these enzymes can function in combination opens a gateway into a rich family of natural products. The biosynthetic pathway of preakuammicine, a monoterpene precursor of the anti-cancer agent vinblastine, has remained largely unexplored. Here, the authors provide transcriptomic and biochemical data to identify two enzymes that, in tandem, convert strictosidine to akuammicine, the stable shunt product of preakuammicine.
Collapse
|
36
|
Wu FY, Tang CY, Guo YM, Bian ZW, Fu JY, Lu GH, Qi JL, Pang YJ, Yang YH. Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales' evolutionary history. Sci Rep 2017; 7:4477. [PMID: 28667265 PMCID: PMC5493674 DOI: 10.1038/s41598-017-04750-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/22/2017] [Indexed: 11/09/2022] Open
Abstract
Shikonin and its derivatives extracted from Lithospermeae plants' red roots have current applications in food and pharmaceutical industries. Previous studies have cloned some genes related to shikonin biosynthesis. However, most genes related to shikonin biosynthesis remain unclear, because the lack of the genome/transcriptome of the Lithospermeae plants. Therefore, in order to provide a new understanding of shikonin biosynthesis, we obtained transcriptome data and unigenes expression profiles in three shikonin-producing Lithospermeae plants, i.e., Lithospermum erythrorhizon, Arnebia euchroma and Echium plantagineum. As a result, two unigenes (i.e., G10H and 12OPR) that are involved in "shikonin downstream biosynthesis" and "methyl jasmonate biosynthesis" were deemed to relate to shikonin biosynthesis in this study. Furthermore, we conducted a Lamiids phylogenetic model and identified orthologous unigenes under positive selection in above three Lithospermeae plants. The results indicated Boraginales was more relative to Solanales/Gentianales than to Lamiales.
Collapse
Affiliation(s)
- Feng-Yao Wu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yu-Min Guo
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhuo-Wu Bian
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jiang-Yan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yan-Jun Pang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
37
|
Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii. Sci Rep 2017; 7:43108. [PMID: 28225035 PMCID: PMC5320516 DOI: 10.1038/srep43108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/19/2017] [Indexed: 11/08/2022] Open
Abstract
Swertia mussotii Franch. is an important traditional Tibetan medicinal plant with pharmacological properties effective in the treatment of various ailments including hepatitis. Secoiridoids are the major bioactive compounds in S. mussotii. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from the root, leaf, stem, and flower tissues, and performed de novo sequence assembly, yielding 98,613 unique transcripts with an N50 of 1,085 bp. Putative functions could be assigned to 35,029 transcripts (35.52%) based on BLAST searches against annotation databases including GO and KEGG. The expression profiles of 39 candidate transcripts encoding the key enzymes for secoiridoid biosynthesis were examined in different S. mussotii tissues, validated by qRT-PCR, and compared with the homologous genes from S. japonica, a species in the same family, unveiling the gene expression, regulation, and conservation of the pathway. The examination of the accumulated levels of three bioactive compounds, sweroside, swertiamarin, and gentiopicroside, revealed their considerable variations in different tissues, with no significant correlation with the expression profiles of key genes in the pathway, suggesting complex biological behaviours in the coordination of metabolite biosynthesis and accumulation. The genomic dataset and analyses presented here lay the foundation for further research on this important medicinal plant.
Collapse
|
38
|
Dugé de Bernonville T, Carqueijeiro I, Lanoue A, Lafontaine F, Sánchez Bel P, Liesecke F, Musset K, Oudin A, Glévarec G, Pichon O, Besseau S, Clastre M, St-Pierre B, Flors V, Maury S, Huguet E, O'Connor SE, Courdavault V. Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Sci Rep 2017; 7:40453. [PMID: 28094274 PMCID: PMC5240345 DOI: 10.1038/srep40453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Plants deploy distinct secondary metabolisms to cope with environment pressure and to face bio-aggressors notably through the production of biologically active alkaloids. This metabolism-type is particularly elaborated in Catharanthus roseus that synthesizes more than a hundred different monoterpene indole alkaloids (MIAs). While the characterization of their biosynthetic pathway now reaches completion, still little is known about the role of MIAs during biotic attacks. As a consequence, we developed a new plant/herbivore interaction system by challenging C. roseus leaves with Manduca sexta larvae. Transcriptomic and metabolic analyses demonstrated that C. roseus respond to folivory by both local and systemic processes relying on the activation of specific gene sets and biosynthesis of distinct MIAs following jasmonate production. While a huge local accumulation of strictosidine was monitored in attacked leaves that could repel caterpillars through its protein reticulation properties, newly developed leaves displayed an increased biosynthesis of the toxic strictosidine-derived MIAs, vindoline and catharanthine, produced by up-regulation of MIA biosynthetic genes. In this context, leaf consumption resulted in a rapid death of caterpillars that could be linked to the MIA dimerization observed in intestinal tracts. Furthermore, this study also highlights the overall transcriptomic control of the plant defense processes occurring during herbivory.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Inês Carqueijeiro
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Florent Lafontaine
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Spain
| | - Franziska Liesecke
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Olivier Pichon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Victor Flors
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Spain
| | - Stéphane Maury
- Université d'Orléans, CoST, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA 1207, USC1328 INRA, Orléans, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Sarah E O'Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| |
Collapse
|
39
|
Dziggel C, Schäfer H, Wink M. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600145] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Clarissa Dziggel
- Heidelberg University; Institute of Pharmacy and Molecular Biotechnology; Heidelberg Germany
| | - Holger Schäfer
- Heidelberg University; Institute of Pharmacy and Molecular Biotechnology; Heidelberg Germany
| | - Michael Wink
- Heidelberg University; Institute of Pharmacy and Molecular Biotechnology; Heidelberg Germany
| |
Collapse
|
40
|
Parage C, Foureau E, Kellner F, Burlat V, Mahroug S, Lanoue A, Dugé de Bernonville T, Londono MA, Carqueijeiro I, Oudin A, Besseau S, Papon N, Glévarec G, Atehortùa L, Giglioli-Guivarc'h N, St-Pierre B, Clastre M, O'Connor SE, Courdavault V. Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. PLANT PHYSIOLOGY 2016; 172:1563-1577. [PMID: 27688619 PMCID: PMC5100751 DOI: 10.1104/pp.16.00801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/27/2016] [Indexed: 05/23/2023]
Abstract
Expansion of the biosynthesis of plant specialized metabolites notably results from the massive recruitment of cytochrome P450s that catalyze multiple types of conversion of biosynthetic intermediates. For catalysis, P450s require a two-electron transfer catalyzed by shared cytochrome P450 oxidoreductases (CPRs), making these auxiliary proteins an essential component of specialized metabolism. CPR isoforms usually group into two distinct classes with different proposed roles, namely involvement in primary and basal specialized metabolisms for class I and inducible specialized metabolism for class II. By studying the role of CPRs in the biosynthesis of monoterpene indole alkaloids, we provide compelling evidence of an operational specialization of CPR isoforms in Catharanthus roseus (Madagascar periwinkle). Global analyses of gene expression correlation combined with transcript localization in specific leaf tissues and gene-silencing experiments of both classes of CPR all point to the strict requirement of class II CPRs for monoterpene indole alkaloid biosynthesis with a minimal or null role of class I. Direct assays of interaction and reduction of P450s in vitro, however, showed that both classes of CPR performed equally well. Such high specialization of class II CPRs in planta highlights the evolutionary strategy that ensures an efficient reduction of P450s in specialized metabolism.
Collapse
Affiliation(s)
- Claire Parage
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Franziska Kellner
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Vincent Burlat
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Samira Mahroug
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Monica Arias Londono
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Inês Carqueijeiro
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Lucia Atehortùa
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Nathalie Giglioli-Guivarc'h
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.)
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.)
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.)
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.)
| | - Sarah E O'Connor
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.); sarah.o'
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.); sarah.o'
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.); sarah.o'
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and sarah.o'
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.) sarah.o'
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France (C.P., E.F., S.M., A.L., T.D.d.B., M.A.L., I.C., A.O., S.B., G.G., N.G.-G., B.S.-P., M.C., V.C.); sarah.o'
- Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (F.K., S.E.O.); sarah.o'
- Université de Toulouse, Université de Paris-Sud, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France (V.B.); sarah.o'
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellin, Colombia (M.A.L., L.A.); and sarah.o'
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, F-49933 Angers, France (N.P.) sarah.o'
| |
Collapse
|
41
|
Foureau E, Carqueijeiro I, Dugé de Bernonville T, Melin C, Lafontaine F, Besseau S, Lanoue A, Papon N, Oudin A, Glévarec G, Clastre M, St-Pierre B, Giglioli-Guivarc'h N, Courdavault V. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells. Methods Enzymol 2016; 576:167-206. [PMID: 27480687 DOI: 10.1016/bs.mie.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform.
Collapse
Affiliation(s)
- E Foureau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - I Carqueijeiro
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - T Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - C Melin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - F Lafontaine
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - S Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - A Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - N Papon
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - A Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - G Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - M Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - B St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - N Giglioli-Guivarc'h
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - V Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
42
|
Ilc T, Parage C, Boachon B, Navrot N, Werck-Reichhart D. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:509. [PMID: 27200002 PMCID: PMC4844611 DOI: 10.3389/fpls.2016.00509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives.
Collapse
|
43
|
He Y, Yan H, Hua W, Huang Y, Wang Z. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla. FRONTIERS IN PLANT SCIENCE 2016; 7:945. [PMID: 27446172 PMCID: PMC4925707 DOI: 10.3389/fpls.2016.00945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/03/2023]
Abstract
Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates - five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) - using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔC t, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions.
Collapse
Affiliation(s)
- Yihan He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- School of Geography and Life Science, Qinghai Normal UniversityXining, China
| | - Hailing Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Wenping Hua
- Department of Life Sciences, Shaanxi XueQian Normal UniversityXi’an, China
| | - Yaya Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- *Correspondence: Zhezhi Wang,
| |
Collapse
|
44
|
Carqueijeiro I, Masini E, Foureau E, Sepúlveda LJ, Marais E, Lanoue A, Besseau S, Papon N, Clastre M, Dugé de Bernonville T, Glévarec G, Atehortùa L, Oudin A, Courdavault V. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1242-6. [PMID: 26284695 DOI: 10.1111/plb.12380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/11/2015] [Indexed: 05/15/2023]
Abstract
Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses.
Collapse
Affiliation(s)
- I Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - E Masini
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - E Foureau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - L J Sepúlveda
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - E Marais
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - A Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - S Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - N Papon
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - M Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - T Dugé de Bernonville
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - G Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - L Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - A Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - V Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|