1
|
Xu Z, Liu Q, Ning C, Yang M, Zhu Q, Li D, Wang T, Li F. miRNA profiling of chicken follicles during follicular development. Sci Rep 2024; 14:2212. [PMID: 38278859 PMCID: PMC10817932 DOI: 10.1038/s41598-024-52716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role as transcription regulators in various aspects of follicular development, including steroidogenesis, ovulation, apoptosis, and gene regulation in poultry. However, there is a paucity of studies examining the specific impact of miRNAs on ovarian granulosa cells (GCs) across multiple grades in laying hens. Consequently, this study aims to investigate the roles of miRNAs in chicken GCs. By constructing miRNA expression profiles of GCs at 10 different time points, encompassing 4 pre-hierarchical, 5 preovulatory, and 1 postovulatory follicles stage, we identified highly expressed miRNAs involved in GC differentiation (miR-148a-3p, miR-143-3p), apoptosis (let7 family, miR-363-3p, miR-30c-5p, etc.), and autophagy (miR-128-3p, miR-21-5p). Furthermore, we discovered 48 developmentally dynamic miRNAs (DDMs) that target 295 dynamic differentially expressed genes (DDGs) associated with follicular development and selection (such as oocyte meiosis, progesterone-mediated oocyte maturation, Wnt signaling pathway, TGF-β signaling pathway) as well as follicular regression (including autophagy and cellular senescence). These findings contribute to a more comprehensive understanding of the intricate mechanisms underlying follicle recruitment, selection, and degeneration, aiming to enhance poultry's reproductive capacity.
Collapse
Affiliation(s)
- Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maosen Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
2
|
Miao X, Liu L, Liu L, Hu G, Wu G, Wang Y, Zhao Y, Yang J, Li X. Regulation of mRNA and miRNA in the response to Salmonella enterica serovar Enteritidis infection in chicken cecum. BMC Vet Res 2022; 18:437. [PMID: 36514049 PMCID: PMC9749161 DOI: 10.1186/s12917-022-03522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica, serovar Enteritidis (SE) is a food-borne pathogen, which can cause great threat to human health through consumption of the contaminated poultry products. Chicken is the main host of SE. The mRNA and microRNA (miRNA) expression profiles were analyzed on cecum of Shouguang chicken via next-generation sequencing and bioinformatics approaches. The treated group was inoculated SE, and the control group was inoculated with phosphate buffer saline (PBS). RESULTS There were 1760 differentially expressed mRNAs in the SE-infected group, of which 1046 were up-regulated mRNA, and 714 were down-regulated mRNA. In addition, a total of 821 miRNAs were identified, and 174 miRNAs were differentially expressed, of which 100 were up-regulated and 74 were down-regulated. Functional enrichment of differentially expressed mRNAs was similar to miRNA target genes. The functional analysis results of differentially expressed mRNAs and miRNAs were performed. Immune-related processes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched by up-regulated mRNA. The down-regulated mRNAs were enriched in tissue development and metabolic-related KEGG pathways. The functional analysis of up-regulated miRNA target genes was similar to the down-regulated mRNAs. The down-regulated miRNA target genes were enriched in metabolic-related GO (Gene Ontology) -BP (Biological process) terms and KEGG pathways. The overlap of the up-regulated mRNA and the up-regulated miRNA target genes (class I) was 325, and the overlap of the down-regulated miRNA target genes (class II) was 169. The class I enriched in the immune-related GO-BP terms and KEGG pathways. The class II mainly enriched in metabolic-related GO-BP terms and KEGG pathways. Then we detected the expression of mRNA and miRNA through qRT-PCR. The results shown that the expression of HHIP, PGM1, HTR2B, ITGB5, RELN, SFRP1, TCF7L2, SCNN1A, NEK7, miR-20b-5p, miR-1662, miR-15a, miR-16-1-3p was significantly different between two groups. Dual-luciferase reporter assay was used to detect the relationship between miR-20b-5p and SCNN1A. The result indicated that miR-20b-5p regulate immune or metabolic responses after SE infection in Shouguang chickens by directly targeting SCNN1A. CONCLUSIONS The findings here contribute to the further analysis of the mechanism of mRNA and miRNA defense against SE infection, and provide a theoretical foundation for the molecular disease-resistant breeding of chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Guixian Wu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan, 250010, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Alterations in bone marrow microRNA expression profiles on infection with avian pathogenic Escherichia coli. Res Vet Sci 2022; 150:1-9. [DOI: 10.1016/j.rvsc.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
|
4
|
Zhang YM, Chen QG, Chen C, Wang S, Li ZF, Hou ZF, Liu DD, Tao JP, Xu JJ. MicroRNA expression profile of chicken cecum in different stages during Histomonas meleagridis infection. BMC Vet Res 2022; 18:222. [PMID: 35690747 PMCID: PMC9188098 DOI: 10.1186/s12917-022-03316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecum miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis. Results Compared with the controls, 94 and 127 DEMs were found in cecum of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp/kegg/kegg1.html) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. For previous uses, the Kanehisa laboratory have happily provided permission. The integrated analysis of miRNA–gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. Conclusion This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03316-2.
Collapse
Affiliation(s)
- Yu-Ming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Qiao-Guang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zai-Fan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zhao-Feng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dan-Dan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jian-Ping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jin-Jun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
5
|
Luo XB, Li LT, Xi JC, Liu HT, Liu Z, Yu L, Tang PF. Negative pressure promotes macrophage M1 polarization after Mycobacterium tuberculosis infection via the lncRNA XIST/microRNA-125b-5p/A20/NF-κB axis. Ann N Y Acad Sci 2022; 1514:116-131. [PMID: 35579934 DOI: 10.1111/nyas.14781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments have demonstrated the regulation of long noncoding RNA (lncRNA) in tuberculosis (TB), and negative pressure treatment has been associated with the alleviation of TB. Here, we investigated the interaction of negative pressure and the lncRNA X-inactive specific transcript (XIST) in modulating Mycobacterium tuberculosis (MTB) infection. Initially, we established an in vitro cell model of MTB infection and an in vivo mouse model of MTB infection, followed by treatment with negative pressure. Then, we examined the expression of XIST, followed by analysis of the downstream miRNA of XIST. XIST was overexpressed or underexpressed through cell transfection to examine its effects on macrophage polarization via the miR-125b-5p/A2 axis. The MTB models were characterized by upregulated XIST and downregulated miR-125b-5p. XIST bound to miR-125b-5p, leading to its downregulation, and thus causing higher MTB survival in an ESAT-6-dependent manner. Additionally, negative pressure treatment decreased MTB-driven XIST expression through downregulation of A20 (an NF-κB repressor) via miR-125b-5 expression, promoting the M1 polarization program in macrophages through activation of the NF-κB pathway. In summary, negative pressure treatment after MTB infection can promote the polarization of macrophages to the proinflammatory M1 phenotype by regulating the XIST/miR-125b-5p/A20/NF-κB axis.
Collapse
Affiliation(s)
- Xiao-Bo Luo
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Li-Tao Li
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jian-Cheng Xi
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhen Liu
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Long Yu
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Pei-Fu Tang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Zhang Y, Dong X, Hou L, Cao Z, Zhu G, Vongsangnak W, Xu Q, Chen G. Identification of Differentially Expressed Non-coding RNA Networks With Potential Immunoregulatory Roles During Salmonella Enteritidis Infection in Ducks. Front Vet Sci 2021; 8:692501. [PMID: 34222406 PMCID: PMC8242174 DOI: 10.3389/fvets.2021.692501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogen that can colonize the preovulatory follicles of poultry, thereby causing both reduced egg production and an elevated risk of foodborne salmonellosis in humans. Although a few studies have revealed S. Enteritidis preferentially invades the granulosa cell layer within these follicles, it can readily persist and proliferate through mechanisms that are not well-understood. In this study, we characterized competing endogenous RNA (ceRNA) regulatory networks within duck granulosa cells following time-course of S. Enteritidis challenge. The 8108 long non-coding RNAs (lncRNAs), 1545 circular RNAs (circRNAs), 542 microRNAs (miRNAs), and 4137 mRNAs (fold change ≥2; P < 0.01) were differentially expressed during S. Enteritidis challenge. Also, eight mRNAs, eight lncRNAs and five circRNAs were selected and the consistent expression trend was found between qRT-PCR detection and RNA-seq. Moreover, the target genes of these differentially expressed ncRNAs (including lncRNAs, circRNAs and miRNAs) were predicted, and significantly enriched in the innate immune response and steroidogenesis pathways. Then, the colocalization and coexpression analyses were conducted to investigate relationships between ncRNAs and mRNAs. The 16 differentially expressed miRNAs targeting 60 differentially expressed mRNAs were identified in granulosa cells at 3 and 6 h post-infection (hpi) and enriched in the MAPK, GnRH, cytokine-cytokine receptor interaction, Toll-like receptor, endocytosis, and oxidative phosphorylation signaling pathways. Additionally, underlying lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks were then constructed to further understand their interaction during S. Enteritidis infection. Lnc_012227 and novel_circ_0004892 were identified as ceRNAs, which could compete with miR-let-7g-5p and thereby indirectly modulating map3k8 expression to control S. Enteritidis infection. Together, our data thus identified promising candidate ncRNAs responsible for regulating S. Enteritidis infection in the preovulatory follicles of ducks, offering new insights regarding the ovarian transmission of this pathogen.
Collapse
Affiliation(s)
- Yu Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoqian Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Lie Hou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengfeng Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Qi Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, Hashemi A. MicroRNAs in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol 2021; 236:6249-6270. [PMID: 33599300 DOI: 10.1002/jcp.30333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Gene expression regulation plays a critical role in host-pathogen interactions, and RNAs function is essential in this process. miRNAs are small noncoding, endogenous RNA fragments that affect stability and/or translation of mRNAs, act as major posttranscriptional regulators of gene expression. miRNA is involved in regulating many biological or pathological processes through targeting specific mRNAs, including development, differentiation, apoptosis, cell cycle, cytoskeleton organization, and autophagy. Deregulated microRNA expression is associated with many types of diseases, including cancers, immune disturbances, and infection. miRNAs are a vital section of the host immune response to bacterial-made infection. Bacterial pathogens suppress host miRNA expression for their benefit, promoting survival, replication, and persistence. The role played through miRNAs in interaction with host-bacterial pathogen has been extensively studied in the past 10 years, and knowledge about these staggering molecules' function can clarify the complicated and ambiguous interactions of the host-bacterial pathogen. Here, we review how pathogens prevent the host miRNA expression. We briefly discuss emerging themes in this field, including their role as biomarkers in identifying bacterial infections, as part of the gut microbiota, on host miRNA expression.
Collapse
Affiliation(s)
- Zohreh Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Redweik GAJ, Horak MK, Hoven R, Ott L, Mellata M. Evaluation of Live Bacterial Prophylactics to Decrease IncF Plasmid Transfer and Association With Intestinal Small RNAs. Front Microbiol 2021; 11:625286. [PMID: 33519786 PMCID: PMC7840957 DOI: 10.3389/fmicb.2020.625286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Chicken intestinal Escherichia coli are a reservoir for virulence and antimicrobial resistance (AMR) genes that are often carried on incompatibility group F (IncF) plasmids. The rapid transfer of these plasmids between bacteria in the gut contributes to the emergence of new multidrug-resistant and virulent bacteria that threaten animal agriculture and human health. Thus, the aim of the present study was to determine whether live bacterial prophylactics could affect the distribution of large virulence plasmids and AMR in the intestinal tract and the potential role of smRNA in this process. In this study, we tested ∼100 randomly selected E. coli from pullet feces (n = 3 per group) given no treatment (CON), probiotics (PRO), a live Salmonella vaccine (VAX), or both (P + V). E. coli isolates were evaluated via plasmid profiles and several phenotypic (siderophore production and AMR), and genotypic (PCR for virulence genes and plasmid typing) screens. P + V isolates exhibited markedly attenuated siderophore production, lack of AMR and virulence genes, which are all related to the loss of IncF and ColV plasmids (P < 0.0001). To identify a causal mechanism, we evaluated smRNA levels in the ceca mucus and found a positive association between smRNA concentrations and plasmid content, with both being significantly reduced in P + V birds compared to other groups (P < 0.01). To test this positive association between IncF plasmid transfer and host smRNA concentration, we evenly pooled smRNA per group and treated E. coli mating pairs with serial concentrations of smRNA in vitro. Higher smRNA concentrations resulted in greater rates of IncF plasmid transfer between E. coli donors (APEC O2 or VAX isolate IA-EC-001) and recipient (HS-4) (all groups; P < 0.05). Finally, RNAHybrid predictive analyses detected several chicken miRNAs that hybridize with pilus assembly and plasmid transfer genes on the IncF plasmid pAPEC-O2-R. Overall, we demonstrated P + V treatment reduced smRNA levels in the chicken ceca, which was associated with a reduction in potentially virulent E. coli. Furthermore, we propose a novel mechanism in which intestinal smRNAs signal plasmid exchange between E. coli. Investigations to understand the changes in bacterial gene expression as well as smRNAs responsible for this phenomenon are currently underway.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Mary Kate Horak
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Ryley Hoven
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Logan Ott
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Transcriptome landscapes of differentially expressed genes related to fat deposits in Nandan-Yao chicken. Funct Integr Genomics 2021; 21:113-124. [PMID: 33404913 DOI: 10.1007/s10142-020-00764-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023]
Abstract
Nandan-Yao chicken is a Chinese native chicken with lower fat deposition and better meat quality. Fat deposition is a quite complex and important economic trait. However, its molecular mechanism is still unknown in chickens. In the current study, Nandan-Yao chicken was divided into two groups based on the rate of abdominal fat at 120 days old, namely the high-fat group and low-fat group. The total RNAs were isolated and sequenced by RNA sequencing (RNA-seq). After quality control, we gained 1222, 902, 784, 624, and 736 differentially expressed genes (DEGs) in abdominal fat, back skin, liver, pectoral muscle, and leg muscle, respectively. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that significantly enriched GO term and KEGG signaling pathway mainly involved cytosolic ribosome, growth development, PPAR signaling pathway, Wnt signaling pathway, and linoleic acid metabolism in abdominal fat, back skin, and liver. While in pectoral muscle and leg muscle, it is mainly enriched in phosphatidylinositol signaling system, adrenergic signaling in cardiomyocytes, cytosolic ribosome, and cytosolic part. Sixteen genes were differentially expressed in all five tissues. Among them, PLA2G4A and RPS4Y1 might be the key regulators for fat deposition in Nandan-Yao chicken. The protein-protein interaction (PPI) network analysis of DEGs showed that PCK1 was the most notable genes. The findings in the current study will help to understand the regulation mechanism of abdominal fat and intramuscular fat in Nandan-Yao chicken and provide a theoretical basis for Chinese local chicken breeding.
Collapse
|
10
|
Wang Y, Liu L, Li M, Lin L, Su P, Tang H, Fan X, Li X. Chicken cecal DNA methylome alteration in the response to Salmonella enterica serovar Enteritidis inoculation. BMC Genomics 2020; 21:814. [PMID: 33225883 PMCID: PMC7681971 DOI: 10.1186/s12864-020-07174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses a severe threat to public health. Chicken meat and eggs are the main sources of human salmonellosis. DNA methylation is involved in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in the response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole-genome bisulfite sequencing in the current study. RESULTS There were 185,362,463 clean reads and 126,098,724 unique reads in the control group, and 180,530,750 clean reads and 126,782,896 unique reads in the inoculated group. The methylation density in the gene body was higher than that in the upstream and downstream regions of the gene. There were 8946 differentially methylated genes (3639 hypo-methylated genes, 5307 hyper-methylated genes) obtained between inoculated and control groups. Methylated genes were mainly enriched in immune-related Gene Ontology (GO) terms and metabolic process terms. Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, FoxO signaling pathway, Wnt signaling pathway and several metabolism-related pathways were significantly enriched. The density of differentially methylated cytosines in miRNAs was the highest. HOX genes were widely methylated. CONCLUSIONS The genome-wide DNA methylation profile in the response to SE inoculation in chicken was analyzed. SE inoculation promoted the DNA methylation in the chicken cecum and caused methylation alteration in immune- and metabolic- related genes. Wnt signal pathway, miRNAs and HOX gene family may play crucial roles in the methylation regulation of SE inoculation in chicken. The findings herein will deepen the understanding of epigenetic regulation in the response to SE inoculation in chicken.
Collapse
Affiliation(s)
- Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Min Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Lili Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Pengcheng Su
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Hui Tang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xinzhong Fan
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
11
|
The Mediation of miR-34a/miR-449c for Immune Cytokines in Acute Cold/Heat-Stressed Broiler Chicken. Animals (Basel) 2020; 10:ani10112168. [PMID: 33233727 PMCID: PMC7699918 DOI: 10.3390/ani10112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In the intensive and scale poultry industry, the level of heat stress (HS) directly affects the growth, development, and production performance of poultry. To alleviate the adverse effects of stress in broilers, microRNA (miRNA) was regarded as a potential regulator of immune cytokines. In this study, through the sequencing analysis of spleens after cold/heat stress, we found that 33 and 37 miRNA were differentially expressed in the heat stress group compared with the normal (NS) group and cold stress (CS) group, respectively. The differential miRNA were mainly involved in biological processes such as the cytokine–cytokine receptor interaction. To further understand the miRNA-mediated effect of heat stress on the immune level of chickens, we selected miR-34a and miR-449c as the research objects, predicted and verified that interleukin 2 (IL-2) and interleukin 12α (IL-12α) were the target genes of miR-34a and miR-449c. Coupled with the analysis of the expression of other cytokines, we found that miRNA could change the expression of immune cytokines directly or indirectly. This discovery provides a new insight into the mediation of miRNA for immune cytokines in acute cold/heat stressed broiler chicken. Abstract An increasing amount of evidence has revealed that microRNAs (miRNAs) participated in immune regulation and reaction to acute cold and heat stresses. As a new type of post-transcriptional regulatory factor, miRNA has received widespread attention; However, the specific mechanism used for this regulation still needs to be determined. In this study, thirty broilers at the same growth period were divided into three groups and treated with different temperature and humidity of CS (10–15 °C and 90% Relative Humidity (RH)), HS (39 °C and 90% RH), and NS (26 °C and 50–60% RH) respectively. After 6 h, splenic tissues were collected from all study groups. miRNA sequencing was performed to identify the differentially expressed miRNAs (DEMs) between HS, CS, and NS. We found 33, 37, and 7 DEMs in the HS-NS, HS-CS, CS-NS group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEMs were significantly enriched in cytokine–cytokine receptor interaction and functioned as the cellular responders to stress. We chose two miRNA, miR-34a and miR-449c, from the same family and differential expressed in HS-CS and HS-NS group, as the research objects to predict and verify the target genes. The dual-luciferase reporter assay and quantitative real-time PCR (qRT-PCR) confirmed that two cytokines, IL-2 and IL-12α, were the direct target genes of miR-34a and miR-449c. To further understand the mediation mechanism of miRNAs in acute cold/heat-stressed broiler chicken, a splenic cytokines profile was constructed. The results showed that IL-1β was strongly related to acute heat stress in broiler chicken, and from this we predicted that the increased expression of IL-1β might promote the expression of miR-34a, inducing the upregulation of interferon-γ (INF-γ) and IL-17. Our finds have laid a theoretical foundation for the breeding of poultry resistance and alleviation of the adverse effects of stress.
Collapse
|
12
|
Zhao Y, Zeng D, Wang H, Sun N, Xin J, Yang H, Lei L, Khalique A, Rajput DS, Pan K, Shu G, Jing B, Ni X. Analysis of miRNA Expression in the Ileum of Broiler Chickens During Bacillus licheniformis H2 Supplementation Against Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2020; 13:356-366. [PMID: 32975724 DOI: 10.1007/s12602-020-09709-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
Subclinical necrotic enteritis (SNE) is one of the serious threats to the poultry industry. Probiotics have been proven to exert beneficial effects in controlling SNE. However, their exact mechanisms have not been fully elucidated. Moreover, few studies have focused on their impact on microRNAs (miRNAs). Therefore, the present study aimed to explore the miRNA expression profiles in the ileum of broiler chickens during probiotic supplementation for controlling SNE. A total of 180 newly hatched male broilers were randomly allocated into three groups, including a negative control group, an SNE infection group, and a Bacillus licheniformis H2 pretreatment group. Illumina high-throughput sequencing was conducted to identify the miRNA expression of the three groups. Results showed that 628 miRNAs, including 582 known miRNAs and 46 novel miRNAs, were detected in the miRNA libraries. The target genes of 57 significantly differentially expressed miRNAs were predicted and annotated. Moreover, they were found to be partly enriched in pathways related to immunity and inflammation such as tumor necrosis factor receptor binding, immune response-regulating signaling pathway, Toll-like receptor 2 signaling pathway, interleukin-15 production, activation of NF-κB-inducing kinase activity, and MAP kinase tyrosine/serine/threonine phosphatase activity. Some of the target genes of 57 miRNAs were related to the MAPK signaling pathway. Furthermore, the expression of several miRNAs, which may be involved in the MAPK signaling pathway, was significantly affected by SNE induction and showed no significant difference in the presence of H2. All these findings provide comprehensive miRNA expression profiles of three different treatment groups. They further suggest that H2 could exert beneficial effects in controlling SNE through immune and inflammatory response associated with altered miRNA expression, such as the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ying Zhao
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hanbo Yang
- Chengdu Slan Biotechnology Co., Ltd, Chengdu, China
| | - Lei Lei
- Chengdu Slan Biotechnology Co., Ltd, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Danish Sharafat Rajput
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
14
|
Wang Y, Miao X, Li H, Su P, Lin L, Liu L, Li X. The correlated expression of immune and energy metabolism related genes in the response to Salmonella enterica serovar Enteritidis inoculation in chicken. BMC Vet Res 2020; 16:257. [PMID: 32711533 PMCID: PMC7382137 DOI: 10.1186/s12917-020-02474-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serovar Enteritidis (SE) is one of the food-borne pathogenic bacteria, which affects poultry production and poses severe threat to human health. The correlation of immune system and metabolism in chicken after SE inoculation is important but not clear. In the current study, we identified the expression of immune and energy metabolism related genes using quantitative PCR to evaluate the correlation between immune system and energy metabolism against SE inoculation in Jining Bairi chicken. Results ATP5G1, ATP5G3 and ND2 were significantly up-regulated at 1 dpi (day post inoculation), and ATP5E, ATP5G1, ATP5G3 were significantly down-regulated at 7 dpi (P < 0.05). IL-8 and IL-1β were significantly down-regulated at 1 dpi, IL-8 and IL-18 were significantly down-regulated at 3 dpi, IL-8 and BCL10 were significantly up-regulated at 7 dpi (P < 0.05). Conclusions These findings indicate that the correlation between immune and energy metabolism related genes gradually change with time points post SE inoculation, from one homeostasis to an opposite homeostasis with 3 dpi as a turning point. These results will pave the foundation for the relationship between immune system and energy metabolism in the response to SE inoculation in chicken.
Collapse
Affiliation(s)
- Yuanmei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China.,Present Address: Current affiliation: Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xiuxiu Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Huilong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Pengcheng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Lili Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, 271018, Taian, China.
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China.
| |
Collapse
|
15
|
Wu N, Yang B, Wen B, Wang T, Guo J, Qi X, Wang J. Interactions Among Expressed MicroRNAs and mRNAs in the Early Stages of Fowl Adenovirus Aerotype 4-Infected Leghorn Male Hepatocellular Cells. Front Microbiol 2020; 11:831. [PMID: 32508763 PMCID: PMC7248314 DOI: 10.3389/fmicb.2020.00831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Hydropericardium-hepatitis syndrome (HHS) is caused by some strains of fowl adenovirus serotype 4 (FAdV-4). However, the mechanism of FAdV-4 entry is not well understood. Therefore, to investigate the changes in host cellular response at the early stage of FAdV-4 infection, a conjoint analysis of miRNA-seq and mRNA-seq was utilized with leghorn male hepatocellular (LMH) cells at 30, 60, and 120 min after FAdV-4 infection. In total, we identified 785 differentially expressed (DE) miRNAs and 725 DE mRNAs in FAdV-4-infected LMH cells. Most miRNAs and mRNAs, including gga-miR-148a-3p, gga-miR-148a-5p, gga-miR-15c-3p, CRK, SOCS3, and EGR1, have not previously been reported to be associated with FAdV-4 infection. The conjoint analysis of the obtained data identified 856 miRNA–mRNA pairs at three time points. The interaction network analysis showed that gga-miR-128-2-5p, gga-miR-7475-5p, novel_miR205, and TCF7L1 were located in the core of the network. Furthermore, the relationship between gga-miR-128-2-5p and its target OBSL1 was confirmed using a dual-luciferase reporter system and a real-time quantitative polymerase chain reaction assay. In vitro experiments revealed that both gga-miR-128-2-5p overexpression and OBSL1 loss of function inhibited FAdV-4 entry. These results suggested that gga-miR-128-2-5p plays an important role in FAdV-4 entry by targeting OBSL1. To the best of our knowledge, the present study is the first to analyze host miRNA and mRNA expression at the early stage of FAdV-4 infection; furthermore, the results of this study help to elucidate the molecular mechanisms of FAdV-4 entry.
Collapse
Affiliation(s)
- Ning Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Bo Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
16
|
Kemp V, Laconi A, Cocciolo G, Berends AJ, Breit TM, Verheije MH. miRNA repertoire and host immune factor regulation upon avian coronavirus infection in eggs. Arch Virol 2020; 165:835-843. [PMID: 32025807 PMCID: PMC7086581 DOI: 10.1007/s00705-020-04527-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Avian infectious bronchitis virus (IBV) is a coronavirus with great economic impact on the poultry industry, causing an acute and highly contagious disease in chickens that primarily affects the respiratory and reproductive systems. The cellular regulation of IBV pathogenesis and the host immune responses involved remain to be fully elucidated. MicroRNAs (miRNAs) have emerged as a class of crucial regulators of numerous cellular processes, including responses to viral infections. Here, we employed a high-throughput sequencing approach to analyze the miRNA composition of the spleen and the lungs of chicken embryos upon IBV infection. Compared to healthy chicken embryos, 13 and six miRNAs were upregulated in the spleen and the lungs, respectively, all predicted to influence viral transcription, cytokine production, and lymphocyte functioning. Subsequent downregulation of NFATC3, NFAT5, SPPL3, and TGFB2 genes in particular was observed only in the spleen, demonstrating the biological functionality of the miRNAs in this lymphoid organ. This is the first study that describes the modulation of miRNAs and the related host immune factors by IBV in chicken embryos. Our data provide novel insight into complex virus-host interactions and specifically highlight components that could affect the host's immune response to IBV infection.
Collapse
Affiliation(s)
- Vera Kemp
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands
| | - Andrea Laconi
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands.,Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Giulio Cocciolo
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alinda J Berends
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands
| | - Timo M Breit
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - M Hélène Verheije
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Translating 'big data': better understanding of host-pathogen interactions to control bacterial foodborne pathogens in poultry. Anim Health Res Rev 2020; 21:15-35. [PMID: 31907101 DOI: 10.1017/s1466252319000124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent technological advances has led to the generation, storage, and sharing of colossal sets of information ('big data'), and the expansion of 'omics' in science. To date, genomics/metagenomics, transcriptomics, proteomics, and metabolomics are arguably the most ground breaking approaches in food and public safety. Here we review some of the recent studies of foodborne pathogens (Campylobacter spp., Salmonella spp., and Escherichia coli) in poultry using big data. Genomic/metagenomic approaches have reveal the importance of the gut microbiota in health and disease. They have also been used to identify, monitor, and understand the epidemiology of antibiotic-resistance mechanisms and provide concrete evidence about the role of poultry in human infections. Transcriptomics studies have increased our understanding of the pathophysiology and immunopathology of foodborne pathogens in poultry and have led to the identification of host-resistance mechanisms. Proteomic/metabolomic approaches have aided in identifying biomarkers and the rapid detection of low levels of foodborne pathogens. Overall, 'omics' approaches complement each other and may provide, at least in part, a solution to our current food-safety issues by facilitating the development of new rapid diagnostics, therapeutic drugs, and vaccines to control foodborne pathogens in poultry. However, at this time most 'omics' approaches still remain underutilized due to their high cost and the high level of technical skills required.
Collapse
|
18
|
Sun W, Liu R, Li P, Li Q, Cui H, Zheng M, Wen J, Zhao G. Chicken gga-miR-1306-5p targets Tollip and plays an important role in host response against Salmonella enteritidis infection. J Anim Sci Biotechnol 2019; 10:59. [PMID: 31338187 PMCID: PMC6628503 DOI: 10.1186/s40104-019-0365-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
Background Increasing evidence indicates that microRNAs (miRNAs) are involved in inflammatory response and immune regulation following pathogen invasion. The purpose of this study was to elucidate the roles played by Gallus gallus microRNA-1306-5p (gga-miR-1306-5p) in host responses against potential invasion by Salmonella enteritidis (SE) in chickens and the underlying mechanisms. Results In present study, the expression levels of gga-miR-1306-5p were determined in both tissues and HD11 cells. The results showed that gga-miR-1306-5p was significantly increased following SE infection or lipopolysaccharide (LPS) stimulation. The dual luciferase reporter assay further validated that gga-miR-1306-5p targeted the Toll-interacting protein (Tollip), and thereby participated in the regulation of immune response against SE or LPS stimulation through binding with the 3'-untranslated region (3'UTR) of Tollip. Additionally, the expression of Tollip was significantly blocked by over-expressed gga-miR-1306-5p. The underlying mechanisms by which gga-miR-1306-5p modulated the production of pro-inflammatory cytokines were also investigated. Molecular biological assays demonstrated that overexpression of gga-miR-1306-5p promoted the production of pro-inflammatory mediators, including NF-κB, TNF-α, IL-6, and IL-1β, which produced effects similar to those of Tollip knockdown. Conclusions Taken together, gga-miR-1306-5p induced by SE or LPS, regulates the immune response by inhibiting Tollip, which activates the production of inflammatory cytokines. This study has provided the first direct evidence that gga-miR-1306-5p targets Tollip, and is involved in the host response against SE.
Collapse
Affiliation(s)
- Weiwei Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Peng Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| |
Collapse
|
19
|
Yakovlev AF. The Role of miRNA in Differentiation, Cell Proliferation, and Pathogenesis of Poultry Diseases. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Zheng L, Liu L, Lin L, Tang H, Fan X, Lin H, Li X. Cecal CircRNAs Are Associated With the Response to Salmonella Enterica Serovar Enteritidis Inoculation in the Chicken. Front Immunol 2019; 10:1186. [PMID: 31214170 PMCID: PMC6554294 DOI: 10.3389/fimmu.2019.01186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/09/2019] [Indexed: 12/01/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which is different from linear RNA. CircRNA is an RNA molecule with a closed loop structure formed by reverse splicing. CircRNAs have been studied in several organisms, however, the circRNAs associated with the response to Salmonella enterica serovar Enteritidis (SE) inoculation in chickens are still unclear. In the current study, Jining Bairi chickens were inoculated with SE. CircRNAs involved in the response to SE inoculation were identified through next-generation sequencing. Our results showed that there were 5,118 circRNAs identified in the control and treated groups. There were 62 circRNAs significantly differentially expressed following SE inoculation. Functional classification revealed that those significantly differentially expressed circRNAs were associated with immune system process, rhythmic process and signaling following SE inoculation. CircRNAs NC_006091.4: 65510578|65515090, NC_006099.4: 16132825|16236906, and NC_006099.4: 15993284|16006290 play important roles in the response to SE inoculation. The findings in the current study provide evidence that circRNA alterations are involved in the response to SE inoculation in the chicken.
Collapse
Affiliation(s)
- Linna Zheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Lili Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
21
|
Aguilar C, Mano M, Eulalio A. Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0002-2019. [PMID: 31152522 PMCID: PMC11026079 DOI: 10.1128/microbiolspec.bai-0002-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including Salmonella enterica, Listeria monocytogenes, Mycobacterium spp., and Helicobacter pylori, among others.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-Based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Shippy DC, Bearson BL, Cai G, Brunelle BW, Kich JD, Bearson SM. Modulation of porcine microRNAs associated with apoptosis and NF-κB signaling pathways in response to Salmonella enterica serovar Typhimurium. Gene 2018; 676:290-297. [DOI: 10.1016/j.gene.2018.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
23
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
24
|
Wang H, Liu L, Liu X, Zhang M, Li X. Correlation between miRNAs and target genes in response to Campylobacter jejuni inoculation in chicken. Poult Sci 2018; 97:485-493. [DOI: 10.3382/ps/pex343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022] Open
|
25
|
Li P, Fan W, Li Q, Wang J, Liu R, Everaert N, Liu J, Zhang Y, Zheng M, Cui H, Zhao G, Wen J. Splenic microRNA Expression Profiles and Integration Analyses Involved in Host Responses to Salmonella enteritidis Infection in Chickens. Front Cell Infect Microbiol 2017; 7:377. [PMID: 28884089 PMCID: PMC5573731 DOI: 10.3389/fcimb.2017.00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/08/2017] [Indexed: 01/26/2023] Open
Abstract
To understand the role of miRNAs in regulating genes involved in the host response to Salmonella enteritidis (SE) infection, next generation sequencing was applied to explore the altered splenic expression of microRNAs (miRNAs) and deregulated genes in specific-pathogen-free chickens. Birds were either infected or not (controls, C) and those challenged with SE were evaluated 24 h later and separated into two groups on the basis of the severity of clinical symptoms and blood load of SE: resistant (R, SE challenged-slight clinical symptoms and <105 cfu / 10 μL), and susceptible (S, SE challenged-severe clinical symptoms and >107 cfu/10 μL). Thirty-two differentially expressed (DE) miRNAs were identified in spleen, including 16 miRNAs between S and C, 13 between R and C, and 13 between S and R. Through integration analysis of DE miRNAs and mRNA, a total of 273 miRNA-target genes were identified. Functional annotation analysis showed that Apoptosis and NOD-like receptor signaling pathway and adaptive immune response were significantly enriched (P < 0.05). Interestingly, apoptosis pathway was significantly enriched in S vs. C, while NOD-like receptor pathway was enriched in R vs. C (P < 0.05). Two miRNAs, gga-miR-101-3p and gga-miR-155, in the hub positions of the miRNA-mRNA regulatory network, were identified as candidates potentially associated with SE infection. These 2 miRNAs directly repressed luciferase reporter gene activity via binding to 3'-untranslated regions of immune-related genes IRF4 and LRRC59; over-expressed gga-miR-155 and interference gga-miR-101-3p in chicken HD11 macrophage cells significantly altered expression of their target genes and decreased the production of pro-inflammatory cytokines. These findings facilitate better understanding of the mechanisms of host resistance and susceptibility to SE infection in chickens.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
- State Key Laboratory of Animal NutritionBeijing, China
| | - Wenlei Fan
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jie Wang
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Jie Liu
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| | - Yonghong Zhang
- College of Animal Science, Jilin UniversityChangchun, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| |
Collapse
|