1
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
2
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
3
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
4
|
Song J, Campbell L, Vinqvist-Tymchuk M. Application of quantitative proteomics to investigate fruit ripening and eating quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153766. [PMID: 35921768 DOI: 10.1016/j.jplph.2022.153766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The consumption of fruit and vegetables play an important role in human nutrition, dietary diversity and health. Fruit and vegetable industries impart significant impact on our society, economy, and environment, contributing towards sustainable development in both developing and developed countries. The eating quality of fruit is determined by its appearance, color, firmness, flavor, nutritional components, and the absence of defects from physiological disorders. However, all of these components are affected by many pre- and postharvest factors that influence fruit ripening and senescence. Significant efforts have been made to maintain and improve fruit eating quality by expanding our knowledge of fruit ripening and senescence, as well as by controlling and reducing losses. Innovative approaches are required to gain better understanding of the management of eating quality. With completion of the genome sequence for many horticultural products in recent years and development of the proteomic research technique, quantitative proteomic research on fruit is changing rapidly and represents a complementary research platform to address how genetics and environment influence the quality attributes of various produce. Quantiative proteomic research on fruit is advancing from protein abundance and protein quantitation to gene-protein interactions and post-translational modifications of proteins that occur during fruit development, ripening and in response to environmental influences. All of these techniques help to provide a comprehensive understanding of eating quality. This review focuses on current developments in the field as well as limitations and challenges, both in broad term and with specific examples. These examples include our own research experience in applying quantitative proteomic techniques to identify and quantify the protein changes in association with fruit ripening, quality and development of disorders, as well as possible control mechanisms.
Collapse
Affiliation(s)
- Jun Song
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada.
| | - Leslie Campbell
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Melinda Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| |
Collapse
|
5
|
Differential Protein Expression in Berry Skin from Red Grapes with Varying Hybrid Character. Int J Mol Sci 2022; 23:ijms23031051. [PMID: 35162980 PMCID: PMC8835309 DOI: 10.3390/ijms23031051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Protein expression from the berry skin of four red grape biotypes with varying hybrid character was compared at a proteome-wide level to identify the metabolic pathways underlying divergent patterns of secondary metabolites. A bottom-up shotgun proteomics approach with label-free quantification and MaxQuant-assisted computational analysis was applied. Red grapes were from (i) purebred Vitis vinifera (Aglianico cv.); (ii) V. vinifera (local Sciascinoso cv.) grafted onto an American rootstock; (iii) interspecific hybrid (V. vinifera × V. labrusca, Isabel), and (iv) uncharacterized grape genotype with hybrid lineage, producing relatively abundant anthocyanidin 3,5-O-diglucosides. Proteomics supported the differences between hybrids and purebred V. vinifera grapes, consistently with distinct phenotypic metabolite assets. Methanol O-anthraniloyltransferase, which catalyses the synthesis of methyl anthranilate, primarily responsible for the “foxy” odour, was exclusive of the Isabel hybrid grape. Most of the proteins with different expression profiles converged into coordinated biosynthetic networks of primary metabolism, while many possible enzymes of secondary metabolism pathways, including 5-glucosyltransferases expected for hybrid grapes, remained unassigned due to incomplete protein annotation for the Vitis genus. Minor differences of protein expression distinguished V. vinifera scion grafted onto American rootstocks from purebred V. vinifera skin grapes, supporting a slight influence of the rootstock on the grape metabolism.
Collapse
|
6
|
Gong Y, Song J, Palmer LC, Vinqvist-Tymchuk M, Fillmore S, Toivonen P, Zhang Z. Tracking the development of the superficial scald disorder and effects of treatments with diphenylamine and 1-MCP using an untargeted metabolomic approach in apple fruit. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100022. [PMID: 35415623 PMCID: PMC8991853 DOI: 10.1016/j.fochms.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 05/25/2023]
Abstract
Superficial scald is a physiological storage disorder that significantly reduces the marketability of apple fruit. To gain fundamental knowledge about the biochemical pathways leading to the development of the disorder and mechanisms of treatments for prevention, an untargeted metabolomics experiment employing liquid chromatography and mass spectrometry with data independent acquisition was performed. Metabolomic changes of two apple cultivars 'Cortland' and 'Red Delicious' with scald development and scald control treatments, using diphenylamine and 1-MCP, at 0-1 °C for up to 7 months was investigated. In total, 833 features/compounds were analyzed, and among them 59 were found to change significantly in controls involved in scald development, and in response to DPA and 1-MCP treatments. Our results provide new evidence that metabolites in association with phenylpropanoid metabolism, antioxidant and redox systems, and amino acid metabolism are related closely to scald development and response to potential treatments.
Collapse
Affiliation(s)
- Yihui Gong
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Jun Song
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Leslie Campbell Palmer
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Mindy Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Peter Toivonen
- Agriculture and Agri-Food Canada, SuRDC, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - ZhaoQi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, China
| |
Collapse
|
7
|
Pazhamala LT, Kudapa H, Weckwerth W, Millar AH, Varshney RK. Systems biology for crop improvement. THE PLANT GENOME 2021; 14:e20098. [PMID: 33949787 DOI: 10.1002/tpg2.20098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/09/2021] [Indexed: 05/19/2023]
Abstract
In recent years, generation of large-scale data from genome, transcriptome, proteome, metabolome, epigenome, and others, has become routine in several plant species. Most of these datasets in different crop species, however, were studied independently and as a result, full insight could not be gained on the molecular basis of complex traits and biological networks. A systems biology approach involving integration of multiple omics data, modeling, and prediction of the cellular functions is required to understand the flow of biological information that underlies complex traits. In this context, systems biology with multiomics data integration is crucial and allows a holistic understanding of the dynamic system with the different levels of biological organization interacting with external environment for a phenotypic expression. Here, we present recent progress made in the area of various omics studies-integrative and systems biology approaches with a special focus on application to crop improvement. We have also discussed the challenges and opportunities in multiomics data integration, modeling, and understanding of the biology of complex traits underpinning yield and stress tolerance in major cereals and legumes.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
8
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
9
|
Balestrini R, Ghignone S, Quiroga G, Fiorilli V, Romano I, Gambino G. Long-Term Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Berry Transcriptome. Int J Mol Sci 2020; 21:ijms21176067. [PMID: 32842492 PMCID: PMC7504522 DOI: 10.3390/ijms21176067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
Viticulture is one of the horticultural systems in which antifungal treatments can be extremely frequent, with substantial economic and environmental costs. New products, such as biofungicides, resistance inducers and biostimulants, may represent alternative crop protection strategies respectful of the environmental sustainability and food safety. Here, the main purpose was to evaluate the systemic molecular modifications induced by biocontrol products as laminarin, resistance inducers (i.e., fosetyl-Al and potassium phosphonate), electrolyzed water and a standard chemical fungicide (i.e., metiram), on the transcriptomic profile of ‘Nebbiolo’ grape berries at harvest. In addition to a validation of the sequencing data through real-time polymerase chain reaction (PCR), for the first-time the expression of some candidate genes in different cell-types of berry skin (i.e., epidermal and hypodermal layers) was evaluated using the laser microdissection approach. Results showed that several considered antifungal treatments do not strongly affect the berry transcriptome profile at the end of season. Although some treatments do not activate long lasting molecular defense priming features in berry, some compounds appear to be more active in long-term responses. In addition, genes differentially expressed in the two-cell type populations forming the berry skin were found, suggesting a different function for the two-cell type populations.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
- Correspondence: ; Tel.: +39-011-650-2927
| | - Stefano Ghignone
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Gabriela Quiroga
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Valentina Fiorilli
- Department of Life Science and Systems Biology, Turin University, 10125 Turin, Italy;
| | - Irene Romano
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Giorgio Gambino
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| |
Collapse
|
10
|
Cramer GR, Cochetel N, Ghan R, Destrac-Irvine A, Delrot S. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. BMC PLANT BIOLOGY 2020; 20:41. [PMID: 31992236 PMCID: PMC6986057 DOI: 10.1186/s12870-020-2251-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/14/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Grape berry ripening is influenced by climate, the main component of the "terroir" of a place. Light and temperature are major factors in the vineyard that affect berry development and fruit metabolite composition. RESULTS To better understand the effect of "place" on transcript abundance during the late stages of berry ripening, Cabernet Sauvignon berries grown in Bordeaux and Reno were compared at similar sugar levels (19 to 26 °Brix (total soluble solids)). Day temperatures were warmer and night temperatures were cooler in Reno. °Brix was lower in Bordeaux berries compared to Reno at maturity levels considered optimum for harvest. RNA-Seq analysis identified 5528 differentially expressed genes between Bordeaux and Reno grape skins at 22°Brix. Weighted Gene Coexpression Network Analysis for all expressed transcripts for all four °Brix levels measured indicated that the majority (75%) of transcript expression differed significantly between the two locations. Top gene ontology categories for the common transcript sets were translation, photosynthesis, DNA metabolism and catabolism. Top gene ontology categories for the differentially expressed genes at 22°Brix involved response to stimulus, biosynthesis and response to stress. Some differentially expressed genes encoded terpene synthases, cell wall enzymes, kinases, transporters, transcription factors and photoreceptors. Most circadian clock genes had higher transcript abundance in Bordeaux. Bordeaux berries had higher transcript abundance with differentially expressed genes associated with seed dormancy, light, auxin, ethylene signaling, powdery mildew infection, phenylpropanoid, carotenoid and terpenoid metabolism, whereas Reno berries were enriched with differentially expressed genes involved in water deprivation, cold response, ABA signaling and iron homeostasis. CONCLUSIONS Transcript abundance profiles in the berry skins at maturity were highly dynamic. RNA-Seq analysis identified a smaller (25% of total) common core set of ripening genes that appear not to depend on rootstock, vineyard management, plant age, soil and climatic conditions. Much of the gene expression differed between the two locations and could be associated with multiple differences in environmental conditions that may have affected the berries in the two locations; some of these genes may be potentially controlled in different ways by the vinegrower to adjust final berry composition and reach a desired result.
Collapse
Affiliation(s)
- Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Agnès Destrac-Irvine
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
11
|
Pagliarani C, Boccacci P, Chitarra W, Cosentino E, Sandri M, Perrone I, Mori A, Cuozzo D, Nerva L, Rossato M, Zuccolotto P, Pezzotti M, Delledonne M, Mannini F, Gribaudo I, Gambino G. Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo" Grapes Over Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:1575. [PMID: 31867031 PMCID: PMC6904956 DOI: 10.3389/fpls.2019.01575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 05/05/2023]
Abstract
Several research studies were focused to understand how grapevine cultivars respond to environment; nevertheless, the biological mechanisms tuning this phenomenon need to be further deepened. Particularly, the molecular processes underlying the interplay between clones of the same cultivar and environment were poorly investigated. To address this issue, we analyzed the transcriptome of berries from three "Nebbiolo" clones grown in different vineyards, during two ripening seasons. RNA-sequencing data were implemented with analyses of candidate genes, secondary metabolites, and agronomical parameters. This multidisciplinary approach helped to dissect the complexity of clone × environment interactions, by identifying the molecular responses controlled by genotype, vineyard, phenological phase, or a combination of these factors. Transcripts associated to sugar signalling, anthocyanin biosynthesis, and transport were differently modulated among clones, according to changes in berry agronomical features. Conversely, genes involved in defense response, such as stilbene synthase genes, were significantly affected by vineyard, consistently with stilbenoid accumulation. Thus, besides at the cultivar level, clone-specific molecular responses also contribute to shape the agronomic features of grapes in different environments. This reveals a further level of complexity in the regulation of genotype × environment interactions that has to be considered for orienting viticultural practices aimed at enhancing the quality of grape productions.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | | | - Marco Sandri
- DMS StatLab, University of Brescia, Brescia, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Alessia Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Paola Zuccolotto
- Big&Open Data Innovation Laboratory, University of Brescia, Brescia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| |
Collapse
|
12
|
Martínez-Esteso MJ, Bru Martínez R. A Deep Proteomics Perspective Into Grape Berry Quality Traits During Ripening. Proteomics 2019. [PMID: 29528569 DOI: 10.1002/pmic.201800017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Discovery-based proteomics studies have an important role in the understanding of the biochemical processes that occur during grape berry ripening. The ripening process is relevant in determining grape berry quality. For a proteome analysis of grape berry ripening, Kambiranda et al. (2018) applied a label-free mass spectrometry-based quantitative approach. The authors reported the identification of proteins associated with the production flavor, aroma and ethylene production. Despite the valuable contribution of discovery-based proteomics studies, the picture is still incomplete. Future efforts in gaining proteome coverage would benefit the identification of proteins associated with grape berry quality traits.
Collapse
Affiliation(s)
- María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies "Ramon Margalef,", University of Alicante, Alicante, Spain
| | - Roque Bru Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies "Ramon Margalef,", University of Alicante, Alicante, Spain
| |
Collapse
|
13
|
Haque S, Ahmad JS, Clark NM, Williams CM, Sozzani R. Computational prediction of gene regulatory networks in plant growth and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:96-105. [PMID: 30445315 DOI: 10.1016/j.pbi.2018.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 05/22/2023]
Abstract
Plants integrate a wide range of cellular, developmental, and environmental signals to regulate complex patterns of gene expression. Recent advances in genomic technologies enable differential gene expression analysis at a systems level, allowing for improved inference of the network of regulatory interactions between genes. These gene regulatory networks, or GRNs, are used to visualize the causal regulatory relationships between regulators and their downstream target genes. Accordingly, these GRNs can represent spatial, temporal, and/or environmental regulations and can identify functional genes. This review summarizes recent computational approaches applied to different types of gene expression data to infer GRNs in the context of plant growth and development. Three stages of GRN inference are described: first, data collection and analysis based on the dataset type; second, network inference application based on data availability and proposed hypotheses; and third, validation based on in silico, in vivo, and in planta methods. In addition, this review relates data collection strategies to biological questions, organizes inference algorithms based on statistical methods and data types, discusses experimental design considerations, and provides guidelines for GRN inference with an emphasis on the benefits of integrative approaches, especially when a priori information is limited. Finally, this review concludes that computational frameworks integrating large-scale heterogeneous datasets are needed for a more accurate (e.g. fewer false interactions), detailed (e.g. discrimination between direct versus indirect interactions), and comprehensive (e.g. genetic regulation under various conditions and spatial locations) inference of GRNs.
Collapse
Affiliation(s)
- Samiul Haque
- Electrical and Computer Engineering, North Carolina State University, Raleigh, USA
| | - Jabeen S Ahmad
- Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Natalie M Clark
- Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Cranos M Williams
- Electrical and Computer Engineering, North Carolina State University, Raleigh, USA.
| | - Rosangela Sozzani
- Plant and Microbial Biology, North Carolina State University, Raleigh, USA.
| |
Collapse
|
14
|
Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. PROGRESS IN BOTANY 2019. [DOI: 10.1007/124_2019_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Christ B, Pluskal T, Aubry S, Weng JK. Contribution of Untargeted Metabolomics for Future Assessment of Biotech Crops. TRENDS IN PLANT SCIENCE 2018; 23:1047-1056. [PMID: 30361071 DOI: 10.1016/j.tplants.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 09/24/2018] [Indexed: 05/20/2023]
Abstract
The nutritional value and safety of food crops are ultimately determined by their chemical composition. Recent developments in the field of metabolomics have made it possible to characterize the metabolic profile of crops in a comprehensive and high-throughput manner. Here, we propose that state-of-the-art untargeted metabolomics technology should be leveraged for safety assessment of new crop products. We suggest generally applicable experimental design principles that facilitate the efficient and rigorous identification of both intended and unintended metabolic alterations associated with a newly engineered trait. Our proposition could contribute to increased transparency of the safety assessment process for new biotech crops.
Collapse
Affiliation(s)
- Bastien Christ
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sylvain Aubry
- Federal Office for Agriculture, 3003 Bern, Switzerland; Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Fasoli M, Richter CL, Zenoni S, Bertini E, Vitulo N, Dal Santo S, Dokoozlian N, Pezzotti M, Tornielli GB. Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. PLANT PHYSIOLOGY 2018; 178:1187-1206. [PMID: 30224433 PMCID: PMC6236592 DOI: 10.1104/pp.18.00559] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
Grapevine (Vitis vinifera) is a model for the investigation of physiological and biochemical changes during the formation and ripening of nonclimacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/midripening, and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/midripening phase. Coexpression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.
Collapse
Affiliation(s)
| | | | - Sara Zenoni
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | - Edoardo Bertini
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | - Nicola Vitulo
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | - Silvia Dal Santo
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | | | - Mario Pezzotti
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
17
|
Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. Putting primary metabolism into perspective to obtain better fruits. ANNALS OF BOTANY 2018; 122:1-21. [PMID: 29718072 PMCID: PMC6025238 DOI: 10.1093/aob/mcy057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2017] [Indexed: 05/18/2023]
Abstract
Background One of the key goals of fruit biology is to understand the factors that influence fruit growth and quality, ultimately with a view to manipulating them for improvement of fruit traits. Scope Primary metabolism, which is not only essential for growth but is also a major component of fruit quality, is an obvious target for improvement. However, metabolism is a moving target that undergoes marked changes throughout fruit growth and ripening. Conclusions Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Collapse
Affiliation(s)
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Univ. Bordeaux, Bordeaux Sci Agro, F-Villenave d’Ornon, France
| | | | | | - Annick Moing
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Léa Roch
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
18
|
Li R, Xie X, Ma F, Wang D, Wang L, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. Resveratrol accumulation and its involvement in stilbene synthetic pathway of Chinese wild grapes during berry development using quantitative proteome analysis. Sci Rep 2017; 7:9295. [PMID: 28839259 PMCID: PMC5571159 DOI: 10.1038/s41598-017-10171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Attention has become focused on resveratrol not only because of its role in grapevine fungal resistance but also because of its benefits in human health. This report describes the Chinese wild grapevine Vitis quinquangularis accession Danfeng-2 in relation to the high resveratrol content of its ripe berries. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) tandem mass spectrometry strategy to quantify and identify proteome changes, resulting in the detection of a total of 3,751 proteins produced under natural conditions. Among the proteins quantified, a total of 578 differentially expressed proteins were detected between Danfeng-2 and Cabernet Sauvignon during berry development. Differentially expressed proteins are involved in secondary metabolism, biotic stress, abiotic stress and transport activity and indicate novel biological processes in Chinese wild grapevine. Eleven proteins involved in phenylpropanoid metabolism and stilbene synthesis were differently expressed between Danfeng-2 and Cabernet Sauvignon at the veraison stage of berry development. These findings suggest that Chinese wild V. quinquangularis accession Danfeng-2 is an extremely important genetic resource for grape breeding and especially for increasing the resveratrol content of European grape cultivars for disease resistance and for improved human nutritional benefits.
Collapse
Affiliation(s)
- Ruimin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Lan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| |
Collapse
|
19
|
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC PLANT BIOLOGY 2017; 17:94. [PMID: 28558655 PMCID: PMC5450095 DOI: 10.1186/s12870-017-1043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Juli Petereit
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - David Toubiana
- Telekom Innovation, Laboratories and Cyber Security Research Center, Department of Information, Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, 84990 Midreshet Ben-Gurion, Israel
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
20
|
Fabres PJ, Collins C, Cavagnaro TR, Rodríguez López CM. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2017; 8:1065. [PMID: 28676813 PMCID: PMC5477006 DOI: 10.3389/fpls.2017.01065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple 'omics' can give us the opportunity to better understand how plants modulate their response to different environments. However, 'omics' technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different 'omic' results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.
Collapse
Affiliation(s)
- Pastor Jullian Fabres
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Cassandra Collins
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Carlos M. Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Carlos M. Rodríguez López,
| |
Collapse
|
21
|
du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:1261. [PMID: 28775728 PMCID: PMC5518647 DOI: 10.3389/fpls.2017.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.
Collapse
Affiliation(s)
- Kari du Plessis
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Philip R. Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Hans A. Eyéghé-Bickong
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- Institute for Grape and Wine Sciences, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- *Correspondence: Melané A. Vivier
| |
Collapse
|
22
|
Serrano A, Espinoza C, Armijo G, Inostroza-Blancheteau C, Poblete E, Meyer-Regueiro C, Arce A, Parada F, Santibáñez C, Arce-Johnson P. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1486. [PMID: 28936215 PMCID: PMC5594091 DOI: 10.3389/fpls.2017.01486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
Grapevine fruit development is a dynamic process that can be divided into three stages: formation (I), lag (II), and ripening (III), in which physiological and biochemical changes occur, leading to cell differentiation and accumulation of different solutes. These stages can be positively or negatively affected by multiple environmental factors. During the last decade, efforts have been made to understand berry development from a global perspective. Special attention has been paid to transcriptional and metabolic networks associated with the control of grape berry development, and how external factors affect the ripening process. In this review, we focus on the integration of global approaches, including proteomics, metabolomics, and especially transcriptomics, to understand grape berry development. Several aspects will be considered, including seed development and the production of seedless fruits; veraison, at which anthocyanin accumulation begins in the berry skin of colored varieties; and hormonal regulation of berry development and signaling throughout ripening, focusing on the transcriptional regulation of hormone receptors, protein kinases, and genes related to secondary messenger sensing. Finally, berry responses to different environmental factors, including abiotic (temperature, water-related stress and UV-B radiation) and biotic (fungi and viruses) stresses, and how they can significantly modify both, development and composition of vine fruit, will be discussed. Until now, advances have been made due to the application of Omics tools at different molecular levels. However, the potential of these technologies should not be limited to the study of single-level questions; instead, data obtained by these platforms should be integrated to unravel the molecular aspects of grapevine development. Therefore, the current challenge is the generation of new tools that integrate large-scale data to assess new questions in this field, and to support agronomical practices.
Collapse
Affiliation(s)
- Alejandra Serrano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carmen Espinoza
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Grace Armijo
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de TemucoTemuco, Chile
| | - Evelyn Poblete
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carlos Meyer-Regueiro
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Anibal Arce
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Francisca Parada
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudia Santibáñez
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Ecophysiology and Functional Genomic of Grapevine, Institut des Sciences de la Vigne et du Vin, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- *Correspondence: Patricio Arce-Johnson,
| |
Collapse
|
23
|
Pathway Analysis and Omics Data Visualization Using Pathway Genome Databases: FragariaCyc, a Case Study. Methods Mol Biol 2016. [PMID: 27987175 DOI: 10.1007/978-1-4939-6658-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The species-specific plant Pathway Genome Databases (PGDBs) based on the BioCyc platform provide a conceptual model of the cellular metabolic network of an organism. Such frameworks allow analysis of the genome-scale expression data to understand changes in the overall metabolisms of an organism (or organs, tissues, and cells) in response to various extrinsic (e.g. developmental and differentiation) and/or extrinsic signals (e.g. pathogens and abiotic stresses) from the surrounding environment. Using FragariaCyc, a pathway database for the diploid strawberry Fragaria vesca, we show (1) the basic navigation across a PGDB; (2) a case study of pathway comparison across plant species; and (3) an example of RNA-Seq data analysis using Omics Viewer tool. The protocols described here generally apply to other Pathway Tools-based PGDBs.
Collapse
|
24
|
Dal Santo S, Commisso M, D'Incà E, Anesi A, Stocchero M, Zenoni S, Ceoldo S, Tornielli GB, Pezzotti M, Guzzo F. The Terroir Concept Interpreted through Grape Berry Metabolomics and Transcriptomics. J Vis Exp 2016. [PMID: 27768042 DOI: 10.3791/54410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Terroir refers to the combination of environmental factors that affect the characteristics of crops such as grapevine (Vitis vinifera) according to particular habitats and management practices. This article shows how certain terroir signatures can be detected in the berry metabolome and transcriptome of the grapevine cultivar Corvina using multivariate statistical analysis. The method first requires an appropriate sampling plan. In this case study, a specific clone of the Corvina cultivar was selected to minimize genetic differences, and samples were collected from seven vineyards representing three different macro-zones during three different growing seasons. An untargeted LC-MS metabolomics approach is recommended due to its high sensitivity, accompanied by efficient data processing using MZmine software and a metabolite identification strategy based on fragmentation tree analysis. Comprehensive transcriptome analysis can be achieved using microarrays containing probes covering ~99% of all predicted grapevine genes, allowing the simultaneous analysis of all differentially expressed genes in the context of different terroirs. Finally, multivariate data analysis based on projection methods can be used to overcome the strong vintage-specific effect, allowing the metabolomics and transcriptomics data to be integrated and analyzed in detail to identify informative correlations.
Collapse
Affiliation(s)
| | | | | | - Andrea Anesi
- Biotechnology Department, University of Verona; Lab. of Bioorganic Chemistry, Physics Department, University of Trento
| | | | - Sara Zenoni
- Biotechnology Department, University of Verona
| | | | | | | | | |
Collapse
|
25
|
Gavazzi F, Braglia L, Mastromauro F, Gianì S, Morello L, Breviario D. The Tubulin-Based-Polymorphism Method Provides a Simple and Effective Alternative to the Genomic Profiling of Grape. PLoS One 2016; 11:e0163335. [PMID: 27643687 PMCID: PMC5028034 DOI: 10.1371/journal.pone.0163335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
The TBP (Tubulin-Based-Polymorphism) method, based on a nuclear ILP (Intron-Length-Polymorphism) molecular marker, has been used for genotyping 37 accessions of the genus Vitis inclusive of different species, rootstocks, wild and cultivated subspecies. A distinct DNA barcode made up by a different number of amplicons, was attributed to each of the different accessions. TBP data were compared with those obtained, with the use of an internationally validated set of six SSR markers. Genetic relationships among the different accessions, dendrogram distributions, correlation values and polymorphic index values (PICs) were definitively comparable when not in favor of TBP. Such an experimental consistency is based upon a genomic organization of the multiple members of the β-tubulin gene family, the targets of TBP-mediated amplification, that is conserved in Vitis as in any other plant species. The TBP amplicons can actually be used as a useful source of sequence polymorphisms for generating primer pairs capable of identifying specific cultivars in a simple assay. An example for the identification of the ‘Sangiovese’ cv. is reported. More generally, these data are discussed in terms of the actual advantages that the introduction of the TBP method in the field of grape characterization and genotyping can provide.
Collapse
Affiliation(s)
- Floriana Gavazzi
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Luca Braglia
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Francesco Mastromauro
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Silvia Gianì
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Laura Morello
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Diego Breviario
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
- * E-mail:
| |
Collapse
|
26
|
Rattanakan S, George I, Haynes PA, Cramer GR. Relative quantification of phosphoproteomic changes in grapevine (Vitis vinifera L.) leaves in response to abscisic acid. HORTICULTURE RESEARCH 2016; 3:16029. [PMID: 27366326 PMCID: PMC4916266 DOI: 10.1038/hortres.2016.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 05/08/2023]
Abstract
In a previous transcriptomic analysis, abscisic acid (ABA) was found to affect the abundance of a number of transcripts in leaves of Cabernet Sauvignon grapevines with roots that had been exposed to 10 μm ABA for 2 h. Other work has indicated that ABA affects protein abundance and protein phosphorylation as well. In this study we investigated changes in protein abundance and phosphorylation of Cabernet Sauvignon grapevine leaves. Protein abundance was assessed by both label-free and isobaric-label quantitive proteomic methods. Each identified common proteins, but also additional proteins not found with the other method. Overall, several thousand proteins were identified and several hundred were quantified. In addition, hundreds of phosphoproteins were identified. Tens of proteins were found to be affected in the leaf after the roots had been exposed to ABA for 2 h, more than half of them were phosphorylated proteins. Many phosphosites were confirmed and several new ones were identified. ABA increased the abundance of some proteins, but the majority of the proteins had their protein abundance decreased. Many of these proteins were involved in growth and plant organ development, including proteins involved in protein synthesis, photosynthesis, sugar and amino-acid metabolism. This study provides new insights into how ABA regulates plant responses and acclimation to water deficits.
Collapse
Affiliation(s)
- Supakan Rattanakan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Iniga George
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
27
|
Hopper DW, Ghan R, Schlauch KA, Cramer GR. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC PLANT BIOLOGY 2016; 16:118. [PMID: 27215785 PMCID: PMC4877820 DOI: 10.1186/s12870-016-0804-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Grapevine is a major food crop that is affected by global climate change. Consistent with field studies, dehydration assays of grapevine leaves can reveal valuable information of the plant's response at physiological, transcript, and protein levels. There are well-known differences in grapevine rootstocks responses to dehydration. We used time-series transcriptomic approaches combined with network analyses to elucidate and identify important physiological processes and network hubs that responded to dehydration in three different grapevine species differing in their drought tolerance. RESULTS Transcriptomic analyses of the leaves of Cabernet Sauvignon, Riparia Gloire, and Ramsey were evaluated at different times during a 24-h controlled dehydration. Analysis of variance (ANOVA) revealed that approximately 11,000 transcripts changed significantly with respect to the genotype x treatment interaction term and approximately 6000 transcripts changed significantly according to the genotype x treatment x time interaction term indicating massive differential changes in gene expression over time. Standard analyses determined substantial effects on the transcript abundance of genes involved in the metabolism and signaling of two known plant stress hormones, abscisic acid (ABA) and ethylene. ABA and ethylene signaling maps were constructed and revealed specific changes in transcript abundance that were associated with the known drought tolerance of the genotypes including genes such as VviABI5, VviABF2, VviACS2, and VviWRKY22. Weighted-gene coexpression network analysis (WGCNA) confirmed these results. In particular, WGCNA identified 30 different modules, some of which had highly enriched gene ontology (GO) categories for photosynthesis, phenylpropanoid metabolism, ABA and ethylene signaling. The ABA signaling transcription factors, VviABI5 and VviABF2, were highly connected hubs in two modules, one being enriched in gaseous transport and the other in ethylene signaling. VviABI5 was distinctly correlated with an early response and high expression for the drought tolerant Ramsey and with little response from the drought sensitive Riparia Gloire. These ABA signaling transcription factors were highly connected to VviSnRK1 and other gene hubs associated with sugar, ethylene and ABA signaling. CONCLUSION A leaf dehydration assay provided transcriptomic evidence for differential leaf responses to dehydration between genotypes differing in their drought tolerance. WGCNA proved to be a powerful network analysis approach; it identified 30 distinct modules (networks) with highly enriched GO categories and enabled the identification of gene hubs in these modules. Some of these genes were highly connected hubs in both the ABA and ethylene signaling pathways, supporting the hypothesis that there is substantial crosstalk between the two hormone pathways. This study identifies solid gene candidates for future investigations of drought tolerance in grapevine.
Collapse
Affiliation(s)
- Daniel W Hopper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|