1
|
Frisch E, Dussouillez C, McCartin C, Blumberger J, Humbert C, Lebeau L, Frisch B, Heurtault B, Kichler A, Fournel S. Reduction of Pro-Inflammatory Markers in RAW264.7 Macrophages by Polyethylenimines. Macromol Biosci 2024; 24:e2300492. [PMID: 38414380 DOI: 10.1002/mabi.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Indexed: 02/29/2024]
Abstract
The physiological problem of chronic inflammation and its associated pathologies attract ongoing attention with regard to methods for their control. Current systemic pharmacological treatments present problematic side effects. Thus, the possibility of new anti-inflammatory compounds with differing mechanisms of action or biophysical properties is enticing. Cationic polymers, with their ability to act as carriers for other molecules or to form bio-compatible materials, present one such possibility. Although not well described, several polycations such as chitosan and polyarginine, have displayed anti-inflammatory properties. The present work shows the ubiquitous laboratory transfection reagent, polyethylenimine (PEI) and more specifically low molecular weight branched PEI (B-PEI) as also possessing such properties. Using a RAW264.7 murine cell line macrophage as an inflammation model, it is found the B-PEI 700 Da as being capable of reducing the production of several pro-inflammatory molecules induced by the endotoxin lipopolysaccharide. Although further studies are required for elucidation of its mechanisms, the revelation that such a common lab reagent may present these effects has wide-ranging implications, as well as an abundance of possibilities.
Collapse
Affiliation(s)
- Emilie Frisch
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Candice Dussouillez
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Conor McCartin
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
| | - Juliette Blumberger
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
| | - Chana Humbert
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
| | - Luc Lebeau
- V-SAT Team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, Illkirch, F-67401, France
| | - Benoît Frisch
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Béatrice Heurtault
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Antoine Kichler
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Sylvie Fournel
- 3Bio Team, CAMB UMR7199, Faculté de Pharmacie, CNRS-Université de Strasbourg, 74 route du Rhin, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| |
Collapse
|
2
|
Li S, Liu P, Feng X, Du M, Zhang Y, Wang Y, Wang J. Mechanism of Tao Hong Decoction in the treatment of atherosclerosis based on network pharmacology and experimental validation. Front Cardiovasc Med 2023; 10:1111475. [PMID: 36776258 PMCID: PMC9909180 DOI: 10.3389/fcvm.2023.1111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Atherosclerosis (AS) has long been recognized as a cardiovascular disease and stroke risk factor. A well-known traditional Chinese medicine prescription, Tao Hong decoction (THD), has been proven effective in treating AS, but its mechanism of action is still unclear. Objective To assess the effects, explore THD's primary mechanism for treating AS, and provide a basis for rational interpretation of its prescription compatibility. Methods Based on network pharmacology, we evaluated the mechanism of THD on AS by data analysis, target prediction, the construction of PPI networks, and GO and KEGG analysis. AutoDockTools software to conduct Molecular docking. Then UPLC-Q-TOF-MS was used to identify significant constituents of THD. Furthermore, an AS mice model was constructed and intervened with THD. Immunofluorescence, RT-qPCR, and Western blot were used to verify the critical targets in animal experiments. Results The network pharmacology results indicate that eight core targets and seven core active ingredients play an essential role in this process. The GO and KEGG analysis results suggested that the mechanism is mainly involved in Fluid shear stress and atherosclerosis and Lipid and atherosclerosis. The molecular docking results indicate a generally strong affinity. The animal experiment showed that THD reduced plaque area, increased plaque stability, and decreased the levels of inflammatory cytokines (NF-κB, IL-1α, TNF-α, IL-6, IL-18, IL-1β) in high-fat diet -induced ApoE-/-mice. Decreased levels of PTGS2, HIF-1α, VEGFA, VEGFC, FLT-4, and the phosphorylation of PI3K, AKT, and p38 were detected in the THD-treated group. Conclusion THD plays a vital role in treating AS with multiple targets and pathways. Angiogenesis regulation, oxidative stress regulation, and immunity regulation consist of the crucial regulation cores in the mechanism. This study identified essential genes and pathways associated with the prognosis and pathogenesis of AS from new insights, demonstrating a feasible method for researching THD's chemical basis and pharmacology.
Collapse
|
3
|
Chung CH, Murphy CM, Wingate VP, Pavlicek JW, Nakashima R, Wei W, McCarty D, Rabinowitz J, Barton E. Production of rAAV by plasmid transfection induces antiviral and inflammatory responses in suspension HEK293 cells. Mol Ther Methods Clin Dev 2023; 28:272-283. [PMID: 36819978 PMCID: PMC9937832 DOI: 10.1016/j.omtm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is a clinically proven viral vector for delivery of therapeutic genes to treat rare diseases. Improving rAAV manufacturing productivity and vector quality is necessary to meet clinical and commercial demand. These goals will require an improved understanding of the cellular response to rAAV production, which is poorly defined. We interrogated the kinetic transcriptional response of HEK293 cells to rAAV production following transient plasmid transfection, under manufacturing-relevant conditions, using RNA-seq. Time-series analyses identified a robust cellular response to transfection and rAAV production, with 1,850 transcripts differentially expressed. Gene Ontology analysis determined upregulated pathways, including inflammatory and antiviral responses, with several interferon-stimulated cytokines and chemokines being upregulated at the protein level. Literature-based pathway prediction implicated multiple pathogen pattern sensors and signal transducers in up-regulation of inflammatory and antiviral responses in response to transfection and rAAV replication. Systematic analysis of the cellular transcriptional response to rAAV production indicates that host cells actively sense vector manufacture as an infectious insult. This dataset may therefore illuminate genes and pathways that influence rAAV production, thereby enabling the rational design of next-generation manufacturing platforms to support safe, effective, and affordable AAV-based gene therapies.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Christopher M. Murphy
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Vincent P. Wingate
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Jeffrey W. Pavlicek
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Reiko Nakashima
- Pfizer Inc., Worldwide Research, Development and Medical, Simulation and Modeling Sciences, Cambridge, MA 02139, USA
| | - Wei Wei
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Douglas McCarty
- Pfizer Inc., Worldwide Research, Development and Medical, Rare Disease Research Unit, Morrisville, NC 27560, USA
| | - Joseph Rabinowitz
- Pfizer Inc., Worldwide Research, Development and Medical, Rare Disease Research Unit, Morrisville, NC 27560, USA
| | - Erik Barton
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA,Corresponding author: Erik Barton, Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA.
| |
Collapse
|
4
|
Kakihara S, Matsuda Y, Hirabayashi K, Imai A, Iesato Y, Sakurai T, Kamiyoshi A, Tanaka M, Ichikawa-Shindo Y, Kawate H, Zhao Y, Zhang Y, Guo Q, Li P, Onishi N, Murata T, Shindo T. Role of Adrenomedullin 2/Intermedin in the Pathogenesis of Neovascular Age-Related Macular Degeneration. J Transl Med 2023; 103:100038. [PMID: 36870288 DOI: 10.1016/j.labinv.2022.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Adrenomedullin 2 (AM2; also known as intermedin) is a member of the adrenomedullin (AM) peptide family. Similarly to AM, AM2 partakes in a variety of physiological activities. AM2 has been reported to exert protective effects on various organ disorders; however, its significance in the eye is unknown. We investigated the role of AM2 in ocular diseases. The receptor system of AM2 was expressed more abundantly in the choroid than in the retina. In an oxygen-induced retinopathy model, physiological and pathologic retinal angiogenesis did not differ between AM2-knockout (AM2-/-) and wild-type mice. In contrast, in laser-induced choroidal neovascularization, a model of neovascular age-related macular degeneration, AM2-/- mice had enlarged and leakier choroidal neovascularization lesions, with exacerbated subretinal fibrosis and macrophage infiltration. Contrary to this, exogenous administration of AM2 ameliorated the laser-induced choroidal neovascularization-associated pathology and suppressed gene expression associated with inflammation, fibrosis, and oxidative stress, including that of VEGF-A, VEGFR-2, CD68, CTGF, and p22-phox. The stimulation of human adult retinal pigment epithelial (ARPE) cell line 19 cells with TGF-β2 and TNF-α induced epithelial-to-mesenchymal transition (EMT), whereas AM2 expression was also elevated. The induction of EMT was suppressed when the ARPE-19 cells were pretreated with AM2. A transcriptome analysis identified 15 genes, including mesenchyme homeobox 2 (Meox2), whose expression was significantly altered in the AM2-treated group compared with that in the control group. The expression of Meox2, a transcription factor that inhibits inflammation and fibrosis, was enhanced by AM2 treatment and attenuated by endogenous AM2 knockout in the early phase after laser irradiation. The AM2 treatment of endothelial cells inhibited endothelial to mesenchymal transition and NF-κB activation; however, this effect tended to be canceled following Meox2 gene knockdown. These results indicate that AM2 suppresses the neovascular age-related macular degeneration-related pathologies partially via the upregulation of Meox2. Thus, AM2 may be a promising therapeutic target for ocular vascular diseases.
Collapse
Affiliation(s)
- Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yorishige Matsuda
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Kazutaka Hirabayashi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Akira Imai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yasuhiro Iesato
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yan Zhang
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - QianQian Guo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Peixuan Li
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Naho Onishi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| |
Collapse
|
5
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
6
|
Bekhbat M, Ulukaya GB, Bhasin MK, Felger JC, Miller AH. Cellular and immunometabolic mechanisms of inflammation in depression: Preliminary findings from single cell RNA sequencing and a tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100462. [PMID: 35655933 PMCID: PMC9152104 DOI: 10.1016/j.ynstr.2022.100462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Inflammation is associated with symptoms of anhedonia, a core feature of major depression (MD). We have shown that MD patients with high inflammation as measured by plasma C-reactive protein (CRP) and anhedonia display gene signatures of metabolic reprograming (e.g., shift to glycolysis) necessary to sustain cellular immune activation. To gain preliminary insight into the immune cell subsets and transcriptomic signatures that underlie increased inflammation and its relationship with behavior in MD at the single-cell (sc) level, herein we conducted scRNA-Seq on peripheral blood mononuclear cells from a subset of medically-stable, unmedicated MD outpatients. Three MD patients with high CRP (>3 mg/L) before and two weeks after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab and three patients with low CRP (≤3 mg/L) were studied. Cell clusters were identified using a Single Cell Wizard pipeline, followed by pathway analysis. CD14+ and CD16+ monocytes were more abundant in MD patients with high CRP and were reduced by 29% and 55% respectively after infliximab treatment. Within CD14+ and CD16+ monocytes, genes upregulated in high CRP patients were enriched for inflammatory (phagocytosis, complement, leukocyte migration) and immunometabolic (hypoxia-inducible factor [HIF]-1, aerobic glycolysis) pathways. Shifts in CD4+ T cell subsets included ∼30% and ∼10% lower abundance of CD4+ central memory (TCM) and naïve cells and ∼50% increase in effector memory-like (TEM-like) cells in high versus low CRP patients. TCM cells of high CRP patients displayed downregulation of the oxidative phosphorylation (OXPHOS) pathway, a main energy source in this cell type. Following infliximab, changes in the number of CD14+ monocytes and CD4+ TEM-like cells predicted improvements in anhedonia scores (r = 1.0, p < 0.001). In sum, monocytes and CD4+ T cells from MD patients with increased inflammation exhibited immunometabolic reprograming in association with symptoms of anhedonia. These findings are the first step toward determining the cellular and molecular immune pathways associated with inflammatory phenotypes in MD, which may lead to novel immunomodulatory treatments of psychiatric illnesses with increased inflammation.
Collapse
|
7
|
Shams A, Shabani R, Asgari H, Karimi M, Najafi M, Asghari-Jafarabadi M, Razavi SM, Miri SR, Abbasi M, Mohammadi A, Koruji M. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid conjugated PLGA nanoparticles. Nanomedicine (Lond) 2022; 17:531-545. [PMID: 35264013 DOI: 10.2217/nnm-2021-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: MiRNA's-143 and -206 are powerful apoptotic regulators in cancer cells. This study aimed to use miRNA-143- and 206-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with folic acid to induce apoptosis in the EL4 cancer cells. Materials & methods: The therapy was conducted in six groups: Treatment with both miRNAs simultaneously (mixed miRNAs), miRNA-206 treatment, miRNA-143 treatment, blank PLGA, blank polyethylenimine (PEI) and complex PEI-miRNAs. Results: In terms of viability, in mixed miRNAs, no synergistic effect was observed on EL4 cell elimination. However, in the single miRNA-206 group, a stronger apoptotic effect was observed than the mixed miRNAs group and single miRNA-143 group alone. Conclusion: MiRNAs' apoptotic induction effects in cancer cells were found to be remarkable.
Collapse
Affiliation(s)
- Azar Shams
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics & Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohsen Razavi
- Clinic of Hematology & Oncology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Department of Surgical Oncology, Cancer Institute,Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohammadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
EGFR-HIF1α signaling positively regulates the differentiation of IL-9 producing T helper cells. Nat Commun 2021; 12:3182. [PMID: 34075041 PMCID: PMC8169867 DOI: 10.1038/s41467-021-23042-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin 9 (IL-9)-producing helper T (Th9) cells are essential for inducing anti-tumor immunity and inflammation in allergic and autoimmune diseases. Although transcription factors that are essential for Th9 cell differentiation have been identified, other signaling pathways that are required for their generation and functions are yet to be explored. Here, we identify that Epidermal Growth Factor Receptor (EGFR) is essential for IL-9 induction in helper T (Th) cells. Moreover, amphiregulin (Areg), an EGFR ligand, is critical for the amplification of Th9 cells induced by TGF-β1 and IL-4. Furthermore, our data show that Areg-EGFR signaling induces HIF1α, which binds and transactivates IL-9 and NOS2 promoters in Th9 cells. Loss of EGFR or HIF1α abrogates Th9 cell differentiation and suppresses their anti-tumor functions. Moreover, in line with its reliance on HIF1α expression, metabolomics profiling of Th9 cells revealed that Succinate, a TCA cycle metabolite, promotes Th9 cell differentiation and Th9 cell-mediated tumor regression.
Collapse
|
9
|
Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts. Oncogene 2019; 39:1914-1930. [PMID: 31754214 DOI: 10.1038/s41388-019-1112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a primary source of morbidity and mortality in cancer. Adrenomedullin (AM) is a multifunctional peptide regulated by receptor activity-modifying proteins (RAMPs). We previously reported that the AM-RAMP2 system is involved in tumor angiogenesis, but the function of the AM-RAMP3 system remains largely unknown. Here, we investigated the actions of the AM-RAMP2 and 3 systems in the tumor microenvironment and their impact on metastasis. PAN02 pancreatic cancer cells were injected into the spleens of mice, leading to spontaneous liver metastasis. Tumor metastasis was enhanced in vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-). By contrast, metastasis was suppressed in RAMP3-/- mice, where the number of podoplanin (PDPN)-positive cancer-associated fibroblasts (CAFs) was reduced in the periphery of tumors at metastatic sites. Because PDPN-positive CAFs are a hallmark of tumor malignancy, we assessed the regulation of PDPN and found that Src/Cas/PDPN signaling is mediated by RAMP3. In fact, RAMP3 deficiency CAFs suppressed migration, proliferation, and metastasis in co-cultures with tumor cells in vitro and in vivo. Moreover, the activation of RAMP2 in RAMP3-/- mice suppressed both tumor growth and metastasis. Based on these results, we suggest that the upregulation of PDPN in DI-E-RAMP2-/- mice increases malignancy, while the downregulation of PDPN in RAMP3-/- mice reduces it. Selective activation of RAMP2 and inhibition of RAMP3 would therefore be expected to suppress tumor metastasis. This study provides the first evidence that understanding and targeting to AM-RAMP systems could contribute to the development of novel therapeutics against metastasis.
Collapse
|
10
|
Brachs S, Polack J, Brachs M, Jahn-Hofmann K, Elvert R, Pfenninger A, Bärenz F, Margerie D, Mai K, Spranger J, Kannt A. Genetic Nicotinamide N-Methyltransferase ( Nnmt) Deficiency in Male Mice Improves Insulin Sensitivity in Diet-Induced Obesity but Does Not Affect Glucose Tolerance. Diabetes 2019; 68:527-542. [PMID: 30552109 DOI: 10.2337/db18-0780] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022]
Abstract
Antisense oligonucleotide knockdown (ASO-KD) of nicotinamide N-methyltransferase (NNMT) in high-fat diet (HFD)-fed mice has been reported to reduce weight gain and plasma insulin levels and to improve glucose tolerance. Using NNMT-ASO-KD or NNMT knockout mice (NNMT-/-), we tested the hypothesis that Nnmt deletion protects against diet-induced obesity and its metabolic consequences in males and females on obesity-inducing diets. We also examined samples from a human weight reduction (WR) study for adipose NNMT (aNNMT) expression and plasma 1-methylnicotinamide (MNAM) levels. In Western diet (WD)-fed female mice, NNMT-ASO-KD reduced body weight, fat mass, and insulin level and improved glucose tolerance. Although NNMT-/- mice fed a standard diet had no obvious phenotype, NNMT-/- males fed an HFD showed strongly improved insulin sensitivity (IS). Furthermore, NNMT-/- females fed a WD showed reduced weight gain, less fat, and lower insulin levels. However, no improved glucose tolerance was observed in NNMT-/- mice. Although NNMT expression in human fat biopsy samples increased during WR, corresponding plasma MNAM levels significantly declined, suggesting that other mechanisms besides aNNMT expression modulate circulating MNAM levels during WR. In summary, upon NNMT deletion or knockdown in males and females fed different obesity-inducing diets, we observed sex- and diet-specific differences in body composition, weight, and glucose tolerance and estimates of IS.
Collapse
Affiliation(s)
- Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - James Polack
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ralf Elvert
- Sanofi Research and Development, Frankfurt am Main, Germany
| | | | - Felix Bärenz
- Sanofi Research and Development, Frankfurt am Main, Germany
| | | | - Knut Mai
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinical Research Unit, Berlin Institute of Health (BIH), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinical Research Unit, Berlin Institute of Health (BIH), Berlin, Germany
| | - Aimo Kannt
- Sanofi Research and Development, Frankfurt am Main, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Study of Cathepsin B inhibition in VEGFR TKI treated human renal cell carcinoma xenografts. Oncogenesis 2019; 8:15. [PMID: 30796200 PMCID: PMC6386754 DOI: 10.1038/s41389-019-0121-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
Several therapeutic options are available for metastatic RCC, but responses are almost never complete, and resistance to therapy develops in the vast majority of patients. Consequently, novel treatments are needed to combat resistance to current therapies and to improve patient outcomes. We have applied integrated transcriptome and proteome analyses to identify cathepsin B (CTSB), a cysteine proteinase of the papain family, as one of the most highly upregulated gene products in established human RCC xenograft models of resistance to vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKI). We used established RCC models to test the significance of CTSB in the progression of renal cancer. Our evaluation of CTSB showed that stable CTSB knockdown suppressed RCC growth in vitro and in vivo. Stable over-overexpression of wild-type CTSB (CTSBwt/hi), but not of an CTSB active site mutant (CTSBN298A), rescued cell growth in CTSB knockdown cells and abolished the efficacy of VEGFR TKI treatment. Genome-wide transcriptome profiling of CTSB knockdown cells demonstrated significant effects on multiple metabolic and stem cell-related pathways, with ALDHA1A (ALDH1) as one of the most significantly downregulated genes. Importantly, survival analysis across 16 major TCGA cancers revealed that CTSB overexpression is associated with low rates of three and five year patient survival rates (P = 2.5e-08, HR = 1.4). These data strongly support a contribution of CTSB activity to RCC cell growth and tumorigenicity. They further highlight the promise of CTSB inhibition in development of novel combination therapies designed to improve efficacy of current TKI treatments of metastatic RCC.
Collapse
|
12
|
Singh PK, Khatri I, Jha A, Pretto CD, Spindler KR, Arumugaswami V, Giri S, Kumar A, Bhasin MK. Determination of system level alterations in host transcriptome due to Zika virus (ZIKV) Infection in retinal pigment epithelium. Sci Rep 2018; 8:11209. [PMID: 30046058 PMCID: PMC6060127 DOI: 10.1038/s41598-018-29329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Previously, we reported that Zika virus (ZIKV) causes ocular complications such as chorioretinal atrophy, by infecting cells lining the blood-retinal barrier, including the retinal pigment epithelium (RPE). To understand the molecular basis of ZIKV-induced retinal pathology, we performed a meta-analysis of transcriptome profiles of ZIKV-infected human primary RPE and other cell types infected with either ZIKV or other related flaviviruses (Japanese encephalitis, West Nile, and Dengue). This led to identification of a unique ZIKV infection signature comprising 43 genes (35 upregulated and 8 downregulated). The major biological processes perturbed include SH3/SH2 adaptor activity, lipid and ceramide metabolism, and embryonic organ development. Further, a comparative analysis of some differentially regulated genes (ABCG1, SH2B3, SIX4, and TNFSF13B) revealed that ZIKV induced their expression relatively more than dengue virus did in RPE. Importantly, the pharmacological inhibition of ABCG1, a membrane transporter of cholesterol, resulted in reduced ZIKV infectivity. Interestingly, the ZIKV infection signature revealed the downregulation of ALDH5A1 and CHML, genes implicated in neurological (cognitive impairment, expressive language deficit, and mild ataxia) and ophthalmic (choroideremia) disorders, respectively. Collectively, our study revealed that ZIKV induces differential gene expression in RPE cells, and the identified genes/pathways (e.g., ABCG1) could potentially contribute to ZIKV-associated ocular pathologies.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Indu Khatri
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Centre, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alokkumar Jha
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Centre, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carla D Pretto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | | | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Centre, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Samokhin AO, Stephens T, Wertheim BM, Wang RS, Vargas SO, Yung LM, Cao M, Brown M, Arons E, Dieffenbach PB, Fewell JG, Matar M, Bowman FP, Haley KJ, Alba GA, Marino SM, Kumar R, Rosas IO, Waxman AB, Oldham WM, Khanna D, Graham BB, Seo S, Gladyshev VN, Yu PB, Fredenburgh LE, Loscalzo J, Leopold JA, Maron BA. NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension. Sci Transl Med 2018; 10:eaap7294. [PMID: 29899023 PMCID: PMC6223025 DOI: 10.1126/scitranslmed.aap7294] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Germline mutations involving small mothers against decapentaplegic-transforming growth factor-β (SMAD-TGF-β) signaling are an important but rare cause of pulmonary arterial hypertension (PAH), which is a disease characterized, in part, by vascular fibrosis and hyperaldosteronism (ALDO). We developed and analyzed a fibrosis protein-protein network (fibrosome) in silico, which predicted that the SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) is a critical ALDO-regulated node underpinning pathogenic vascular fibrosis. Bioinformatics and microscale thermophoresis demonstrated that oxidation of Cys18 in the SMAD3 docking region of NEDD9 impairs SMAD3-NEDD9 protein-protein interactions in vitro. This effect was reproduced by ALDO-induced oxidant stress in cultured human pulmonary artery endothelial cells (HPAECs), resulting in impaired NEDD9 proteolytic degradation, increased NEDD9 complex formation with Nk2 homeobox 5 (NKX2-5), and increased NKX2-5 binding to COL3A1 Up-regulation of NEDD9-dependent collagen III expression corresponded to changes in cell stiffness measured by atomic force microscopy. HPAEC-derived exosomal signaling targeted NEDD9 to increase collagen I/III expression in human pulmonary artery smooth muscle cells, identifying a second endothelial mechanism regulating vascular fibrosis. ALDO-NEDD9 signaling was not affected by treatment with a TGF-β ligand trap and, thus, was not contingent on TGF-β signaling. Colocalization of NEDD9 with collagen III in HPAECs was observed in fibrotic pulmonary arterioles from PAH patients. Furthermore, NEDD9 ablation or inhibition prevented fibrotic vascular remodeling and pulmonary hypertension in animal models of PAH in vivo. These data identify a critical TGF-β-independent posttranslational modification that impairs SMAD3-NEDD9 binding in HPAECs to modulate vascular fibrosis and promote PAH.
Collapse
Affiliation(s)
- Andriy O Samokhin
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Thomas Stephens
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bradley M Wertheim
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lai-Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Minwei Cao
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcel Brown
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Arons
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Majed Matar
- Celsion Corporation, Lawrenceville, NJ 08648, USA
| | - Frederick P Bowman
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - George A Alba
- Department of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stefano M Marino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Biotechnology, Akdeniz University, Konyaaltı, Antalya 07058, Turkey
| | - Rahul Kumar
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan Scleroderma Program, Ann Arbor, MI 48109, USA
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sachiko Seo
- Department of Hematology and Oncology, National Cancer Research Center East, Kashiwa-shi, Chiba-ken 277-8577, Japan
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Malik S, Sadhu S, Elesela S, Pandey RP, Chawla AS, Sharma D, Panda L, Rathore D, Ghosh B, Ahuja V, Awasthi A. Transcription factor Foxo1 is essential for IL-9 induction in T helper cells. Nat Commun 2017; 8:815. [PMID: 28993609 PMCID: PMC5634439 DOI: 10.1038/s41467-017-00674-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/16/2017] [Indexed: 11/09/2022] Open
Abstract
Interleukin 9 (IL-9)-producing helper T (Th9) cells have a crucial function in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune responses. In addition to Th9, Th2, Th17 and Foxp3+ regulatory T (Treg) cells produce IL-9. A transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that the forkhead family transcription factor Foxo1 is required for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTreg cells. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells.The transcription factor Foxo1 can control regulatory T cell and Th1 function. Here the authors show that Foxo1 is also critical for IL-9 production by Th9 cells and other IL-9-producing cells.
Collapse
Affiliation(s)
- Sakshi Malik
- Center for Human Microbial Ecology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | - Srikanth Sadhu
- Center for Human Microbial Ecology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | - Srikanth Elesela
- Center for Human Microbial Ecology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | - Ramendra Pati Pandey
- Center for Human Microbial Ecology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | | | - Deepak Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Lipsa Panda
- Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi, 110007, India
| | - Deepak Rathore
- Center for Human Microbial Ecology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | - Balram Ghosh
- Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi, 110007, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Amit Awasthi
- Center for Human Microbial Ecology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
15
|
Nabzdyk CS, Pradhan-Nabzdyk L, LoGerfo FW. RNAi therapy to the wall of arteries and veins: anatomical, physiologic, and pharmacological considerations. J Transl Med 2017; 15:164. [PMID: 28754174 PMCID: PMC5534068 DOI: 10.1186/s12967-017-1270-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 12/02/2022] Open
Abstract
Background Cardiovascular disease remains a major health care challenge. The knowledge about the underlying mechanisms of the respective vascular disease etiologies has greatly expanded over the last decades. This includes the contribution of microRNAs, endogenous non-coding RNA molecules, known to vastly influence gene expression. In addition, short interference RNA has been established as a mechanism to temporarily affect gene expression. This review discusses challenges relating to the design of a RNA interference therapy strategy for the modulation of vascular disease. Despite advances in medical and surgical therapies, atherosclerosis (ATH), aortic aneurysms (AA) are still associated with high morbidity and mortality. In addition, intimal hyperplasia (IH) remains a leading cause of late vein and prosthetic bypass graft failure. Pathomechanisms of all three entities include activation of endothelial cells (EC) and dedifferentiation of vascular smooth muscle cells (VSMC). RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH, AA or IH. Successful RNAi delivery to the vessel wall faces multiple obstacles. These include the challenge of cell specific, targeted delivery of RNAi, anatomical barriers such as basal membrane, elastic laminae in arterial walls, multiple layers of VSMC, as well as adventitial tissues. Another major decision point is the route of delivery and potential methods of transfection. A plethora of transfection reagents and adjuncts have been described with varying efficacies and side effects. Timing and duration of RNAi therapy as well as target gene choice are further relevant aspects that need to be addressed in a temporo-spatial fashion. Conclusions While multiple preclinical studies reported encouraging results of RNAi delivery to the vascular wall, it remains to be seen if a single target can be sufficient to the achieve clinically desirable changes in the injured vascular wall in humans. It might be necessary to achieve simultaneous and/or sequential silencing of multiple, synergistically acting target genes. Some advances in cell specific RNAi delivery have been made, but a reliable vascular cell specific transfection strategy is still missing. Also, off-target effects of RNAi and unwanted effects of transfection agents on gene expression are challenges to be addressed. Close collaborative efforts between clinicians, geneticists, biologists, and chemical and medical engineers will be needed to provide tailored therapeutics for the various types of vascular diseases.
Collapse
Affiliation(s)
- Christoph S Nabzdyk
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Leena Pradhan-Nabzdyk
- Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA.
| | - Frank W LoGerfo
- Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Munkácsy G, Sztupinszki Z, Herman P, Bán B, Pénzváltó Z, Szarvas N, Győrffy B. Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e366. [PMID: 27673562 PMCID: PMC5056990 DOI: 10.1038/mtna.2016.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/31/2023]
Abstract
No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA) for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal–Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC) of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E−06). Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR) or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E−04). There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.
Collapse
Affiliation(s)
- Gyöngyi Munkácsy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Zsófia Sztupinszki
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Péter Herman
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Bence Bán
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zsófia Pénzváltó
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Nóra Szarvas
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Bodewes TCF, Johnson JM, Auster M, Huynh C, Muralidharan S, Contreras M, LoGerfo FW, Pradhan-Nabzdyk L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model. FASEB J 2016; 31:109-119. [PMID: 27671229 DOI: 10.1096/fj.201600501r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
In an effort to inhibit the response to vascular injury that leads to intimal hyperplasia, this study investigated the in vivo efficacy of intraluminal delivery of thrombospondin-2 (TSP-2) small interfering RNA (siRNA). Common carotid artery (CCA) balloon angioplasty injury was performed in rats. Immediately after denudation, CCA was transfected intraluminally (15 min) with one of the following: polyethylenimine (PEI)+TSP-2 siRNA, saline, PEI only, or PEI+control siRNA. CCA was analyzed at 24 h or 21 d by using quantitative real-time PCR and immunohistochemistry. TSP-2 gene and protein expression were significantly up-regulated after endothelial denudation at 24 h and 21 d compared with contralateral untreated, nondenuded CCA. Treatment with PEI+TSP-2 siRNA significantly suppressed TSP-2 gene expression (3.1-fold) at 24 h and TSP-2 protein expression, cell proliferation, and collagen deposition up to 21 d. These changes could be attributed to changes in TGF-β and matrix metalloproteinase-9, the downstream effectors of TSP-2. TSP-2 knockdown induced anti-inflammatory M2 macrophage polarization at 21 d; however, it did not significantly affect intima/media ratios. In summary, these data demonstrate effective siRNA transfection of the injured arterial wall and provide a clinically effective and translationally applicable therapeutic strategy that involves nonviral siRNA delivery to ameliorate the response to vascular injury.-Bodewes, T. C. F., Johnson, J. M., Auster, M., Huynh, C., Muralidharan, S., Contreras, M., LoGerfo, F. W., Pradhan-Nabzdyk, L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model.
Collapse
Affiliation(s)
- Thomas C F Bodewes
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands; and
| | - Joel M Johnson
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Auster
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Huynh
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Sriya Muralidharan
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank W LoGerfo
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|