1
|
Husain Z, Warsi ZI, Khan S, Mahendran G, Afroz S, Chandran A, Kashyap PK, Khatoon K, Parween G, Tandon S, Rahman LU. Metabolic engineering of hairy root cultures in Beta vulgaris for enhanced production of vanillin, 4-hydroxybenzoic acid, and vanillyl alcohol. Front Bioeng Biotechnol 2024; 12:1435190. [PMID: 39416280 PMCID: PMC11480924 DOI: 10.3389/fbioe.2024.1435190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The flavor of vanilla is a complex blend of compounds, with vanillin as the most prominent, along with vanillyl alcohol and 4-hydroxybenzoic acid. Natural vanillin extracted from vanilla beans is expensive, so researchers use heterologous synthesis to produce nature-identical vanillin in plant hosts. Consequently, alternative traditional farming and gathering methods are required to bridge the significant disparity between supply and demand. The current research successfully developed a method to induce hairy root formation from leaves. It integrated the Vanillin synthase (VpVAN) gene into transgenic hairy root lines of Beta vulgaris, synthesizing vanillin-related compounds. The presence of the VpVAN gene in transgenic roots was confirmed using PCR analysis. Additionally, RT-qPCR analysis demonstrated the expression of the VpVAN gene in the transgenic root lines. The transgenic hairy root clones H1, H2, and H5 showed enhanced vanillin production, vanillyl alcohol, and 4-hydroxybenzoic acid. Elicitation with methyl jasmonate (MJ) and salicylic acid (SA) further improved the production of these compounds in B. vulgaris hairy roots. The maximum hairy root biomass was observed after 60 days, with the maximum synthesis of vanillin and 4-hydroxybenzoic acid obtained from hairy root clones H5 and HR2, respectively. Vanillyl alcohol HR2 was obtained on the 45th day of cultivation. Elicitation with wound-associated hormone methyl jasmonate and salicylic acid enhanced the yield of vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid, with a 215-fold increase in vanillin, a 13-fold increase in vanillyl alcohol, and a 21 fold increase in 4-hydroxybenzoic acid. The study results indicate that establishing transgenic hairy root cultures with the VpVAN gene is a promising alternative method for enhancing the production of vanilla flavor compounds such as vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid. A cost-effective protocol has been developed to mass-produce phenolic compounds using a hairy root culture of B. vulgaris. This approach addresses the increasing demand for these substances while reducing the cost of natural vanillin production, making it suitable for industrial-scale applications.
Collapse
Affiliation(s)
- Zakir Husain
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Zafar Iqbal Warsi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Sana Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Ganesan Mahendran
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Shama Afroz
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Ashish Chandran
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Praveen Kumar Kashyap
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Kahkashan Khatoon
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Gazala Parween
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Laiq Ur Rahman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Fan R, Huang K, Zhao Z, Hao Y, Guan X, Luo H, Hao C. Genome-Wide Identification, Characterization, and Expression Analysis of the MYB-R2R3 Gene Family in Black Pepper ( Piper nigrum L.). Int J Mol Sci 2024; 25:9851. [PMID: 39337340 PMCID: PMC11432665 DOI: 10.3390/ijms25189851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Black pepper (Piper nigrum L.), a prominent spice crop, known as the "king of spices", originated from India. The growth and development of black pepper are influenced by various environmental conditions. MYB transcription factors play a crucial role in controlling metabolic processes, abiotic stress management, and plant growth and development. In this study, we identified 160 PnMYB transcription factors in the black pepper genome. Phylogenetic analysis was performed using 125 R2R3-MYB proteins from black pepper and Arabidopsis thaliana, resulting in the mapping of 20 groups on the phylogenetic tree, each containing members from both species. Most members of the PnMYB family possess two introns, and motif 3 and motif 4 are conserved in all members. The number of genes on each chromosome ranges from 1 to 10. Collinear analysis indicated the creation of new members through gene fragments and tandem replication. The Ka/Ks ratio indicated that purifying selection and positive selection acted on PnMYB of pepper. The majority of pepper PnMYB family members were in the nucleus. Significant differences in gene expression levels were observed between different species and infection periods when Piper nigrum L. and Piper flaviflorum were infected with Phytophthora capsici. These findings are valuable for future studies on the biological role and molecular mechanism of the PnMYB gene.
Collapse
Affiliation(s)
- Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning 571533, China
| | - Kai Huang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Zhican Zhao
- College of Tropical Crops, Yunnan Agricultural University, Pu'er 665099, China
| | - Yupeng Hao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueying Guan
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Haiyan Luo
- Tropical Croups Genetic Resources, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning 571533, China
| |
Collapse
|
3
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
4
|
Genome-wide comprehensive analysis of miRNAs and their target genes expressed in resistant and susceptible Capsicum annuum genotypes during Phytophthora capsici infection. Mol Genet Genomics 2023; 298:273-292. [PMID: 36418510 DOI: 10.1007/s00438-022-01979-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Despite extensive works on miRNA's role during plant-oomycete interaction, its role in Capsicum annuum-Phytophthora capsici pathosystem is not fully explored. Therefore, the present study was designed to identify known and novel miRNAs along with their target genes in two contrasting chili peppers genotypes, i.e., GojamMecha_9086 (resistant) and Dabat_80045 (susceptible) under P. capsici infection associated with modulating the defense response during disease pathogenesis. The result demonstrated 79 known miRNAs corresponding to 24 miRNAs families and 477 novel miRNAs along with 22,895 potential targets, including 30 defense-related target genes against P. capsici infection. The expression analysis of 29 known and 157 novel miRNAs in resistant and 30 known and 177 novel miRNAs in susceptible genotypes revealed differential accumulation patterns. qRT-PCR analysis of 8 defense-related miRNAs representing 4 novels (Pz-novel-miR428-1, Pz-novel-miR160-1, Pz-novel-miR1028-1, Pz-novel-miR204-1) and 4 known miRNAs (Pz-known-miR803-1, Pz-known-miR2059-1, Pz-known-miR2560-1, Pz-known-miR1872-1) revealed differential accumulation pattern in both resistant and susceptible genotypes. Additionally, validation of eight target genes of miRNAs using regional amplification quantitative RT-PCR (RA-PCR), a superior technique to 5'-RNA Ligase-Mediated-rapid amplification of cDNA ends (5' RLM-RACE), revealed expression of six target genes positively correlated with their corresponding miRNAs in RC versus RI leaf, while five target genes observed an inverse correlation with their corresponding miRNAs in SC versus SI leaf, suggesting their key role during disease response. The Pz-known-miR1872-PODs pair showed perfect inverse relation in all four samples. The significant findings of the current study provide comprehensive genome-wide information about the repertoire of miRNAs and their target genes expressed in resistant and susceptible chili pepper genotypes, which can serve as a valuable resource for better understanding the post-transcriptional regulatory mechanism during C. annuum-P. capsici pathosystem.
Collapse
|
5
|
Sreekumar S, Divya K, Joy N, Soniya EV. De novo transcriptome profiling unveils the regulation of phenylpropanoid biosynthesis in unripe Piper nigrum berries. BMC PLANT BIOLOGY 2022; 22:501. [PMID: 36284267 PMCID: PMC9597958 DOI: 10.1186/s12870-022-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Black pepper (Piper nigrum L.) is rich in bioactive compounds that make it an imperative constituent in traditional medicines. Although the unripe fruits have long been used in different Ayurvedic formulations, the mechanism of gene regulation resulting in the production of the bioactive compounds in black pepper is not much investigated. Exploring the regulatory factors favouring the production of bioactive compounds ultimately help to accumulate the medicinally important content of black pepper. The factors that enhance the biosynthesis of these compounds could be potential candidates for metabolic engineering strategies to obtain a high level production of significant biomolecules. RESULTS Being a non-model plant, de novo sequencing technology was used to unravel comprehensive information about the genes and transcription factors that are expressed in mature unripe green berries of P. nigrum from which commercially available black pepper is prepared. In this study, the key gene regulations involved in the synthesis of bioactive principles in black pepper was brought out with a focus on the highly expressed phenylpropanoid pathway genes. Quantitative real-time PCR analysis of critical genes and transcription factors in the different developmental stages from bud to the mature green berries provides important information useful for choosing the developmental stage that would be best for the production of a particular bioactive compound. Comparison with a previous study has also been included to understand the relative position of the results obtained from this study. CONCLUSIONS The current study uncovered significant information regarding the gene expression and regulation responsible for the bioactivity of black pepper. The key transcription factors and enzymes analyzed in this study are promising targets for achieving a high level production of significant biomolecules through metabolic engineering.
Collapse
Affiliation(s)
- Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kattupalli Divya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Nisha Joy
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - E V Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
6
|
Zhang F, Fan R, Yan L, Hu L, Su F, Yang D, Li J. Genome-wide identification of black pepper (Piper nigrum L.) Dof gene family and the differential gene screening in resistance to Phytophthora capsici. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH, Liu Y, Miao J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:919166. [PMID: 35873982 PMCID: PMC9298553 DOI: 10.3389/fpls.2022.919166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 05/14/2023]
Abstract
Drought stress (DS) is a serious abiotic stress and a major concern across the globe as its intensity is continuously climbing. Therefore, it is direly needed to develop new management strategies to mitigate the adverse effects of DS to ensure better crop productivity and food security. The use of arbuscular mycorrhizal fungi (AMF) has emerged as an important approach in recent years to improve crop productivity under DS conditions. AMF establishes a relationship with 80% of land plants and it induces pronounced impacts on plant growth and provides protection to plants from abiotic stress. Drought stress significantly reduces plant growth and development by inducing oxidative stress, disturbing membrane integrity, plant water relations, nutrient uptake, photosynthetic activity, photosynthetic apparatus, and anti-oxidant activities. However, AMF can significantly improve the plant tolerance against DS. AMF maintains membrane integrity, improves plant water contents, nutrient and water uptake, and water use efficiency (WUE) therefore, improve the plant growth under DS. Moreover, AMF also protects the photosynthetic apparatus from drought-induced oxidative stress and improves photosynthetic efficiency, osmolytes, phenols and hormone accumulation, and reduces the accumulation of reactive oxygen species (ROS) by increasing anti-oxidant activities and gene expression which provide the tolerance to plants against DS. Therefore, it is imperative to understand the role of AMF in plants grown under DS. This review presented the different functions of AMF in different responses of plants under DS. We have provided a detailed picture of the different mechanisms mediated by AMF to induce drought tolerance in plants. Moreover, we also identified the potential research gaps that must be fulfilled for a promising future for AMF. Lastly, nitrogen (N) is an important nutrient needed for plant growth and development, however, the efficiency of applied N fertilizers is quite low. Therefore, we also present the information on how AMF improves N uptake and nitrogen use efficiency (NUE) in plants.
Collapse
Affiliation(s)
- Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Liang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jianqun Miao
- School of Computer Information and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Fan R, Tao XY, Xia ZQ, Sim S, Hu LS, Wu BD, Wang QH, Hao CY. Comparative Transcriptome and Metabolome Analysis of Resistant and Susceptible Piper Species Upon Infection by the Oomycete Phytophthora Capsici. FRONTIERS IN PLANT SCIENCE 2022; 13:864927. [PMID: 35845707 PMCID: PMC9278165 DOI: 10.3389/fpls.2022.864927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 06/04/2023]
Abstract
Phytophthora capsici is a destructive oomycete pathogen that causes devastating disease in black pepper, resulting in a significant decline in yield and economic losses. Piper nigrum (black pepper) is documented as susceptible to P. capsici, whereas its close relative Piper flaviflorum is known to be resistant. However, the molecular mechanism underlying the resistance of P. flaviflorum remains obscure. In this study, we conducted a comparative transcriptome and metabolome analysis between P. flaviflorum and P. nigrum upon P. capsici infection and found substantial differences in their gene expression profiles, with altered genes being significantly enriched in terms relating to plant-pathogen interaction, phytohormone signal transduction, and secondary metabolic pathways, including phenylpropanoid biosynthesis. Further metabolome analysis revealed the resistant P. flaviflorum to have a high background endogenous ABA reservoir and time-course-dependent accumulation of ABA and SA upon P. capsici inoculation, while the susceptible P. nigrum had a high background endogenous IAA reservoir and time-course-dependent accumulation of JA-Ile, the active form of JA. Investigation of the phenylpropanoid biosynthesis metabolome further indicated the resistant P. flaviflorum to have more accumulation of lignin precursors than the susceptible P. nigrum, resulting in a higher accumulation after inoculation. This study provides an overall characterization of biologically important pathways underlying the resistance of P. flaviflorum, which theoretically explains the advantage of using this species as rootstock for the management of oomycete pathogen in black pepper production.
Collapse
Affiliation(s)
- Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Xiao-yuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Soonliang Sim
- Academy of Sciences Malaysia, Kuala Lumpur, Malaysia
| | - Li-song Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
| | - Bao-duo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| | - Qing-huang Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Chao-yun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
| |
Collapse
|
9
|
de Oliveira LF, Piovezani AR, Ivanov DA, Yoshida L, Segal Floh EI, Kato MJ. Selection and validation of reference genes for measuring gene expression in Piper species at different life stages using RT-qPCR analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:201-212. [PMID: 35007951 DOI: 10.1016/j.plaphy.2021.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The secondary metabolism of Piper species is known to produce a myriad of natural products from various biosynthetic pathways which, represent a rich source of previously uncharacterized chemical compounds. The determination of gene expression profiles in multiple tissue/organ samples could provide valuable clues towards understanding the potential biological functions of chemical changes in these plants. Studies on gene expression by RT-qPCR require particularly careful selection of suitable reference genes as a control for normalization. Here, we provide a study for the identification of reliable reference genes in P. arboreum, P. gaudichaudianum, P. malacophyllum, and P. tuberculatum, at two different life stages: 2-month-old seedlings and adult plants. To do this, annotated sequences were recovered from transcriptome datasets of the above listed Piper spp. These sequences were subjected to expression analysis using RT-qPCR, followed by analysis using the geNorm and NormFinder algorithms. A set of five genes were identified showing stable expression: ACT7 (Actin-7), Cyclophilin (Peptidyl-prolyl cis-trans isomerase), EF1α (Elongation factor 1-alpha), RNABP (RNA-binding protein), and UBCE (Ubiquitin conjugating enzyme). The universality of these genes was then validated using two target genes, ADC (arginine decarboxylase) and SAMDC (S-adenosylmethionine decarboxylase), which are involved in the biosynthesis of polyamines. We showed that normalization genes varied according to Piper spp., and we provide a list of recommended pairs of the best combination for each species. This study provides the first set of suitable candidate genes for gene expression studies in the four Piper spp. assayed, and the findings will facilitate subsequent transcriptomic and functional gene research.
Collapse
Affiliation(s)
- Leandro Francisco de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Amanda Rusiska Piovezani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil; Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Dimitre A Ivanov
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil; Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, Canada, N6A 3K7
| | - Leonardo Yoshida
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil
| | - Eny Iochevet Segal Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil.
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil
| |
Collapse
|
10
|
Rabuma T, Gupta OP, Yadav M, Chhokar V. Integrative RNA-Seq analysis of Capsicum annuum L. -Phytophthora capsici L. pathosystem reveals molecular cross-talk and activation of host defence response. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:171-188. [PMID: 35221578 PMCID: PMC8847656 DOI: 10.1007/s12298-021-01122-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Chili pepper (Capsicum annuum L.) is economically one of the most important spice. But, it's productivity is highly affected by the pathogen, Phytophthora capsici L. Our current understanding of the molecular mechanisms associated with the defence response in C. annuum-P. capsici pathosystem is limited. The current study used RNA-seq technology to dissect the genes associated with defence response against P. capsici infection in two contrasting landraces, i.e. GojamMecha_9086 (Resistant) and Dabat_80045 (Susceptible) exposed to P. capsici infection. The transcriptomes from four leaf samples (RC, RI, SC and SI) of chili pepper resulted in a total of 118,879 assembled transcripts along with 52,384 pooled unigenes. The enrichment analysis of the transcripts indicated 23 different KEGG pathways under five main categories. Out of 774 and 484 differentially expressed genes (DEGs) of two landraces (under study), respectively, 57 and 29 DEGs were observed as associated with defence responses against P. capsici infection in RC vs. RI and SC vs. SI leaf samples, respectively. qRT-PCR analysis of six randomly selected genes validated the results of Illumina NextSeq500 sequencing. A total of 58 transcription factor families (bHLH most abundant) and 2095 protein families (Protein kinase most abundant) were observed across all the samples with maximum hits in RI and SI samples. Expression analysis revealed differential regulation of genes associated with defence and signalling response with shared coordination of molecular function, cellular component and biological processing. The results presented here would enhance our present understanding of the defence response in chili pepper against P. capsici infection, which the molecular breeders could utilize to develop resistant chili genotypes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01122-y.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Manju Yadav
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| |
Collapse
|
11
|
Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, Mustafa NS, Zhang L. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45276-45295. [PMID: 33860891 DOI: 10.1007/s11356-021-13755-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/29/2021] [Indexed: 05/08/2023]
Abstract
Drought is a major environmental threat limiting worldwide crop production. Drought stress affects the tobacco quality and yield; therefore, the current research studies were undertaken to investigate the effectiveness of arbuscular mycorrhizal fungi (AMF) under drought stress on morphological and biochemical attributes of tobacco (Nicotiana tabacum L. variety Yunyan 87). AMF-inoculated and AMF-non-inoculated plants were maintained in a greenhouse and irrigated with a half-strength Hoagland solution (100 mL pot-1) once a week. At harvesting, the plant height, number of leaves, fresh and dry weights, mycorrhizal colonization, and concentration of leaf photosynthetic pigments and photosynthetic rate were measured. Data were statistically analyzed by ANOVA and the principal component (PCA) analyses. The effect of root colonization significantly increased biomass production and essential oil accumulation. Results showed that drought at mild and severe stressed levels significantly affected tobacco growth by decreasing plant height, biomass, and a number of leaves. However, inoculation of AMF considerably increased plant height, fresh and dry weights, chlorophyll (a, b), total chlorophyll, and carotenoid content by 43.84, 40.87 and 49.76, 185.29, 325.60, 173.12, and 211.49%, respectively. Compared with non-inoculated plants, AMF inoculation significantly enhanced the essential oil yield and the uptake of nitrogen, phosphorus, and potassium with the increase of 257.36, 102.71, and 90.76, 62.32, and 84.51%, respectively, in mild drought + AMF-treated plants. Similarly, the antioxidant enzymatic activity, glomalin-related soil protein (GRSP), and accumulation of phenols and flavonoids and osmolytes content were also significantly improved in inoculated plants under drought stress. Additionally, AMF inoculation significantly upregulated the lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) enzymes by 197 and 298.44% under drought conditions. These findings depicted that the symbiotic association of AMF improved the overall growth pattern and secondary metabolism in tobacco plants under severe drought stress conditions and may be used as an approaching source of important drugs in the field of pharmacology.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | | | - Mudassar Iqbal
- Department of Agricultural Chemistry, University of Agriculture, Peshawar, Peshawar, Pakistan
| | - Pingping Wang
- Shaanxi Tobacco Scientific Institution, Xi'an, 71000, China
| | | | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Negi A, George Kokkat J, Jasrotia RS, Madhavan S, Jaiswal S, Angadi UB, Iquebal MA, Kalathil Palliyarakkal M, Palaniyandi U, Rai A, Kumar D. Drought responsiveness in black pepper (Piper nigrum L.): Genes associated and development of a web-genomic resource. PHYSIOLOGIA PLANTARUM 2021; 172:669-683. [PMID: 33305409 DOI: 10.1111/ppl.13308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Black pepper (Piper nigrum L.; 2n = 52; Piperaceae), the king of spices, is a perennial, trailing woody flowering vine and has global importance with widespread dietary, medicinal, and preservative uses. It is an economically important germplasm cultivated for its fruit and the major cash crop in >30 tropical countries. Crop production is mainly affected by drought stress. The present study deals with the candidate gene identification from drought-affected black pepper leaf transcriptome generated by Illumina Hiseq2000. It also aims to mine putative molecular markers (namely SSRs, SNPs, and InDels) and generate primers for them. The identification of transcription factors and pathways involved in drought tolerance is also reported here. De novo transcriptome assembly was performed with trinity assembler. In total, 4914 differential expressed genes, 2110 transcriptional factors, 786 domains and 1137 families, 20,124 putative SSR markers, and 259,236 variants were identified. At2g30105 (unidentified gene containing leucine-rich repeats and ubiquitin-like domain), serine threonine protein kinase, Mitogen-activated protein kinase, Nucleotide Binding Site-Leucine Rich Repeat, Myeloblastosis-related proteins, basic helix-loop-helix are all found upregulated and are reported to be associated with plant tolerance against drought condition. All these information are catalogued in the Black Pepper Drought Transcriptome Database (BPDRTDb), freely accessible for academic use at http://webtom.cabgrid.res.in/bpdrtdb/. This database is a good foundation for the genetic improvement of pepper plants, breeding programmes, and mapping population of this crop. Putative markers can also be a reliable genomic resource to develop drought-tolerant variety for better black pepper productivity.
Collapse
Affiliation(s)
- Ankita Negi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Johnson George Kokkat
- Division of Crop Improvement & Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, India
| | - Rahul S Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Soumya Madhavan
- Division of Crop Improvement & Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa Basavanneppa Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Umadevi Palaniyandi
- Division of Crop Improvement & Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, India
- RBGRC, ICAR-IARI Regional Centre, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
13
|
Schnabel A, Athmer B, Manke K, Schumacher F, Cotinguiba F, Vogt T. Identification and characterization of piperine synthase from black pepper, Piper nigrum L. Commun Biol 2021; 4:445. [PMID: 33833371 PMCID: PMC8032705 DOI: 10.1038/s42003-021-01967-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/03/2021] [Indexed: 01/19/2023] Open
Abstract
Black pepper (Piper nigrum L.) is the world's most popular spice and is also used as an ingredient in traditional medicine. Its pungent perception is due to the interaction of its major compound, piperine (1-piperoyl-piperidine) with the human TRPV-1 or vanilloid receptor. We now identify the hitherto concealed enzymatic formation of piperine from piperoyl coenzyme A and piperidine based on a differential RNA-Seq approach from developing black pepper fruits. This enzyme is described as piperine synthase (piperoyl-CoA:piperidine piperoyl transferase) and is a member of the BAHD-type of acyltransferases encoded by a gene that is preferentially expressed in immature fruits. A second BAHD-type enzyme, also highly expressed in immature black pepper fruits, has a rather promiscuous substrate specificity, combining diverse CoA-esters with aliphatic and aromatic amines with similar efficiencies, and was termed piperamide synthase. Recombinant piperine and piperamide synthases are members of a small gene family in black pepper. They can be used to facilitate the microbial production of a broad range of medicinally relevant aliphatic and aromatic piperamides based on a wide array of CoA-donors and amine-derived acceptors, offering widespread applications.
Collapse
Affiliation(s)
- Arianne Schnabel
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany
| | - Benedikt Athmer
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany
| | - Kerstin Manke
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany
| | | | - Fernando Cotinguiba
- Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany.
| |
Collapse
|
14
|
Studies on the chemical and flavour qualities of white pepper (Piper nigrum L.) derived from grafted and non-grafted plants. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03600-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Schnabel A, Cotinguiba F, Athmer B, Yang C, Westermann B, Schaks A, Porzel A, Brandt W, Schumacher F, Vogt T. A piperic acid CoA ligase produces a putative precursor of piperine, the pungent principle from black pepper fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:569-581. [PMID: 31837062 DOI: 10.1111/tpj.14652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Black pepper (Piper nigrum L.) is known for its high content of piperine, a cinnamoyl amide derivative regarded as largely responsible for the pungent taste of this widely used spice. Despite its long history and worldwide use, the biosynthesis of piperine and related amides has been enigmatic up to now. In this report we describe a specific piperic acid CoA ligase from immature green fruits of P. nigrum. The corresponding enzyme was cloned and functionally expressed in E. coli. The recombinant enzyme displays a high specificity for piperic acid and does not accept the structurally related feruperic acid characterized by a similar C-2 extension of the general C6-C3 phenylpropanoid structure. The enzyme is also inactive with the standard set of hydroxycinnamic acids tested including caffeic acid, 4-coumaric acid, ferulic acid, and sinapic acid. Substrate specificity is corroborated by in silico modelling that suggests a perfect fit for the substrate piperic acid to the active site of the piperic acid CoA ligase. The CoA ligase gene shows its highest expression levels in immature green fruits, is also expressed in leaves and flowers, but not in roots. Virus-induced gene silencing provided some preliminary indications that the production of piperoyl-CoA is required for the biosynthesis of piperine in black pepper fruits.
Collapse
Affiliation(s)
- Arianne Schnabel
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Fernando Cotinguiba
- Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro/RJ, Brasil
| | - Benedikt Athmer
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Changqing Yang
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Angela Schaks
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Frank Schumacher
- Core Facility Vienna Botanical Gardens, Rennweg 14/2, 1030, Vienna, Austria
| | - Thomas Vogt
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| |
Collapse
|
16
|
Lau ET, Khew CY, Hwang SS. Transcriptomic analysis of pepper plants provides insights into host responses to Fusarium solani infestation. J Biotechnol 2020; 314-315:53-62. [PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023]
Abstract
Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
Collapse
Affiliation(s)
- Ee Tiing Lau
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia.
| | - Choy Yuen Khew
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia
| | - Siaw San Hwang
- School of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
17
|
Li X, Cao M, Ma W, Jia C, Li J, Zhang M, Liu C, Cao Z, Faruque MO, Hu X. Annotation of genes involved in high level of dihydromyricetin production in vine tea (Ampelopsis grossedentata) by transcriptome analysis. BMC PLANT BIOLOGY 2020; 20:131. [PMID: 32228461 PMCID: PMC7106717 DOI: 10.1186/s12870-020-2324-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Leaves of the medicinal plant Ampelopsis grossedentata, which is commonly known as vine tea, are used widely in the traditional Chinese beverage in southwest China. The leaves contain a large amount of dihydromyricetin, a compound with various biological activities. However, the transcript profiles involved in its biosynthetic pathway in this plant are unknown. RESULTS We conducted a transcriptome analysis of both young and old leaves of the vine tea plant using Illumina sequencing. Of the transcriptome datasets, a total of 52.47 million and 47.25 million clean reads were obtained from young and old leaves, respectively. Among 471,658 transcripts and 177,422 genes generated, 7768 differentially expressed genes were identified in leaves at these two stages of development. The phenylpropanoid biosynthetic pathway of vine tea was investigated according to the transcriptome profiling analysis. Most of the genes encoding phenylpropanoid biosynthesis enzymes were identified and found to be differentially expressed in different tissues and leaf stages of vine tea and also greatly contributed to the biosynthesis of dihydromyricetin in vine tea. CONCLUSIONS To the best of our knowledge, this is the first formal study to explore the transcriptome of A. grossedentata. The study provides an insight into the expression patterns and differential distribution of genes related to dihydromyricetin biosynthesis in vine tea. The information may pave the way to metabolically engineering plants with higher flavonoid content.
Collapse
Affiliation(s)
- Xiaohua Li
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minhui Cao
- Department of Chemistry, College of Science, Huazhong Agriculture University, Wuhan, Hubei China
| | - Weibo Ma
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei China
| | - Jinghuan Li
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingxing Zhang
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changchun Liu
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhenzhen Cao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei China
| | - Mohammad Omar Faruque
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuebo Hu
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
18
|
Wang R, Jiang H, Zhou Z, Guo H, Dong J. Physiological and transcriptome analysis reveal molecular mechanism in Salvia miltiorrhiza leaves of near-isogenic male fertile lines and male sterile lines. BMC Genomics 2019; 20:780. [PMID: 31655539 PMCID: PMC6815445 DOI: 10.1186/s12864-019-6173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Our previous study finds that male sterility in Salvia miltiorrhiza could result in stunted growth and reduced biomass, but their molecular mechanisms have not yet been revealed. In this article, we investigate the underlying mechanism of male sterility and its impact on plant growth and metabolic yield by using physiological analysis and mRNA sequencing (RNA-Seq). Results In this study, transcriptomic and physiological analysis were performed to identify the mechanism of male sterility in mutants and its impact on plant growth and metabolic yield. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it is found that the pathways are mainly enriched in processes including organ development, primary metabolic process and secondary metabolic process. Physiological analysis show that the chloroplast structure of male sterile mutants of S. miltiorrhiza is abnormally developed, which could result in decrease in leaf gas exchange (A, E and gs), chlorophyll fluorescence (Fv, Fm and Fv/Fm), and the chlorophyll content. Expression level of 7 differentially expressed genes involved in photosynthesis-related pathways is downregulated in male sterile lines of S. miltiorrhiza, which could explain the corresponding phenotypic changes in chlorophyll fluorescence, chlorophyll content and leaf gas exchange. Transcriptomic analysis establishes the role of disproportionating enzyme 1 (DPE1) as catalyzing the degradation of starch, and the role of sucrose synthase 3 (SUS3) and cytosolic invertase 2 (CINV2) as catalyzing the degradation of sucrose in the S. miltiorrhiza mutants. The results also confirm that phenylalanine ammonialyase (PAL) is involved in the biosynthesis of rosmarinic acid and salvianolic acid B, and flavone synthase (FLS) is an important enzyme catalyzing steps of flavonoid biosynthesis. Conclusions Our results from the physiological and transcriptome analysis reveal underlying mechanism of plant growth and metabolic yield in male sterile mutants, and provide insight into the crop yield of S. miltiorrhiza.
Collapse
Affiliation(s)
- Ruihong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Han Jiang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Ziyun Zhou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Guo
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
19
|
da Trindade R, Almeida L, Xavier L, Lins AL, Andrade EH, Maia JG, Mello A, Setzer WN, Ramos A, da Silva JK. Arbuscular Mycorrhizal Fungi Colonization Promotes Changes in the Volatile Compounds and Enzymatic Activity of Lipoxygenase and Phenylalanine Ammonia Lyase in Piper nigrum L. 'Bragantina'. PLANTS (BASEL, SWITZERLAND) 2019; 8:E442. [PMID: 31652848 PMCID: PMC6918320 DOI: 10.3390/plants8110442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been used to promote numerous benefits to plants. In this study, we evaluated the symbiosis between AMF species (Rhizophagus clarus, Claroideoglomus etunicatum) and Piper nigrum L. 'Bragantina'. Volatile compounds, lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) activities, and total phenolic content were monitored from 1 to 60 days post-inoculation (dpi). Hyphae, arbuscles, and vesicles were observed during the root colonization. In the leaves, AMF induced an increase of sesquiterpene hydrocarbons (54.0%-79.0%) and a decrease of oxygenated sesquiterpenes (41.3%-14.5%) at 7 dpi and 60 dpi (41.8%-21.5%), respectively. Cubenol, the main volatile compound of leaves, showed a significant decrease at 7 dpi (21.5%-0.28%) and 45 dpi (20.4%-18.42%). β-caryophyllene, the major volatile compound of the roots, displayed a significant reduction at 45 dpi (30.0%-20.0%). LOX increased in the roots at 21, 30, and 60 dpi. PAL was higher in leaves during all periods, except at 60 dpi, and increased at 21 and 45 dpi in the roots. The total phenolic content showed a significant increase only in the roots at 30 dpi. The results suggested that AMF provided changes in the secondary metabolism of P. nigrum, inducing its resistance.
Collapse
Affiliation(s)
- Rafaela da Trindade
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Laís Almeida
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Luciana Xavier
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Alba Lúcia Lins
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, PA 66077-830, Brazil.
| | | | - José Guilherme Maia
- Departamento de Química, Universidade Federal do Maranhão, São Luís, MA 65080-805, Brazil.
| | - Andréa Mello
- Instituto de Estudos de Desenvolvimento Agrário Regional, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68507-590, Brazil.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| | - Alessandra Ramos
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68507-590, Brazil.
| | - Joyce Kelly da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| |
Collapse
|
20
|
Umadevi P, Suraby EJ, Anandaraj M, Nepolean T. Identification of stable reference gene for transcript normalization in black pepper- Phytophthora capsici pathosystem. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:945-952. [PMID: 31402818 PMCID: PMC6656827 DOI: 10.1007/s12298-019-00653-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 06/10/2023]
Abstract
A systematic validation of reference genes is a pre-requisite for the proper normalization of gene transcripts. In the present study, the annotated sequences from black pepper (Piper nigrum L.) leaf transcriptome were used as reference genes namely actin (PnACT), glyceraldehyde phosphate dehydrogenase (PnGAPDH), β-tubulin (PnTUB), ubiquitin conjugating enzyme (PnUBCE), 18srRNA and elongation factor-1-α (PnElF) to identify the stable reference gene. We focused the selection of stable reference gene on important biotic stress (Phytophthora) with different algorithms (geNorm, NormFinder and BestKeeper) along with Reffinder which resulted in identification of PnGAPDH and PnUBCE as stable genes. Norm qPCR (R package) was also used to estimate the stability of the selected genes. We elucidated the expression patterns of a target gene PnBGLU which codes for 1,3 beta glucanase with most stable as well as least stable reference genes by which the importance of selecting the stable gene for gene expression studies in this system was emphasized. The mean expression levels of PnBGLU was significantly overestimated and misinterpreted when least stable reference gene was used as normalizer. The selected reference genes on further analysis of the expression dynamics of PnBGLU among resistant and susceptible genotypes showed PnGAPDH as the suitable reference gene for P. nigrum-P. capsici pathosystem.
Collapse
Affiliation(s)
- P. Umadevi
- Division of Crop Improvement and Biotechnology, ICAR- Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala 673012 India
| | - E. J. Suraby
- Division of Crop Protection, ICAR- Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala 673012 India
| | - M. Anandaraj
- Division of Crop Protection, ICAR- Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala 673012 India
| | - T. Nepolean
- ICAR- Indian Institute of Agricultural Research, New Delhi, 110012 India
| |
Collapse
|
21
|
Expanding Phaseolus coccineus Genomic Resources: De Novo Transcriptome Assembly and Analysis of Landraces 'Gigantes' and 'Elephantes' Reveals Rich Functional Variation. Biochem Genet 2019; 57:747-766. [PMID: 30997627 DOI: 10.1007/s10528-019-09920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Beans are one of the most important staple crops in the world. Runner bean (Phaseolus coccineus L.) is a small-scale agriculture crop compared to common bean (Phaseolusvulgaris). Beans have been introduced to Europe from the Central America to Europe and since then they have been scattered to different geographical regions. This has resulted in the generation of numerous local cultivars and landraces with distinguished characters and adaptive potential. To identify and characterize the underlying genomic variation of two very closely related runner bean cultivars, we performed RNA-Seq with de novo transcriptome assembly in two landraces of P. coccineus, 'Gigantes' and 'Elephantes' phenotypically distinct, differing in seed size and shape. The cleaned reads generated 37,379 and 37,774 transcripts for 'Gigantes' and 'Elephantes,' respectively. A total of 1896 DEGs were identified between the two cultivars, 1248 upregulated in 'Elephantes' and 648 upregulated in 'Gigantes.' A significant upregulation of defense-related genes was observed in 'Elephantes,' among those, numerous members of the AP2-EREBP, WRKY, NAC, and bHLH transcription factor families. In total, 3956 and 4322 SSRs were identified in 'Gigantes' and 'Elephantes,' respectively. Trinucleotide repeats were the most dominant repeat motif, accounting for 41.9% in 'Gigantes' and 40.1% in 'Elephantes' of the SSRs identified, followed by dinucleotide repeats (29.1% in both cultivars). Additionally, 19,281 putative SNPs were identified, among those 3161 were non-synonymous, thus having potential functional implications. High-confidence non-synonymous SNPs were successfully validated with an HRM assay, which can be directly adopted for P. coccineus molecular breeding. These results significantly expand the number of polymorphic markers within P. coccineus genus, enabling the robust identification of runner bean cultivars, the construction of high-resolution genetic maps, potentiating genome-wide association studies. They finally contribute to the genetic reservoir for the improvement of the closely related and intercrossable Phaseolus vulgaris.
Collapse
|
22
|
Hao CY, Fan R, Qin XW, Hu LS, Tan LH, Xu F, Wu BD. Characterization of volatile compounds in ten Piper species cultivated in Hainan Island, South China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1446147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Chao-Yun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Xiao-Wei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
| | - Li-Song Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| | - Le-He Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Bao-Duo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| |
Collapse
|
23
|
Liang N, Cheng D, Liu Q, Cui J, Luo C. Difference of proteomics vernalization-induced in bolting and flowering transitions of Beta vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:222-232. [PMID: 29253800 DOI: 10.1016/j.plaphy.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Sugar beet (Beta vulgaris) is a biennial crop that accounts for 30% sugar production of the world. Vernalization is an essential factor for sugar beet reproductative growth under long days. Although genes association with bolting and flowering were well explored, the difference of proteomics in the two growth stages were still poorly understood. To address the molecular mechanism at the level of proteins, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach was employed to the three different growth stages (germination, bolting, flowering) of vernalized samples and the corresponding stage germination (17W weeks), 19W and 20W of nonvernalized samples. A total of 1110 peptides, 842 unique peptides and 570 proteins were identified. Most of them were assigned to phenylpropanoid biosynthesis, hormone metabolism and protein processing pathway. IAA and Gibberellins (GA3) promoted growth and development in a threshold manner at growth stage germination after vernalization. A novel discovery was that IAA biosynthetic pathway of sugar beet was the Trp-dependent. In addition, two predominant pathways of protein processing association with vernalization were also identified in sugar beet at growth stage flowering. This study provided an in-depth understanding of the molecular mechanism of vernalization at the level of proteomics.
Collapse
Affiliation(s)
- Naiguo Liang
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Dayou Cheng
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China.
| | - Qiaohong Liu
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Jie Cui
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Chengfei Luo
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| |
Collapse
|
24
|
Gao FX, Wang Y, Zhang QY, Mou CY, Li Z, Deng YS, Zhou L, Gui JF. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes. BMC Genomics 2017; 18:561. [PMID: 28738780 PMCID: PMC5525251 DOI: 10.1186/s12864-017-3945-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. Results To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A+, candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A+, F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as “chemokine signaling pathway”, “Toll-like receptor signaling pathway” and others, were remarkably much more than those from clone A+ and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A+. In contrast to strong immune defense in resistant clone H, susceptible clone A+ showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A+ failed to resist virus offensive and evidently induced apoptosis or death. Conclusions Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3945-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuan-Sheng Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|