1
|
Song L, Wang Y, Qiu F, Li X, Li J, Liang W. FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection. THE NEW PHYTOLOGIST 2025; 245:1688-1704. [PMID: 39648535 DOI: 10.1111/nph.20337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) that causes a globally devastating wilt disease on tomato relies on the secretion of numerous effectors to mount an infection, but how the pathogenic fungus precisely regulates expression of effector genes during plant invasion remains elusive. Here, using molecular and cellular approaches, we show that the histone H4K8 acetyltransferase FolSas2 is a transcriptional regulator of early effector gene expression in Fol. Autoacetylation of FolSas2 on K269 represses K335 ubiquitination, preventing its degradation by the 26S proteasome. During the early infection process, Fol elevates FolSas2 acetylation by differentially changing transcription of itself and the FolSir1 deacetylase, leading to specific accumulation of the enzyme at this stage. FolSas2 subsequently activates the expression of an array of effectors genes, and as a consequence, Fol invades tomato successfully. These findings reveal a regulatory mechanism of effector gene expression via autoacetylation of a histone modifier during plant fungal invasion.
Collapse
Affiliation(s)
- Limin Song
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yalei Wang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fahui Qiu
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxia Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingtao Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
2
|
Zhang N, Hu J, Liu Z, Liang W, Song L. Sir2-mediated cytoplasmic deacetylation facilitates pathogenic fungi infection in host plants. THE NEW PHYTOLOGIST 2024; 241:1732-1746. [PMID: 38037458 DOI: 10.1111/nph.19438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Lysine acetylation is an evolutionarily conserved and widespread post-translational modification implicated in the regulation of multiple metabolic processes, but its function remains largely unknown in plant pathogenic fungi. A comprehensive analysis combined with proteomic, molecular and cellular approaches was presented to explore the roles of cytoplasmic acetylation in Fusarium oxsysporum f.sp. lycopersici (Fol). The divergent cytoplasmic deacetylase FolSir2 was biochemically characterized, which is contributing to fungal virulence. Based on this, a total of 1752 acetylated sites in 897 proteins were identified in Fol via LC-MS/MS analysis. Further analyses of the quantitative acetylome revealed that 115 proteins representing two major pathways, translational and ribosome biogenesis, were hyperacetylated in the ∆Folsir2 strain. We experimentally examined the regulatory roles of FolSir2 on K271 deacetylation of FolGsk3, a serine/tyrosine kinase implicated in a variety of cellular functions, which was found to be crucial for the activation of FolGsk3 and thus modulated Fol pathogenicity. Cytoplasmic deacetylation by FolSir2 homologues has a similar function in Botrytis cinerea and likely other fungal pathogens. These findings reveal a conserved mechanism of silent information regulator 2-mediated cytoplasmic deacetylation that is involved in plant-fungal pathogenicity, providing a candidate target for designing broad-spectrum fungicides to control plant diseases.
Collapse
Affiliation(s)
- Ning Zhang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jicheng Hu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhishan Liu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Limin Song
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
3
|
Zhu J, Guo W, Lan Y. Global Analysis of Lysine Lactylation of Germinated Seeds in Wheat. Int J Mol Sci 2023; 24:16195. [PMID: 38003390 PMCID: PMC10671351 DOI: 10.3390/ijms242216195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein lactylation is a newly discovered posttranslational modification (PTM) and is involved in multiple biological processes, both in mammalian cells and rice grains. However, the function of lysine lactylation remains unexplored in wheat. In this study, we performed the first comparative proteomes and lysine lactylomes during seed germination of wheat. In total, 8000 proteins and 927 lactylated sites in 394 proteins were identified at 0 and 12 h after imbibition (HAI). Functional enrichment analysis showed that glycolysis- and TCA-cycle-related proteins were significantly enriched, and more differentially lactylated proteins were enriched in up-regulated lactylated proteins at 12 HAI vs. 0 HAI through the KEGG pathway and protein domain enrichment analysis compared to down-regulated lactylated proteins. Meanwhile, ten particularly preferred amino acids near lactylation sites were found in the embryos of germinated seeds: AA*KlaT, A***KlaD********A, KlaA**T****K, K******A*Kla, K*Kla********K, KlaA******A, Kla*A, KD****Kla, K********Kla and KlaG. These results supplied a comprehensive profile of lysine lactylation of wheat and indicated that protein lysine lactylation played important functions in several biological processes.
Collapse
Affiliation(s)
- Junke Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Weiwei Guo
- College of Agronomy, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology/Shandong Engineering Research Center of Germplasm, Innovation and Utilization of Salt-Tolerant Crops, Qingdao 266109, China
| | - Yubin Lan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
- National Sub-Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Shandong University of Technology, Zibo 255000, China
- Academy of Ecological Unmanned Farm, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
4
|
Zhou Y, Lu X, Hao J, Li S. Quantitative Acetylome Analysis of Differentially Modified Proteins in Virulence-Differentiated Fusarium oxysporum f. sp. cucumerinum Isolates during Cucumber Colonization. J Fungi (Basel) 2023; 9:920. [PMID: 37755028 PMCID: PMC10532600 DOI: 10.3390/jof9090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium oxysporum f. sp. cucumerinum (Foc) is a prominent pathogen that adversely affects cucumber (Cucumis sativus) production. In the pathogen's parasitic lifestyle, the pathogenesis and virulence evolution may be regulated by lysine acetylation, as demonstrated in many living organisms. However, its specific function in Foc remains poorly understood. In this study, the acetylome profiles of a mild virulence strain (foc-3b) and its derived virulence-enhanced strain (Ra-4) were analyzed before and post-inoculation on cucumber plants. In total, 10,664 acetylation sites were identified corresponding to 3874 proteins, and 45 conserved acetylation motifs were detected. Through comparison of the acetylomes, numerous differentially lysine-acetylated proteins were enriched in energy metabolism and protein processing processes, indicating the critical role of lysine acetylation during the transition from the saprotrophic lifestyle to the parasitic lifestyle. Comparative acetylome analyses on the two virulence-differentiated strains revealed that several differentially lysine-acetylated proteins were involved in pathways of defense response and energy metabolism. Ra-4 showed enhanced energy metabolism compared to foc-3b. This indicates that robust metabolic activity is required to achieve high virulence and facilitating adaptive evolution. Additionally, faster host responses are supported by an ample energy supply enhancing virulence. Thus, lysine acetylation plays a crucial role in the pathogenesis and virulence evolution of Foc.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohong Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Shidong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Guo W, Han J, Li X, He Z, Zhang Y. Large-scale analysis of protein crotonylation reveals its diverse functions in Pinellia ternata. BMC PLANT BIOLOGY 2022; 22:457. [PMID: 36151520 PMCID: PMC9502611 DOI: 10.1186/s12870-022-03835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pinellia ternata is an important traditional medicine in China, and its growth is regulated by the transcriptome or proteome. Lysine crotonylation, a newly identified and important type of posttranslational modification, plays a key role in many aspects of cell metabolism. However, little is known about its functions in Pinellia ternata. RESULTS In this study, we generated a global crotonylome analysis of Pinellia ternata and examined its overlap with lysine succinylation. A total of 2106 crotonylated sites matched on 1006 proteins overlapping in three independent tests were identified, and we found three specific amino acids surrounding crotonylation sites in Pinellia ternata: KcrF, K***Y**Kcr and Kcr****R. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that two crucial alkaloid biosynthesis-related enzymes and many stress-related proteins were also highly crotonylated. Furthermore, several enzymes participating in carbohydrate metabolism pathways were found to exhibit both lysine crotonylation and succinylation modifications. CONCLUSIONS These results indicate that lysine crotonylation performs important functions in many biological processes in Pinellia ternata, especially in the biosynthesis of alkaloids, and some metabolic pathways are simultaneously regulated by lysine crotonylation and succinylation.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Jiayi Han
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Zihan He
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
6
|
Song L, Zhan H, Wang Y, Lin Z, Li B, Shen L, Jiao Y, Li Y, Wang F, Yang J. Cross-Talk of Protein Expression and Lysine Acetylation in Response to TMV Infection in Nicotiana benthamiana. ACS OMEGA 2022; 7:32496-32511. [PMID: 36120045 PMCID: PMC9475610 DOI: 10.1021/acsomega.2c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Lysine acetylation (Kac), a reversible PTM, plays an essential role in various biological processes, including those involving metabolic pathways, pathogen resistance, and transcription, in both prokaryotes and eukaryotes. TMV, the major factor that causes the poor quality of Solanaceae crops worldwide, directly alters many metabolic processes in tobacco. However, the extent and function of Kac during TMV infection have not been determined. The validation test to detect Kac level and viral expression after TMV infection and Nicotinamide (NAM) treatment clarified that acetylation was involved in TMV infection. Furthermore, we comprehensively analyzed the changes in the proteome and acetylome of TMV-infected tobacco (Nicotiana benthamiana) seedlings via LC-MS/MS in conjunction with highly sensitive immune-affinity purification. In total, 2082 lysine-acetylated sites on 1319 proteins differentially expressed in response to TMV infection were identified. Extensive bioinformatic studies disclosed changes in acetylation of proteins engaged in cellular metabolism and biological processes. The vital influence of Kac in fatty acid degradation and alpha-linolenic acid metabolism was also revealed in TMV-infected seedlings. This study first revealed Kac information in N. benthamiana under TMV infection and expanded upon the existing landscape of acetylation in pathogen infection.
Collapse
Affiliation(s)
- Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Wang
- Luoyang
Branch of Henan Tobacco Company, Luoyang 471000, China
| | - Zhonglong Lin
- Yunnan
Tobacco Company of the China National Tobacco Corporation, Kunming 650011, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yubing Jiao
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Lv F, Xu Y, Gabriel DW, Wang X, Zhang N, Liang W. Quantitative Proteomic Analysis Reveals Important Roles of the Acetylation of ER-Resident Molecular Chaperones for Conidiation in Fusarium oxysporum. Mol Cell Proteomics 2022; 21:100231. [PMID: 35398590 PMCID: PMC9134102 DOI: 10.1016/j.mcpro.2022.100231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Fusarium oxysporum is one of the most abundant and diverse fungal species found in soils and includes nonpathogenic, endophytic, and pathogenic strains affecting a broad range of plant and animal hosts. Conidiation is the major mode of reproduction in many filamentous fungi, but the regulation of this process is largely unknown. Lysine acetylation (Kac) is an evolutionarily conserved and widespread posttranslational modification implicated in regulation of multiple metabolic processes. A total of 62 upregulated and 49 downregulated Kac proteins were identified in sporulating mycelia versus nonsporulating mycelia of F. oxysporum. Diverse cellular proteins, including glycolytic enzymes, ribosomal proteins, and endoplasmic reticulum–resident molecular chaperones, were differentially acetylated in the sporulation process. Altered Kac levels of three endoplasmic reticulum–resident molecular chaperones, PDIK70, HSP70K604, and HSP40K32 were identified that with important roles in F. oxysporum conidiation. Specifically, K70 acetylation (K70ac) was found to be crucial for maintaining stability and activity of protein disulphide isomerase and the K604ac of HSP70 and K32ac of HSP40 suppressed the detoxification ability of these heat shock proteins, resulting in higher levels of protein aggregation. During conidial formation, an increased level of PDIK70ac and decreased levels of HSP70K604ac and HSP40K32ac contributed to the proper processing of unfolded proteins and eliminated protein aggregation, which is beneficial for dramatic cell biological remodeling during conidiation in F. oxysporum. Importance and levels of acetylation in conidiation of Fusarium oxysporum. Protein folding was regulated by acetylation during conidiation. Acetylation modulates activities of ER-resident molecular chaperones.
Collapse
Affiliation(s)
- Fangjiao Lv
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yang Xu
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Xue Wang
- Department of Plant Protection, Yantai Agricultural Technology Extension Center, Yantai, China
| | - Ning Zhang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| | - Wenxing Liang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
8
|
Zhao Y, Zhang L, Ju C, Zhang X, Huang J. Quantitative multiplexed proteomics analysis reveals reshaping of the lysine 2-hydroxyisobutyrylome in Fusarium graminearum by tebuconazole. BMC Genomics 2022; 23:145. [PMID: 35180840 PMCID: PMC8855566 DOI: 10.1186/s12864-022-08372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered posttranslational modification (PTM) and has been identified in several prokaryotic and eukaryotic organisms. Fusarium graminearum, a major pathogen of Fusarium head blight (FHB) in cereal crops, can cause considerable yield loss and produce various mycotoxins that threaten human health. The application of chemical fungicides such as tebuconazole (TEC) remains the major method to control this pathogen. However, the distribution of Khib in F. graminearum and whether Khib is remodified in response to fungicide stress remain unknown. Results Here, we carried out a proteome-wide analysis of Khib in F. graminearum, identifying the reshaping of the lysine 2-hydroxyisobutyrylome by tebuconazole, using the most recently developed high-resolution LC–MS/MS technique in combination with high-specific affinity enrichment. Specifically, 3501 Khib sites on 1049 proteins were identified, and 1083 Khib sites on 556 modified proteins normalized to the total protein content were changed significantly after TEC treatment. Bioinformatics analysis showed that Khib proteins are involved in a wide range of biological processes and may be involved in virulence and deoxynivalenol (DON) production, as well as sterol biosynthesis, in F. graminearum. Conclusions Here, we provided a wealth of resources for further study of the roles of Khib in the fungicide resistance of F. graminearum. The results enhanced our understanding of this PTM in filamentous ascomycete fungi and provided insight into the remodification of Khib sites during azole fungicide challenge in F. graminearum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08372-4.
Collapse
Affiliation(s)
- Yanxiang Zhao
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Limin Zhang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Chao Ju
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Xiaoyan Zhang
- College of Agriculture, Ludong University, Yantai, 264025, Shandong Province, China
| | - Jinguang Huang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
9
|
Wang T, Wang G, Zhang G, Hou R, Zhou L, Tian X. Systematic analysis of the lysine malonylome in Sanghuangporus sanghuang. BMC Genomics 2021; 22:840. [PMID: 34798813 PMCID: PMC8603570 DOI: 10.1186/s12864-021-08120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/22/2021] [Indexed: 01/18/2023] Open
Abstract
Background Sanghuangporus sanghuang is a well-known traditional medicinal mushroom associated with mulberry. Despite the properties of this mushroom being known for many years, the regulatory mechanisms of bioactive compound biosynthesis in this medicinal mushroom are still unclear. Lysine malonylation is a posttranslational modification that has many critical functions in various aspects of cell metabolism. However, at present we do not know its role in S. sanghuang. In this study, a global investigation of the lysine malonylome in S. sanghuang was therefore carried out. Results In total, 714 malonyl modification sites were matched to 255 different proteins. The analysis indicated that malonyl modifications were involved in a wide range of cellular functions and displayed a distinct subcellular localization. Bioinformatics analysis indicated that malonylated proteins were engaged in different metabolic pathways, including glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the tricarboxylic acid (TCA) cycle. Notably, a total of 26 enzymes related to triterpene and polysaccharide biosynthesis were found to be malonylated, indicating an indispensable role of lysine malonylation in bioactive compound biosynthesis in S. sanghuang. Conclusions These findings suggest that malonylation is associated with many metabolic pathways, particularly the metabolism of the bioactive compounds triterpene and polysaccharide. This paper represents the first comprehensive survey of malonylation in S. sanghuang and provides important data for further study on the physiological function of lysine malonylation in S. sanghuang and other medicinal mushrooms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08120-0.
Collapse
Affiliation(s)
- Tong Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guoli Zhang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Ranran Hou
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuemei Tian
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
10
|
Tandem Mass Tag labelling quantitative acetylome analysis of differentially modified proteins during mycoparasitism of Clonostachys chloroleuca 67-1. Sci Rep 2021; 11:22383. [PMID: 34789861 PMCID: PMC8599485 DOI: 10.1038/s41598-021-01956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Lysine acetylation (Kac) is an important post-translational modification (PTM) of proteins in all organisms, but its functions have not been extensively explored in filamentous fungi. In this study, a Tandem Mass Tag (TMT) labelling lysine acetylome was constructed, and differentially modified Kac proteins were quantified during mycoparasitism and vegetative growth in the biocontrol fungus Clonostachys chloroleuca 67–1, using liquid chromatography-tandem mass spectrometry (LC–MS/MS). A total of 1448 Kac sites were detected on 740 Kac proteins, among which 126 sites on 103 proteins were differentially regulated. Systematic bioinformatics analyses indicate that the modified Kac proteins were from multiple subcellular localizations and involved in diverse functions including chromatin assembly, glycometabolism and redox activities. All Kac sites were characterized by 10 motifs, including the novel CxxKac motif. The results suggest that Kac proteins may have effects of broadly regulating protein interaction networks during C. chloroleuca parasitism to Sclerotinia sclerotiorum sclerotia. This is the first report of a correlation between Kac events and the biocontrol activity of C. chloroleuca. Our findings provide insight into the molecular mechanisms underlying C. chloroleuca control of plant fungal pathogens regulated by Kac proteins.
Collapse
|
11
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
12
|
Xu M, Tian X, Ku T, Wang G, Zhang E. Global Identification and Systematic Analysis of Lysine Malonylation in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2021; 12:728338. [PMID: 34490025 PMCID: PMC8417889 DOI: 10.3389/fpls.2021.728338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.
Collapse
Affiliation(s)
- Min Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingting Ku
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Wang J, Liu C, Chen Y, Zhao Y, Ma Z. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol 2021; 23:4841-4855. [PMID: 34398483 DOI: 10.1111/1462-2920.15725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Protein acetylation and deacetylation catalysed by lysine acetyltransferases (KATs) and deacetylases (KDACs), respectively, are major mechanisms regulating various cellular processes. During the fight between microbial pathogens and host plants, both apply a set of measures, including acetylation interference, to strengthen themselves while suppressing the other. In this review, we first summarize KATs and KDACs in plants and their pathogens. Next, we introduce diverse acetylation and deacetylation mechanisms affecting protein functions, including the regulation of enzyme activity and specificity, protein-protein or protein-DNA interactions, subcellular localization and protein stability. We then focus on the current understanding of acetylation and deacetylation in plant-pathogen interactions. Additionally, we also discuss potential acetylation-related approaches for controlling plant diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Transcriptional Responses of Fusarium graminearum Interacted with Soybean to Cause Root Rot. J Fungi (Basel) 2021; 7:jof7060422. [PMID: 34072279 PMCID: PMC8227214 DOI: 10.3390/jof7060422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
Fusarium graminearum is the most devastating pathogen of Fusarium head blight of cereals, stalk and ear of maize, and it has recently become a potential threat for soybean as maize-soybean strip relay intercropping is widely practiced in China. To elucidate the pathogenesis mechanism of F. graminearum on intercropped soybean which causes root rot, transcriptional profiling of F. graminearum at 12, 24, and 48 h post-inoculation (hpi) on soybean hypocotyl tissues was conducted. In total, 2313 differentially expressed genes (DEGs) of F. graminearum were annotated by both KEGG pathway and Gene Ontology (GO) analysis. Among them, 128 DEGs were commonly expressed at three inoculation time points while the maximum DEGs were induced at 24 hpi. In addition, DEGs were also rich in carbon metabolism, ribosome and peroxisome pathways which might contribute to carbon source utilization, sexual reproduction, virulence and survival of F. graminearum when infected on soybean. Hence, this study will provide some basis for the deep understanding the pathogenesis mechanism of F. graminearum on different hosts and its effective control in maize-soybean strip relay intercropping systems.
Collapse
|
15
|
Qian H, Wang L, Ma X, Yi X, Wang B, Liang W. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylated Proteins in Fusarium oxysporum. Front Microbiol 2021; 12:623735. [PMID: 33643252 PMCID: PMC7902869 DOI: 10.3389/fmicb.2021.623735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Protein lysine 2-hydroxyisobutyrylation (K hib ), a new type of post-translational modification, occurs in histones and non-histone proteins and plays an important role in almost all aspects of both eukaryotic and prokaryotic living cells. Fusarium oxysporum, a soil-borne fungal pathogen, can cause disease in more than 150 plants. However, little is currently known about the functions of K hib in this plant pathogenic fungus. Here, we report a systematic analysis of 2-hydroxyisobutyrylated proteins in F. oxysporum. In this study, 3782 K hib sites in 1299 proteins were identified in F. oxysporum. The bioinformatics analysis showed that 2-hydroxyisobutyrylated proteins are involved in different biological processes and functions and are located in diverse subcellular localizations. The enrichment analysis revealed that K hib participates in a variety of pathways, including the ribosome, oxidative phosphorylation, and proteasome pathways. The protein interaction network analysis showed that 2-hydroxyisobutyrylated protein complexes are involved in diverse interactions. Notably, several 2-hydroxyisobutyrylated proteins, including three kinds of protein kinases, were involved in the virulence or conidiation of F. oxysporum, suggesting that K hib plays regulatory roles in pathogenesis. Moreover, our study shows that there are different K hib levels of F. oxysporum in conidial and mycelial stages. These findings provide evidence of K hib in F. oxysporum, an important filamentous plant pathogenic fungus, and serve as a resource for further exploration of the potential functions of K hib in Fusarium species and other filamentous pathogenic fungi.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lulu Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Xingling Yi
- Micron Biotechnology Co., Ltd., Hangzhou, China
| | - Baoshan Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
Gao M, Zhang N, Liang W. Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen Botrytis cinerea. Front Microbiol 2020; 11:594743. [PMID: 33193272 PMCID: PMC7649125 DOI: 10.3389/fmicb.2020.594743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Lysine lactylation (Kla) is a newly discovered histone post-translational modification (PTM), playing important roles in regulating transcription in macrophages. However, the extent of this PTM in non-histone proteins remains unknown. Here, we report the first proteomic survey of this modification in Botrytis cinerea, a destructive necrotrophic fungal pathogen distributed worldwide. After a global lysine lactylome analysis using LC-MS/MS, we identified 273 Kla sites in 166 proteins, of which contained in 4 types of modification motifs. Our results show that the majority of lactylated proteins were distributed in nucleus (36%), mitochondria (27%), and cytoplasm (25%). The identified proteins were found to be involved in diverse cellular processes. Most strikingly, Kla was found in 43 structural constituent proteins of ribosome, indicating an impact of Kla in protein synthesis. Moreover, 12 lactylated proteins participated in fungal pathogenicity, suggesting a potential role for Kla in this process. Protein interaction network analysis suggested that a mass of protein interactions are regulated by lactylation. The combined data sets represent the first report of the lactylome of B. cinerea and provide a good foundation for further explorations of Kla in plant fungal pathogens.
Collapse
Affiliation(s)
- Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Zhang N, Yang Z, Liang W, Liu M. Global Proteomic Analysis of Lysine Crotonylation in the Plant Pathogen Botrytis cinerea. Front Microbiol 2020; 11:564350. [PMID: 33193151 PMCID: PMC7644960 DOI: 10.3389/fmicb.2020.564350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Lysine crotonylation (Kcr), a recently discovered post-translational modification, plays a key role in the regulation of diverse cellular processes. Botrytis cinerea is a destructive necrotrophic fungal pathogen distributed worldwide with broad ranging hosts. However, the functions of Kcr are unknown in B. cinerea or any other plant fungal pathogens. Here, we comprehensively evaluated the crotonylation proteome of B. cinerea and identified 3967 Kcr sites in 1041 proteins, which contained 9 types of modification motifs. Our results show that although the crotonylation was largely conserved, different organisms contained distinct crotonylated proteins with unique functions. Bioinformatics analysis demonstrated that the majority of crotonylated proteins were distributed in cytoplasm (35%), mitochondria (26%), and nucleus (22%). The identified proteins were found to be involved in various metabolic and cellular processes, such as cytoplasmic translation and structural constituent of ribosome. Particularly, 26 crotonylated proteins participated in the pathogenicity of B. cinerea, suggesting a significant role for Kcr in this process. Protein interaction network analysis demonstrated that many protein interactions are regulated by crotonylation. Furthermore, our results show that different nutritional conditions had a significant influence on the Kcr levels of B. cinerea. These data represent the first report of the crotonylome of B. cinerea and provide a good foundation for further explorations of the role of Kcr in plant fungal pathogens.
Collapse
Affiliation(s)
- Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhenzhou Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Wang G, Song L, Bai T, Liang W. BcSas2-Mediated Histone H4K16 Acetylation Is Critical for Virulence and Oxidative Stress Response of Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1242-1251. [PMID: 32689887 DOI: 10.1094/mpmi-06-20-0149-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Histone acetyltransferase plays a critical role in transcriptional regulation by increasing accessibility of target genes to transcriptional activators. Botrytis cinerea is an important necrotrophic fungal pathogen with worldwide distribution and a very wide host range, but little is known of how the fungus regulates the transition from saprophytic growth to infectious growth. Here, the function of BcSas2, a histone acetyltransferase of B. cinerea, was investigated. Deletion of the BcSAS2 gene resulted in significantly reduced acetylation levels of histone H4, particularly of H4K16ac. The deletion mutant ΔBcSas2.1 was not only less pathogenic but also more sensitive to oxidative stress than the wild-type strain. RNA-Seq analysis revealed that a total of 13 B. cinerea genes associated with pathogenicity were down-regulated in the ΔBcSas2.1 mutant. Independent knockouts of two of these genes, BcXYGA (xyloglucanase) and BcCAT (catalase), led to dramatically decreased virulence and hypersensitivity to oxidative stress, respectively. Chromatin immunoprecipitation followed by quantitative PCR confirmed that BcSas2 bound directly to the promoter regions of both these pathogenicity-related genes. These observations indicated that BcSas2 regulated the transcription of pathogenicity-related genes by controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative sensitivity of B. cinerea.
Collapse
Affiliation(s)
- Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Limin Song
- College of Plant Health and Medicine, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Tingting Bai
- College of Plant Health and Medicine, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
20
|
Acetylome analysis of the feline small intestine following Toxoplasma gondii infection. Parasitol Res 2020; 119:3649-3657. [PMID: 32951143 PMCID: PMC7502155 DOI: 10.1007/s00436-020-06880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is a protozoan parasite capable of infecting a large number of warm-blooded animals and causes serious health complications in immunocompromised patients. T. gondii infection of the feline small intestine is critical for the completion of the life cycle and transmission of T. gondii. Protein acetylation is an important posttranslational modification, which plays roles in the regulation of various cellular processes. Therefore, understanding of how T. gondii reprograms the protein acetylation status of feline definitive host can help to thwart the production and spread of T. gondii. Here, we used affinity enrichment and high-resolution liquid chromatography with tandem mass spectrometry to profile the alterations of the acetylome in cat small intestine 10 days after infection by T. gondii Prugniuad (Pru) strain. Our analysis showed that T. gondii induced significant changes in the acetylation of proteins in the cat intestine. We identified 2606 unique lysine acetylation sites in 1357 acetylated proteins. The levels of 334 acetylated peptides were downregulated, while the levels of 82 acetylated peptides were increased in the infected small intestine. The proteins with differentially acetylated peptides were particularly enriched in the bioenergetics-related processes, such as tricarboxylic acid cycle, oxidative phosphorylation, and oxidation-reduction. These results provide the first baseline of the global acetylome of feline small intestine following T. gondii infection and should facilitate further analysis of the role of acetylated protein in the pathogenesis of T. gondii infection in its definitive host.
Collapse
|
21
|
Li J, Gao M, Gabriel DW, Liang W, Song L. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. lycopersici Provides Novel Insights Into Infection-Related Proteins. Front Microbiol 2020; 11:559440. [PMID: 33013791 PMCID: PMC7506082 DOI: 10.3389/fmicb.2020.559440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023] Open
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomato. Proteins secreted by this pathogen during initial host colonization largely determine the outcome of pathogen-host interactions. Lysine acetylation (Kac) plays a vital role in the functions of many proteins, but little is known about Kac in Fol secreted proteins. In this study, we analyzed lysine acetylation of the entire Fol secretome. Using high affinity enrichment of Kac peptides and LC-MS/MS analysis, 50 potentially secreted Fol proteins were identified and acetylation sites determined. Bioinformatics analysis revealed 32 proteins with canonical N-terminal signal peptide leaders, and most of them were predicted to be enzymes involved in a variety of biological processes and metabolic pathways. Remarkably, all 32 predicted secreted proteins were novel and encoded on the core chromosomes rather than on the previously identified LS pathogenicity chromosomes. Homolog scanning of the secreted proteins among 40 different species revealed 4 proteins that were species specific, 3 proteins that were class-specific in the Ascomycota phylum, and 25 proteins that were more widely conserved genes. These secreted proteins provide a starting resource for investigating putative novel pathogenic genes, with 26 up-regulated genes encoding Kac proteins that may play an important role during initial symptomless infection stages.
Collapse
Affiliation(s)
- Jingtao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Wassano NS, Leite AB, Reichert-Lima F, Schreiber AZ, Moretti NS, Damasio A. Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp. Braz J Microbiol 2020; 51:673-683. [PMID: 32170592 DOI: 10.1007/s42770-020-00253-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.
Collapse
Affiliation(s)
- Natália Sayuri Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariely Barbosa Leite
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Franqueline Reichert-Lima
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelica Zaninelli Schreiber
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
23
|
Zhao Y, Chi M, Zhang X, Wang S, Liu J, Liang W, Huang J. Expression, Purification, Crystallization and X-Ray Crystallographic Analysis of MoDabb1 from Magnaporthe oryzae. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774519070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Comparative acetylome analysis reveals the potential roles of lysine acetylation for DON biosynthesis in Fusarium graminearum. BMC Genomics 2019; 20:841. [PMID: 31718553 PMCID: PMC6852988 DOI: 10.1186/s12864-019-6227-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Fusarium graminearum is a destructive fungal pathogen of wheat, barley and other small grain cereals. During plant infection, the pathogen produces trichothecene mycotoxin deoxynivalenol (DON), which is harmful to human and livestock. FgGCN5 encodes a GCN5 acetyltransferase. The gene deletion mutant Fggcn5 failed to produce DON. We assumed that lysine acetylation might play a key regulatory role in DON biosynthesis in the fungus. Results In this study, the acetylome comparison between Fggcn5 mutant and wild-type strain PH-1 was performed by using affinity enrichment and high resolution LC-MS/MS analysis. Totally, 1875 acetylated proteins were identified in Fggcn5 mutant and PH-1. Among them, 224 and 267 acetylated proteins were identified exclusively in Fggcn5 mutant and PH-1, respectively. Moreover, 95 differentially acetylated proteins were detected at a significantly different level in the gene deletion mutant:43 were up-regulated and 52 were down-regulated. GO enrichment and KEGG-pathways enrichment analyses revealed that acetylation plays a key role in metabolism process in F. graminearum. Conclusions Seeing that the gens playing critical roles in DON biosynthesis either in Fggcn5 mutant or PH-1. Therefore, we can draw the conclusion that the regulatory roles of lysine acetylation in DON biosynthesis in F. graminearum results from the positive and negative regulation of the related genes. The study would be a foundation to insight into the regulatory mechanism of lysine acetylation on DON biosynthesis.
Collapse
|
25
|
Pang H, Li W, Zhang W, Zhou S, Hoare R, Monaghan SJ, Jian J, Lin X. Acetylome profiling of Vibrio alginolyticus reveals its role in bacterial virulence. J Proteomics 2019; 211:103543. [PMID: 31669173 DOI: 10.1016/j.jprot.2019.103543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023]
Abstract
It is well known that lysine acetylation (Kace) modification is a common post-translational modification (PTM) that plays an important role in multiple biological and pathological functions in bacteria. However, few studies have focused on lysine acetylation modification in aquatic pathogens to date. In this study, the acetylome profiling of fish pathogen, Vibrio alginolyticus was investigated by combining affinity enrichment with LC MS/MS. A total of 2883 acetylation modification sites on 1178 proteins in this pathogen were identified. The Kace modification of several selected proteins were further validated by Co-immunocoprecipitation combined with Western blotting. Bioinformatics analysis showed that seven conserved motifs can be enriched among Kace peptides, and many of them were significantly enriched in metabolic processes such as biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and biosynthesis of amino acids, which was similar to data previously published for V. parahaemolyticus. Moreover, we found at least 102 acetylation modified proteins predicted as virulence factors, which indicate the important role of PTM on bacterial virulence. In general, our results provide a promising starting point for further investigations of the biological role of lysine acetylation on bacterial virulence in V. alginolyticus. BIOLOGICAL SIGNIFICANCE: Lysine acetylation (Kace) modification, is well known to play important roles on diverse biological functions in prokaryotic cell, whereas few studies focused on aquatic pathogens to date. In this study, the acetylome profiling of fish pathogen, Vibrio alginolyticus was investigated by combining affinity enrichment with LC MS/MS. A total of 2883 acetylation modification sites on 1178 proteins in this pathogen were identified. The further bioinformatics analysis showed that seven conserved motifs can be enriched among Kace peptides, and many of them were significantly enriched in metabolic processes, which was similar to data previously published for V. parahemolyticus. Moreover, we found at least 102 acetylation modified proteins predicted as virulence factors, which indicate the important role of PTM on bacterial virulence. In general, our results provide a promising starting point for further investigations of the biological role of lysine acetylation on bacterial virulence in V. alginolyticus.
Collapse
Affiliation(s)
- Huanying Pang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 510000, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524025, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
| | - Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524025, China
| | - Shihui Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524025, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524025, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China.
| |
Collapse
|
26
|
Yang G, Yue Y, Ren S, Yang M, Zhang Y, Cao X, Wang Y, Zhang J, Ge F, Wang S. Lysine acetylation contributes to development, aflatoxin biosynthesis and pathogenicity in
Aspergillus flavus. Environ Microbiol 2019; 21:4792-4807. [DOI: 10.1111/1462-2920.14825] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Silin Ren
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Mingkun Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Yi Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Xiaohong Cao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Yinchun Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
27
|
Wang G, Xu L, Yu H, Gao J, Guo L. Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics 2019; 20:585. [PMID: 31311503 PMCID: PMC6636155 DOI: 10.1186/s12864-019-5962-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background Ganoderma lucidum, one of the best-known medicinal mushrooms in the world, produces more than 400 different bioactive compounds. However, the regulation of these bioactive compounds biosynthesis is still unclear. Lysine succinylation is a critical post-translational modification and has many important functions in all aspects of eukaryotic and prokaryotic cells. Although it has been studied for a long time, its function is still unclear in G. lucidum. In this study, a global investigation was carried out on the succinylome in G. lucidum. Results In total, 382 modified proteins which contain 742 lysine succinylated sites were obtained. The proteomics data are available through ProteomeXchange with the dataset accession number PXD013954. Bioinformatics analysis revealed that the succinylated proteins were distributed in various cellular biological processes and participated in a great variety of metabolic pathways including carbon metabolism and biosynthesis of secondary metabolites. Notably, a total of 47 enzymes associated with biosynthesis of triterpenoids and polysaccharides were found to be succinylated. Furthermore, two succinylated sites K90 and K106 were found in the conserved Fve region of immunomodulatory protein LZ8. These observations show that lysine succinylation plays an indispensable role in metabolic regulation of bioactive compounds in G. lucidum. Conclusions These findings indicate that lysine succinylation is related to many metabolic pathways, especially pharmacologically bioactive compounds metabolism. This study provides the first global investigation of lysine succinylation in G. lucidum and the succinylome dataset provided in this study serves as a resource to further explore the physiological roles of these modifications in secondary metabolism. Electronic supplementary material The online version of this article (10.1186/s12864-019-5962-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Lili Xu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Hao Yu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Jie Gao
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Lizhong Guo
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
28
|
Wang Y, Wang F, Bao X, Fu L. Systematic analysis of lysine acetylome reveals potential functions of lysine acetylation in Shewanella baltica, the specific spoilage organism of aquatic products. J Proteomics 2019; 205:103419. [PMID: 31212084 DOI: 10.1016/j.jprot.2019.103419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023]
Abstract
Protein lysine acetylation is a major post-translational modification and plays a critical regulatory role in almost every aspect in both eukaryotes and prokaryotes, yet there have been no data on Shewanella baltica, which is one of the specific spoilage organism (SSO) of aquatic products. Here, we performed the first global acetylproteome analysis of S. baltica. 2929 lysine acetylation sites were identified in 1103 proteins, accounting for 26.1% of the total proteins which participate in a wide variety of biological processes, especially in the constituent of ribosome, the biosynthesis of aminoacyl-tRNA, the amino acids and fatty acid metabolism. Besides, 14 conserved acetylation motifs were detected in S. baltica. Notably, various directly or indirectly spoilage-related proteins were prevalently acetylated, including enzymes involved in the unsaturated fatty acids biosynthesis closely related to the cold adaptability, cold shock proteins, pivotal enzymes involved in the putrescine biosynthesis, and a LuxR-type protein in quorum sensing system. The acetylome analysis in Shewanella can supplement the database and provide new insight into uncovering the spoilage mechanisms of S. baltica. The provided dataset illuminates the potential role of reversible acetylation in S. baltica, and serves as an important resource for exploring the physiological role of lysine acetylation in prokaryotes. SIGNIFICANCE: The psychrotrophic nature and the ability of S. baltica to make good use of "habitat" nutrients explain its importance in spoilage of seafood stored at low temperatures. However, the underlying mechanism of spoilage potential from the perspective of protein post-translational modification was rarely studied. This work identifies the first comprehensive survey of a lysine acetylome in S. baltica and uncovers the involvement of lysine acetylation in the diverse biological processes, especially in the closely spoilage-related pathways. This study provides a resource for functional analysis of acetylated proteins and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in Shewanella spp.
Collapse
Affiliation(s)
- Yangbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feifei Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xingyue Bao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
29
|
Yin Y, Wang Z, Cheng D, Chen X, Chen Y, Ma Z. The ATP-binding protein FgArb1 is essential for penetration, infectious and normal growth of Fusarium graminearum. THE NEW PHYTOLOGIST 2018; 219:1447-1466. [PMID: 29932228 DOI: 10.1111/nph.15261] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
ATP-binding cassette (ABC) transporters act mainly to transport compounds across cellular membranes and are important for diverse biological processes. However, their roles in pathogenesis have not been well-characterized in Fusarium graminearum. Sixty F. graminearum ABC protein genes were functionally characterized. Among them, FgArb1 regulates normal growth and importantly is essential for pathogenicity. Thus, the regulatory mechanisms of FgArb1 in pathogenicity were analyzed in this study. FgArb1 interacts with the mitogen-activated protein kinase (MAPK) FgSte7, and partially modulates plant penetration by regulating the phosphorylation of FgGpmk1 (the downstream kinase of FgSte7). The FgArb1 mutant exhibited dramatically reduced infective growth within wounded host tissues, likely resulting from its increased sensitivity to oxidative stresses, defective cell wall integrity and reduced deoxynivalenol (DON) production. FgArb1 also is important for the production of sexual and asexual spores that are important propagules for plant infection. In addition, FgArb1 is involved in the regulation of protein biosynthesis through impeding nuclear export of small ribosomal subunit. Finally, acetylation modification at sites K28, K65, K341 and K525 in FgArb1 is required for its biological functions. Taken together, results of this study provide a novel insight into functions of the ABC transporter in fungal pathogenesis.
Collapse
Affiliation(s)
- Yanni Yin
- State Key Laboratory of Rice Biology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- State Key Laboratory of Rice Biology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danni Cheng
- State Key Laboratory of Rice Biology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiang Chen
- State Key Laboratory of Rice Biology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
30
|
Liu S, Xue C, Fang Y, Chen G, Peng X, Zhou Y, Chen C, Liu G, Gu M, Wang K, Zhang W, Wu Y, Gong Z. Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Mol Cell Proteomics 2018; 17:1922-1936. [PMID: 30021883 DOI: 10.1074/mcp.ra118.000640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lysine crotonylation (Kcr) is a newly discovered posttranslational modification (PTM) existing in mammals. A global crotonylome analysis was undertaken in rice (Oryza sativa L. japonica) using high accuracy nano-LC-MS/MS in combination with crotonylated peptide enrichment. A total of 1,265 lysine crotonylation sites were identified on 690 proteins in rice seedlings. Subcellular localization analysis revealed that 51% of the crotonylated proteins identified were localized in chloroplasts. The photosynthesis-associated proteins were also mostly enriched in total crotonylated proteins. In addition, a genomic localization analysis of histone Kcr by ChIP-seq was performed to assess the relevance between histone Kcr and the genome. Of the 10,923 identified peak regions, the majority (86.7%) of the enriched peaks were located in gene body, especially exons. Furthermore, the degree of histone Kcr modification was positively correlated with gene expression in genic regions. Compared with other published histone modification data, the Kcr was co-located with the active histone modifications. Interestingly, histone Kcr-facilitated expression of genes with existing active histone modifications. In addition, 77% of histone Kcr modifications overlapped with DNase hypersensitive sites (DHSs) in intergenic regions of the rice genome and might mark other cis-regulatory DNA elements that are different from IPA1, a transcription activator in rice seedlings. Overall, our results provide a comprehensive understanding of the biological functions of the crotonylome and new active histone modification in transcriptional regulation in plants.
Collapse
Affiliation(s)
- Shuai Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chao Xue
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yuan Fang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Peng
- ¶Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Yong Zhou
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guanqing Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Kai Wang
- ‖Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Zhang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiyun Gong
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
31
|
Hui M, Cheng J, Sha Z. First comprehensive analysis of lysine acetylation in Alvinocaris longirostris from the deep-sea hydrothermal vents. BMC Genomics 2018; 19:352. [PMID: 29747590 PMCID: PMC5946511 DOI: 10.1186/s12864-018-4745-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 11/27/2022] Open
Abstract
Background Deep-sea hydrothermal vents are unique chemoautotrophic ecosystems with harsh conditions. Alvinocaris longirostris is one of the dominant crustacean species inhabiting in these extreme environments. It is significant to clarify mechanisms in their adaptation to the vents. Lysine acetylation has been known to play critical roles in the regulation of many cellular processes. However, its function in A. longirostris and even marine invertebrates remains elusive. Our study is the first, to our knowledge, to comprehensively investigate lysine acetylome in A. longirostris. Results In total, 501 unique acetylation sites from 206 proteins were identified by combination of affinity enrichment and high-sensitive-massspectrometer. It was revealed that Arg, His and Lys occurred most frequently at the + 1 position downstream of the acetylation sites, which were all alkaline amino acids and positively charged. Functional analysis revealed that the protein acetylation was involved in diverse cellular processes, such as biosynthesis of amino acids, citrate cycle, fatty acid degradation and oxidative phosphorylation. Acetylated proteins were found enriched in mitochondrion and peroxisome, and many stress response related proteins were also discovered to be acetylated, like arginine kinases, heat shock protein 70, and hemocyanins. In the two hemocyanins, nine acetylation sites were identified, among which one acetylation site was unique in A. longirostris when compared with other shallow water shrimps. Further studies are warranted to verify its function. Conclusion The lysine acetylome of A. longirostris is investigated for the first time and brings new insights into the regulation function of the lysine acetylation. The results supply abundant resources for exploring the functions of acetylation in A. longirostris and other shrimps. Electronic supplementary material The online version of this article (10.1186/s12864-018-4745-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Hui
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Cheng
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
32
|
Systematic analysis of the lysine malonylome in common wheat. BMC Genomics 2018; 19:209. [PMID: 29558883 PMCID: PMC5859436 DOI: 10.1186/s12864-018-4535-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Background Protein lysine malonylation, a newly discovered post-translational modification (PTM), plays an important role in diverse metabolic processes in both eukaryotes and prokaryotes. Common wheat is a major global cereal crop. However, the functions of lysine malonylation are relatively unknown in this crop. Here, a global analysis of lysine malonylation was performed in wheat. Results In total, 342 lysine malonylated sites were identified in 233 proteins. Bioinformatics analysis showed that the frequency of arginine (R) in position + 1 was highest, and a modification motif, KmaR, was identified. The malonylated proteins were located in multiple subcellular compartments, especially in the cytosol (45%) and chloroplast (30%). The identified proteins were found to be involved in diverse pathways, such as carbon metabolism, the Calvin cycle, and the biosynthesis of amino acids, suggesting an important role for lysine malonylation in these processes. Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins, and 137 malonylated proteins were mapped to the protein network database. Moreover, five proteins were simultaneously modified by lysine malonylation, acetylation and succinylation, suggesting that these three PTMs may coordinately regulate the function of many proteins in common wheat. Conclusions Our results suggest that lysine malonylation is involved in a variety of biological processes, especially carbon fixation in photosynthetic organisms. These data represent the first report of the lysine malonylome in common wheat and provide an important dataset for further exploring the physiological role of lysine malonylation in wheat and likely all plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-4535-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Wang G, Guo L, Liang W, Chi Z, Liu L. Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica. AMB Express 2017; 7:94. [PMID: 28497289 PMCID: PMC5427063 DOI: 10.1186/s13568-017-0393-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023] Open
Abstract
Lysine acetylation of proteins, a major post-translational modification, plays a critical regulatory role in almost every aspects in both eukaryotes and prokaryotes. Yarrowia lipolytica, an oleaginous yeast, is considered as a model for bio-oil production due to its ability to accumulate a large amount of lipids. However, the function of lysine acetylation in this organism is elusive. Here, we performed a global acetylproteome analysis of Y. lipolytica ACA-DC 50109. In total, 3163 lysine acetylation sites were identified in 1428 proteins, which account for 22.1% of the total proteins in the cell. Fifteen conserved acetylation motifs were detected. The acetylated proteins participate in a wide variety of biological processes. Notably, a total of 65 enzymes involved in lipid biosynthesis were found to be acetylated. The acetylation sites are distributed in almost every type of conserved domains in the multi-enzymatic complexes of fatty acid synthetases. The provided dataset probably illuminates the crucial role of reversible acetylation in oleaginous microorganisms, and serves as an important resource for exploring the physiological role of lysine acetylation in eukaryotes.
Collapse
|
34
|
Sun X, Li Z, Liu H, Yang J, Liang W, Peng YL, Huang J. Large-scale identification of lysine acetylated proteins in vegetative hyphae of the rice blast fungus. Sci Rep 2017; 7:15316. [PMID: 29127393 PMCID: PMC5681509 DOI: 10.1038/s41598-017-15655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/30/2017] [Indexed: 12/30/2022] Open
Abstract
Lysine acetylation is a major post-translational modification that plays important regulatory roles in diverse biological processes to perform various cellular functions in both eukaryotes and prokaryotes. However, roles of lysine acetylation in plant fungal pathogens were less studied. Here, we provided the first lysine acetylome of vegetative hyphae of the rice blast fungus Magnaporthe oryzae through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. This lysine acetylome had 2,720 acetylation sites in 1,269 proteins. The lysine acetylated proteins were involved indiverse cellular functions, and located in 820 nodes and 7,709 edges among the protein-protein interaction network. Several amino acid residues nearby the lysine acetylation sites were conserved, including KacR, KacK, and KacH. Importantly, dozens of lysine acetylated proteins are found to be important to vegetative hyphal growth and fungal pathogenicity. Taken together, our results provided the first comprehensive view of lysine acetylome of M.oryzae and suggested protein lysine acetylation played important roles to fungal development and pathogenicity.
Collapse
Affiliation(s)
- Xiaomei Sun
- College of Animation and Communication, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhigang Li
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hang Liu
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jinguang Huang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Global analysis of protein lysine succinylation profiles in common wheat. BMC Genomics 2017; 18:309. [PMID: 28427325 PMCID: PMC5397794 DOI: 10.1186/s12864-017-3698-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Protein lysine succinylation is an important post-translational modification and plays a critical regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Common wheat is one of the major global cereal crops. However, to date, little is known about the functions of lysine succinylation in this plant. Here, we performed a global analysis of lysine succinylation in wheat and examined its overlap with lysine acetylation. Results In total, 330 lysine succinylated modification sites were identified in 173 proteins. Bioinformatics analysis showed that the modified proteins are distributed in multiple subcellular compartments and are involved in a wide variety of biological processes such as photosynthesis and the Calvin-Benson cycle, suggesting an important role for lysine succinylation in these processes. Five putative succinylation motifs were identified. A protein interaction network analysis revealed that diverse interactions are modulated by protein succinylation. Moreover, 21 succinyl-lysine sites were found to be acetylated at the same position, and 33 proteins were modified by both acetylation and succinylation, suggesting an extensive overlap between succinylation and acetylation in common wheat. Comparative analysis indicated that lysine succinylation is conserved between common wheat and Brachypodium distachyon. Conclusions These results suggest that lysine succinylation is involved in diverse biological processes, especially in photosynthesis and carbon fixation. This systematic analysis represents the first global analysis of lysine succinylation in common wheat and provides an important resource for exploring the physiological role of lysine succinylation in this cereal crop and likely in all plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3698-2) contains supplementary material, which is available to authorized users.
Collapse
|