1
|
Yao YJ, Yin NN, Pu LM, Yang AJ, Liu NY. Three chemosensory proteins enriched in antennae and tarsi of Rhaphuma horsfieldi differentially contribute to the binding of insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105797. [PMID: 38458690 DOI: 10.1016/j.pestbp.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 03/10/2024]
Abstract
Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 μM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.
Collapse
Affiliation(s)
- Yu-Juan Yao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Lin-Mei Pu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - An-Jing Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Yin NN, Yao YJ, Liang YL, Wang ZQ, Li YH, Liu NY. Functional characterization of four antenna-biased chemosensory proteins in Dioryctria abietella reveals a broadly tuned olfactory DabiCSP1 and its key residues in ligand-binding. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105678. [PMID: 38072535 DOI: 10.1016/j.pestbp.2023.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
The orientation of the oligophagous cone-feeding moth Dioryctria abietella (Lepidoptera: Pyralidae) to host plants primarily relies on olfactory-related proteins, particularly those candidates highly expressed in antennae. Here, through a combination of expression profile, ligand-binding assay, molecular docking and site-directed mutagenesis strategies, we characterized the chemosensory protein (CSP) gene family in D. abietella. Quantitative real-time PCR (qPCR) analyses revealed the detectable expression of all 22 DabiCSPs in the antennae, of which seven genes were significantly enriched in this tissue. In addition, the majority of the genes (19/22 relatives) had the expression in at least one reproductive tissue. In the interactions of four antenna-dominant DabiCSPs and different chemical classes, DabiCSP1 was broadly tuned to 27 plant-derived odors, three man-made insecticides and one herbicide with high affinities (Ki < 6.60 μM). By contrast, three other DabiCSPs (DabiCSP4, CSP6 and CSP17) exhibited a narrow odor binding spectrum, in response to six compounds for each protein. Our mutation analyses combined with molecular docking simulations and binding assays further identified four key residues (Tyr25, Thr26, Ile65 and Val69) in the interactions of DabiCSP1 and ligands, of which binding abilities of this protein to 12, 15, 16 and three compounds were significantly decreased compared to the wildtype protein, respectively. Our study reveals different odor binding spectra of four DabiCSPs enriched in antennae and identifies key residues responsible for the binding of DabiCSP1 and potentially active compounds for the control of this pest.
Collapse
Affiliation(s)
- Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Juan Yao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yin-Lan Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zheng-Quan Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yong-He Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
3
|
Qiao P, Mei X, Li R, Xu Y, Qiu Z, Xia D, Zhao Q, Shen D. Transcriptome analysis of immune-related genes of Asian corn borer (Ostrinia furnacalis [Guenée]) after oral bacterial infection. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-16. [PMID: 37533191 DOI: 10.1002/arch.22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
The Asian corn borer (Ostrinia furnacalis) is an important agricultural pest causing serious damage to economic crops, such as corn and sorghum. The gut is the first line of defense against pathogens that enter through the mouth. Staphylococcus aureus was used to infect the O. furnacalis midgut to understand the midgut immune mechanism against exogenous pathogens to provide new ideas and methods for the prevention and control of O. furnacalis. A sequencing platform was used for genome assembly and gene expression. The unigene sequences were annotated and functionally classified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Significant differences were found in the induced expression profiles before and after infection. Some differentially expressed genes have important relations with lipid metabolism and immune mechanism, suggesting that they play an important role in the innate immune response of O. furnacalis. Furthermore, quantitative real-time polymerase chain reaction assay was used to identify the key genes involved in the signaling pathway, and the expression patterns of these key genes were confirmed. The results could help study the innate immune system of lepidopteran insects and provide theoretical support for the control of related pests and the protection of beneficial insects.
Collapse
Affiliation(s)
- Peitong Qiao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xianghan Mei
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ruixiang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Yuanyuan Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Yao Q, Liang Z, Chen B. Evidence for the Participation of Chemosensory Proteins in Response to Insecticide Challenge in Conopomorpha sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1360-1368. [PMID: 36622209 DOI: 10.1021/acs.jafc.2c05973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemosensory proteins (CSPs) are a type of efficient transporters that can bind various hydrophobic compounds. Previous research has shown that the expression levels of some insect CSPs were significantly increased after insecticide treatment. However, the role of CSPs in response to insecticide challenge is unclear. Conopomorpha sinensis is the most destructive borer pest of litchi (Litchi chinensis) and longan (Euphoria longan) in the Asia-Pacific region. Here, we studied the expression patterns and potential functions of 12 CSP genes (CsCSPs) from C. sinensis in response to λ-cyhalothrin exposure. The spatiotemporal distribution of CsCSPs suggested that they were predominantly expressed in the female abdomen, female legs, and male legs. The expression levels of CsCSPs were affected in a time-dependent manner after λ-cyhalothrin treatment in both sexes of C. sinensis adults. Compared to the control group, the expression levels of CsCSP1, CsCSP2, CsCSP9, and CsCSP12 in females were significantly increased by 2-4 times, while only one CsCSP, three CsCSPs, and two CsCSPs were significantly upregulated in males at three time points post-treatment. The sex-biased variance of CSP expression may be related to sex-specific detoxification enzymatic activities and survival rates of C. sinensis in response to insecticide challenge. Homology modeling and molecular docking analyses showed that the binding energy value of CsCSP1-12 to λ-cyhalothrin was negative and the binding energy between CsCSP9 and λ-cyhalothrin was the lowest (-11.35 kJ/mol). Combined with expression alterations of CsCSP1-12, the results indicate that CsCSP1, CsCSP2, CsCSP9, and CsCSP12 were involved in binding and ferrying of λ-cyhalothrin in C. sinensis.
Collapse
Affiliation(s)
- Qiong Yao
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhantu Liang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingxu Chen
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Revealing the difference of α-amylase and CYP6AE76 gene between polyphagous Conogethes punctiferalis and oligophagous C. pinicolalis by multiple-omics and molecular biological technique. BMC Genomics 2022; 23:521. [PMID: 35854244 PMCID: PMC9295484 DOI: 10.1186/s12864-022-08753-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Conogethes pinicolalis has been thought as a Pinaceae-feeding variant of the yellow peach moth, Conogethes punctiferalis. The divergence of C. pinicolalis from the fruit-feeding moth C. punctiferalis has been reported in terms of morphology, ecology, and genetics, however there is a lack of detailed molecular data. Therefore, in this study, we investigated the divergence of C. pinicolalis from C. punctiferalis from the aspects of transcriptomics, proteomics, metabolomics and bioinformatics. Results The expression of 74,611 mRNA in transcriptome, 142 proteins in proteome and 218 metabolites in metabolome presented significantly differences between the two species, while the KEGG results showed the data were mainly closely related to metabolism and redox. Moreover, based on integrating system-omics data, we found that the α-amylase and CYP6AE76 genes were mutated between the two species. Mutations in the α-amylase and CYP6AE76 genes may influence the efficiency of enzyme preference for a certain substrate, resulting in differences in metabolic or detoxifying ability in both species. The qPCR and enzyme activity test also confirmed the relevant gene expression. Conclusions These findings of two related species and integrated networks provide beneficial information for further exploring the divergence in specific genes, metabolism, and redox mechanism. Most importantly, it will give novel insight on species adaptation to various diets, such as from monophagous to polyphagous. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08753-9.
Collapse
|
6
|
Guan R, Hu S, Li X, An S, Miao X, Li H. A TIL-Type Serine Protease Inhibitor Involved in Humoral Immune Response of Asian Corn Borer Ostrinia furnaculis. Front Immunol 2022; 13:900129. [PMID: 35651613 PMCID: PMC9149172 DOI: 10.3389/fimmu.2022.900129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
To elucidate the application value of insect endogenous protease and its inhibitor genes in pest control, we analyzed in detail the transcriptome sequence of the Asian corn borer, Ostrinia furnacalis. We obtained 12 protease genes and 11 protease inhibitor genes, and comprehensively analyzed of their spatiotemporal expression by qRT-PCR. In which, a previous unstudied serine protease inhibitor gene attracted our attention. It belongs to the canonical serine proteinase inhibitor family, a trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitor, but its TIL domain lacks two cysteine residues, and it was named as ACB-TIL. Its expression level is relatively very low in the absence of pathogen stimulation, and can be up-regulated expression induced by Gram-negative bacteria (Escherichia coli), virus (BmNPV), and dsRNA (dsEGFP), but cannot be induced by fungus spores (Metarrhizium anisopliae). Prokaryotic expressed ACB-TIL protein can significantly inhibit the melanization in vitro. Injecting this protein into insect body can inhibit the production of antimicrobial peptides of attacin, lebocin and gloverin. Inhibition of ACB-TIL by RNAi can cause the responses of other immune-, protease- and inhibitor-related genes. ACB-TIL is primarily involved in Asian corn borer humoral immunity in responses to Gram-negative bacteria and viruses. This gene can be a potential target for pest control since this will mainly affect insect immune response.
Collapse
Affiliation(s)
- Ruobing Guan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shaoru Hu
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haichao Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
7
|
Chen K, Song J, Song Q, Dou X, Wang Y, Wei Y, Chen J, Wang L, Alradi MF, Liu X, Han Z, Feng C. Transcriptomic analysis provides insights into the immune responses and nutrition in Ostrinia furnacalis larvae parasitized by Macrocentrus cingulum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21863. [PMID: 34967472 DOI: 10.1002/arch.21863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Macrocentrus cingulum is a principal endoparasite of Ostrinia furnacalis larvae. M. cingulum larvae repress host immune responses for survival and ingest host nutrients for development until emerging. However, most investigations focused on the mechanisms of how wasps repress the host immunity, the triggered immune responses and nutrient status altered by wasps in host are neglected. In this study, we found that parasitized O. furnacalis larvae activated fast recognition responses and produced some effectors such as lysozyme and antimicrobial peptides, along with more consumption of trehalose, glucose, and even lipid to defend against the invading M. cingulum. However, the expression of peroxidase 6 and superoxide dismutase 2 (SOD 2) was upregulated, and the messenger RNA (mRNA) levels of cellular immunity-related genes such as thioester-containing protein 2 (TEP 2) and hemocytin were also reduced, suggesting that some immune responses were selectively shut down by wasp parasitization. Taken together, all the results indicated that parasitized O. furnacalis larvae selectively activate the immune recognition response, and upregulate effector genes, but suppress ROS reaction and cellular immunity, and invest more energy to fuel certain immune responses to defend against the wasp invading. This study provides useful information for further identifying key components of the nutrition and innate immune repertoire which may shape host-parasitoid coevolutionary dynamics.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahui Song
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Yin Wang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Youheng Wei
- Department of Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Shabbir MZ, Yang X, Batool R, Yin F, Kendra PE, Li ZY. Bacillus thuringiensis and Chlorantraniliprole Trigger the Expression of Detoxification-Related Genes in the Larval Midgut of Plutella xylostella. Front Physiol 2021; 12:780255. [PMID: 34966290 PMCID: PMC8710669 DOI: 10.3389/fphys.2021.780255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Diamondback moth (DBM), Plutella xylostella (L.), has developed resistance to many insecticides. The molecular mechanism of DBM resistance to Bt-G033A combined with chlorantraniliprole (CL) remains undefined. Methods: In this study, field-resistant strains of Plutella xylostella to three pesticides, namely, Bacillus thuringiensis (Bt) toxin (Bt-G033A), CL, and a mixture of Bt + CL, were selected to evaluate the resistance level. Additionally, transcriptomic profiles of a susceptible (SS-DBM), field-resistant (FOH-DBM), Bt-resistant (Bt-DBM), CL-resistant (CL-DBM), and Bt + CL-resistant (BtC-DBM) strains were performed by comparative analysis to identify genes responsible for detoxification. Results: The Bt-G033A was the most toxic chemical to all the DBM strains among the three insecticides. The comparative analysis identified 25,518 differentially expressed genes (DEGs) between pairs/combinations of strains. DEGs were enriched in pathways related to metabolic and catalytic activity and ABC transporter in resistant strains. In total, 17 metabolic resistance-related candidate genes were identified in resistance to Bt-G033A, CL, and Bt + CL by co-expression network analysis. Within candidate genes, the majority was upregulated in key genes including cytochrome P450, glutathione S-transferase (GST), carboxylesterase, and acetylcholinesterase in CL- and BtC-resistant strains. Furthermore, aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, trypsin, and ABC transporter genes were eminent as Bt-resistance-related genes. Expression patterns of key genes by the quantitative real-time PCR (qRT-PCR) proved the credibility of transcriptome data and suggest their association in the detoxification process. Conclusion: To date, this study is the most comprehensive research presenting functional transcriptome analysis of DBM using Bt-G033A and CL combined insecticidal activity.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Xiangbing Yang
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
9
|
Boaventura D, Buer B, Hamaekers N, Maiwald F, Nauen R. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. PEST MANAGEMENT SCIENCE 2021; 77:3713-3726. [PMID: 32841530 PMCID: PMC8359450 DOI: 10.1002/ps.6061] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Spodoptera frugiperda, fall armyworm (FAW) is the major pest of maize in Brazil and has readily acquired field resistance to a broad range of synthetic insecticides and to Bacillus thuringiensis (Bt) insecticidal proteins expressed in important crops. This study aims to understand patterns of cross-resistance in FAW by investigating the toxicological profile of a Bt-resistant Brazilian strain (Sf_Des) in comparison to a Bt-susceptible strain (Sf_Bra). RESULTS Laboratory bioassays with 15 active substances of nine mode of action classes revealed that Sf_Des has a medium level of resistance to deltamethrin and chlorpyrifos. Very high cross-resistance was observed among Cry1 toxins, but high susceptibility against Vip3A. Strain Sf_Des exhibited - depending on the substrate - up to 19-fold increased cytochrome P450 activity in comparison to Sf_Bra. RNA-Seq data support a major role of P450 enzymes in the detoxification of insecticides because we detected 85 P450 transcripts upregulated in Sf_Des. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis confirmed that CYP9A-like and CYP6B39 are significantly upregulated (>200-fold) in Sf_Des in comparison to Sf_Bra strain. No target-site mutation linked to pyrethroid resistance was detected, but mutations in the AChE linked to organophosphate resistance were observed in Sf_Des. A Gene Ontology (GO) analysis of differentially expressed genes (DEG) categorized most of them into the biological process category, involved in oxidation-reduction and metabolic processes. CONCLUSION Our results indicate that multiple/cross-resistance mechanisms may have developed in the Sf_Des strain to conventional insecticides and Bt insecticidal proteins. The systematic toxicological analysis presented will help to guide recommendations for an efficient resistance management. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Debora Boaventura
- Institute of Crop Science and Resource Conservation, University of BonnBonnGermany
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| | - Benjamin Buer
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| | | | - Frank Maiwald
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| | - Ralf Nauen
- Bayer AG, Crop Science DivisionR&D Pest ControlMonheimGermany
| |
Collapse
|
10
|
Molecular basis of resistance to organophosphate insecticides in the New World screw-worm fly. Parasit Vectors 2020; 13:562. [PMID: 33168079 PMCID: PMC7653728 DOI: 10.1186/s13071-020-04433-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The emergence of insecticide resistance is a fast-paced example of the evolutionary process of natural selection. In this study, we investigated the molecular basis of resistance in the myiasis-causing fly Cochliomyia hominivorax (Diptera: Calliphoridae) to dimethyl-organophosphate (OP) insecticides.
Methods
By sequencing the RNA from surviving larvae treated with dimethyl-OP (resistant condition) and non-treated larvae (control condition), we identified genes displaying condition-specific polymorphisms, as well as those differentially expressed.
Results
Both analyses revealed that resistant individuals have altered expression and allele-specific expression of genes involved in proteolysis (specifically serine-endopeptidase), olfactory perception and cuticle metabolism, among others. We also confirmed that resistant individuals carry almost invariably the Trp251Ser mutation in the esterase E3, known to confer OP and Pyrethroid resistance. Interestingly, genes involved in metabolic and detoxifying processes (notably cytochrome P450s) were found under-expressed in resistant individuals. An exception to this were esterases, which were found up-regulated.
Conclusions
These observations suggest that reduced penetration and aversion to dimethyl-OP contaminated food may be important complementary strategies of resistant individuals. The specific genes and processes found are an important starting point for future functional studies. Their role in insecticide resistance merits consideration to better the current pest management strategies.
Collapse
|
11
|
Synergistic Effect of Beauveria bassiana and Trichoderma asperellum to Induce Maize ( Zea mays L.) Defense against the Asian Corn Borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and Larval Immune Response. Int J Mol Sci 2020; 21:ijms21218215. [PMID: 33153030 PMCID: PMC7663379 DOI: 10.3390/ijms21218215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
Ostrinia furnacalis, is the major pest of maize causing significant yield losses. So far, many approaches have been used to increase the virulence of entomopathogenic fungal isolates. The current study is an attempt to estimate synergistic effect of Beauveria bassiana and Trichoderma asperellum in order to explore larval immune response through RNA sequencing and differentially expression analysis. In vivo synergism was examined in seven proportions (B. bassiana: T. asperellum = 1:1, 1:2, 1:3, 1:4, 4:1, 3:1, 2:1) and in the in vitro case, two inoculation methods were applied: seed coating and soil drenching. Results revealed significant decrease in plant damage and high larval mortality in fungal treatments. Fungal isolates mediated the plant defense by increasing proline, superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and protease activities. Seed coating method was proved to be the most effective in case of maize endophytic colonization. In total, 59 immune-related differentially expressed genes DEGs were identified including, cytochrome P450, heat shock protein, ABC transporter, cadherin, peptidoglycan recognition protein (PGRP), cuticlular protein, etc. Further, transcriptomic response was confirmed by qRT-PCR. Our results concluded that, coculture of B. bassiana and T. asperellum has the synergistic potential to suppress the immune response of O. furnacalis and can be used as sustainable approach to induce plant resistance through activation of defense-related enzymes.
Collapse
|
12
|
PBP genes regulated by the development of the ovaries, sex pheromone release, mating and oviposition behavior in Conogethes punctiferalis (Guenée). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00323-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Yadav C, Smith ML, Yack JE. Transcriptome analysis of a social caterpillar, Drepana arcuata: De novo assembly, functional annotation and developmental analysis. PLoS One 2020; 15:e0234903. [PMID: 32569288 PMCID: PMC7307738 DOI: 10.1371/journal.pone.0234903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The masked birch caterpillar, Drepana arcuata, provides an excellent opportunity to study mechanisms mediating developmental changes in social behaviour. Larvae transition from being social to solitary during the 3rd instar, concomitant with shifts in their use of acoustic communication. In this study we characterize the transcriptome of D. arcuata to initiate sociogenomic research of this lepidopteran insect. We assembled and annotated the combined larval transcriptome of “social” early and “solitary” late instars using next generation Illumina sequencing, and used this transcriptome to conduct differential gene expression analysis of the two behavioural phenotypes. A total of 211,012,294 reads generated by RNA sequencing were assembled into 231,348 transcripts and 116,079 unigenes for the functional annotation of the transcriptome. Expression analysis revealed 3300 transcripts that were differentially expressed between early and late instars, with a large proportion associated with development and metabolic processes. We independently validated differential expression patterns of selected transcripts using RT-qPCR. The expression profiles of social and solitary larvae revealed differentially expressed transcripts coding for gene products that have been previously reported to influence social behaviour in other insects (e.g. cGMP- and cAMP- dependent kinases, and bioamine receptors). This study provides the first transcriptomic resources for a lepidopteran species belonging to the superfamily Drepanoidea, and gives insight into genetic factors mediating grouping behaviour in insects.
Collapse
Affiliation(s)
- Chanchal Yadav
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Myron L. Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jayne E. Yack
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Jing D, Zhang T, Bai S, He K, Prabu S, Luan J, Wang Z. Sexual-biased gene expression of olfactory-related genes in the antennae of Conogethes pinicolalis (Lepidoptera: Crambidae). BMC Genomics 2020; 21:244. [PMID: 32188403 PMCID: PMC7081556 DOI: 10.1186/s12864-020-6648-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms, especially for masson pine. So far, less literature was reported on this pest. In the present study, we sequenced and characterized the antennal transcriptomes of male and female C. pinicolalis for the first time. RESULTS Totally, 26 odorant-binding protein (OBP) genes, 19 chemosensory protein (CSP) genes, 55 odorant receptor (OR) genes and 20 ionotropic receptor (IR) genes were identified from the C. pinicolalis antennae transcriptome and amino sequences were annotated against homologs of C. punctiferalis. The neighbor-joining tree indicated that the amino acid sequence of olfactory related genes is highly homologous with C. punctiferalis. Furthermore, the reference genes were selected, and we recommended the phosphate dehydrogenase gene (GAPDH) or ribosomal protein 49 gene (RP49) to verify the target gene expression during larval development stages and RP49 or ribosomal protein L13 gene (RPL13) for adult tissues. CONCLUSIONS Our study provides a starting point on the molecular level characterization between C. pinicolalis and C. punctiferalis, which might be supportive for pest management studies in future.
Collapse
Affiliation(s)
- Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161 China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Junbo Luan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161 China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
15
|
Jia ZQ, Liu D, Peng YC, Han ZJ, Zhao CQ, Tang T. Identification of transcriptome and fluralaner responsive genes in the common cutworm Spodoptera litura Fabricius, based on RNA-seq. BMC Genomics 2020; 21:120. [PMID: 32013879 PMCID: PMC6998375 DOI: 10.1186/s12864-020-6533-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Fluralaner is a novel isoxazoline insecticide with a unique action site on the γ-aminobutyric acid receptor (GABAR), shows excellent activity on agricultural pests including the common cutworm Spodoptera litura, and significantly influences the development and fecundity of S. litura at either lethal or sublethal doses. Herein, Illumina HiSeq Xten (IHX) platform was used to explore the transcriptome of S. litura and to identify genes responding to fluralaner exposure. Results A total of 16,572 genes, including 451 newly identified genes, were observed in the S. litura transcriptome and annotated according to the COG, GO, KEGG and NR databases. These genes included 156 detoxification enzyme genes [107 cytochrome P450 enzymes (P450s), 30 glutathione S-transferases (GSTs) and 19 carboxylesterases (CarEs)] and 24 insecticide-targeted genes [5 ionotropic GABARs, 1 glutamate-gated chloride channel (GluCl), 2 voltage-gated sodium channels (VGSCs), 13 nicotinic acetylcholine receptors (nAChRs), 2 acetylcholinesterases (AChEs) and 1 ryanodine receptor (RyR)]. There were 3275 and 2491 differentially expressed genes (DEGs) in S. litura treated with LC30 or LC50 concentrations of fluralaner, respectively. Among the DEGs, 20 related to detoxification [16 P450s, 1 GST and 3 CarEs] and 5 were growth-related genes (1 chitin and 4 juvenile hormone synthesis genes). For 26 randomly selected DEGs, real-time quantitative PCR (RT-qPCR) results showed that the relative expression levels of genes encoding several P450s, GSTs, heat shock protein (HSP) 68, vacuolar protein sorting-associated protein 13 (VPSAP13), sodium-coupled monocarboxylate transporter 1 (SCMT1), pupal cuticle protein (PCP), protein takeout (PT) and low density lipoprotein receptor adapter protein 1-B (LDLRAP1-B) were significantly up-regulated. Conversely, genes encoding esterase, sulfotransferase 1C4, proton-coupled folate transporter, chitinase 10, gelsolin-related protein of 125 kDa (GRP), fibroin heavy chain (FHC), fatty acid synthase and some P450s were significantly down-regulated in response to fluralaner. Conclusions The transcriptome in this study provides more effective resources for the further study of S. litura whilst the DEGs identified sheds further light on the molecular response to fluralaner.
Collapse
Affiliation(s)
- Zhong-Qiang Jia
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Di Liu
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ying-Chuan Peng
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Present address: Institute of Entomology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhao-Jun Han
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chun-Qing Zhao
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China.
| |
Collapse
|
16
|
Shabbir MZ, Zhang T, Prabu S, Wang Y, Wang Z, Bravo A, Soberón M, He K. Identification of Cry1Ah-binding proteins through pull down and gene expression analysis in Cry1Ah-resistant and susceptible strains of Ostrinia furnacalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:200-208. [PMID: 31973858 DOI: 10.1016/j.pestbp.2019.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis produces insecticidal Cry toxins used in the control of multiple insect pests. Evolution of insect resistance to Bt toxins endangers the use of Cry toxins for pest control. Analysis of the Cry1Ah-binding proteins from brush border membrane vesicles (BBMV) of Ostrinia furnacalis, Asian corn borer (ACB) from the Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains was performed by an improved pull down assay that includes coupling Cry1Ah to NHS-activated Sepharose combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data show that Cry1Ah bound to alkaline phosphatase (ALP), cadherin-like (CAD), actin, aminopeptidase-N (APN), prophenoloxidase (proPO), serine proteinase inhibitor (SPI), immulectin, and V-ATPase and to other proteins that were not previously characterized as Cry-binding proteins in ACB-BtS strain. Analysis of Cry1Ah-pulled down proteins of the BBMV from ACB-AhR revealed that Cry1Ah toxin did not bind to ALP in ACB-AhR strain, suggesting that this protein may correlate with the resistant phenotype of this strain. Additionally, we analyzed the expression of representative genes coding for Cry1Ah-binding proteins such as ALP, APN, CAD, proPO, SPI, and immulectin by qRT-PCR. ACB-AhR showed increased expression levels of proPO (7.5 fold), ALP (6.2 fold) and APN (1.4 fold) in comparison to ACB-BtS strain. In contrast, the cad gene showed slight decreased expression in ACB-AhR strain (0.7 fold) compared with ACB-BtS strain. Our data suggest that differences in the susceptibility to Cry1Ah toxin in the ACB-AhR strain may be associated with reduced ALP binding sites and with an increased immune response. This study also brings evidence of a possible binding interaction of Cry1Ah toxin to immune related proteins like proPO.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
17
|
Qi H, Liu T, Lu Q, Yang Q. Molecular Insights into the Insensitivity of Lepidopteran Pests to Cycloxaprid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:982-988. [PMID: 31909997 DOI: 10.1021/acs.jafc.9b06959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cycloxaprid (CYC) is effective in the control of hemipteran pests, but its bioactivity against lepidopteran pests is still unclear. Here, the bioactivity of CYC against lepidopteran pests was found to be much worse than that against hemipteran insects. To reveal the mechanism, the transcriptomes of CYC-treated and untreated Ostrinia furnacalis larvae were compared. Among the top 20 differentially expressed genes, 11 encode proteins involved in cuticle formation, while only one encodes a detoxifying enzyme. Thus, the cuticle appears to be important for the insensitivity of O. furnacalis to CYC. A pretreatment of O. furnacalis larvae with methoprene enhanced the bioactivity of CYC by 1.12-fold. Moreover, mixtures of CYC with graphene oxide increased the bioactivity of CYC by 1.88-fold. Because lepidopteran and hemipteran insects often harm crops at the same time, the work can help make full use of CYC and reduce the environmental impacts of using multiple pesticides.
Collapse
Affiliation(s)
- Huitang Qi
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qiong Lu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
18
|
Dumas P, Sambou M, Gaudet JD, Morin MD, Moffat CE, Boquel S, Jr Morin P. Differential expression of transcripts with potential relevance to chlorantraniliprole response in the Colorado potato beetle, Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21642. [PMID: 31667890 DOI: 10.1002/arch.21642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata [Say]) is an insect pest that can significantly harm potato plants worldwide. Control of this insect relies heavily on chemical insecticides such as chlorantraniliprole. Nevertheless, the complete molecular signature associated with response to this compound is lacking in L. decemlineata. In this study, amplification and quantification by qRT-PCR (quantitative reverse transcription-polymerase chain reaction) of targets relevant to chlorantraniliprole were undertaken in insects exposed to this chemical. This approach showed modulation of numerous cytochrome P450s, such as CYP350D1 and CYP4Q3, as well as upregulation of microRNAs (miRNAs), including miR-1-3p and miR-305-5p, in chlorantraniliprole-exposed insects. Functional assessment of transcript targets predicted to be regulated by these miRNAs was performed and revealed their likely impact on transcriptional regulation. RNAi-based targeting of CYP350D1 notably provided preliminary evidence of its underlying implication for chlorantraniliprole response in L. decemlineata. Overall, this study strengthens the current knowledge of the molecular changes linked to chlorantraniliprole response in L. decemlineata and provides novel targets with potential relevance to chlorantraniliprole susceptibility in this insect pest of global relevance.
Collapse
Affiliation(s)
- Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Mariama Sambou
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Josée D Gaudet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Mathieu D Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Sébastien Boquel
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
19
|
Jing D, Zhang T, Bai S, Prabu S, He K, Dewer Y, Wang Z. GOBP1 Plays a Key Role in Sex Pheromones and Plant Volatiles Recognition in Yellow Peach Moth, Conogethes punctiferalis (Lepidoptera: Crambidae). INSECTS 2019; 10:insects10090302. [PMID: 31533342 PMCID: PMC6780721 DOI: 10.3390/insects10090302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
Abstract
Insects recognize odorous compounds using sensory neurons organized in olfactory sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by multigene families. Most functional proteins seem to be broadly tuned, responding to multiple chemical compounds with different, but mostly quite similar structures. Based on the hypothesis that insects recognize host volatiles by means of general odorant binding proteins (GOBPs), the current study aimed to characterize GOBPs of the yellow peach moth, Conogethes punctiferalis (Guenée). In oviposition preference tests, it was found that the yellow peach moth preferred volatiles from Prunus persica (peach) in finding their host plant. Exposure of the moth to volatiles from peaches affected the expression level of GOBP genes. Binding affinity of GOBPs from yellow peach moth was assessed for 16 host plant volatiles and 2 sex pheromones. The fluorescence ligand-binding assays revealed highest affinities for hexadecanal, farnesol, and limonene with KD values of 0.55 ± 0.08, 0.35 ± 0.04, and 1.54 ± 0.39, respectively. The binding sites of GOBPs from yellow peach moth were predicted using homology modeling and characterized using molecular docking approaches. The results indicated the best binding affinity of both GOBP1 and GOBP2 for farnesol, with scores of −7.4 and −8.5 kcal/mol. Thus, GOBPs may play an important role in the process of finding host plants.
Collapse
Affiliation(s)
- Dapeng Jing
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt.
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
20
|
Shabbir MZ, Zhang T, Wang Z, He K. Transcriptome and Proteome Alternation With Resistance to Bacillus thuringiensis Cry1Ah Toxin in Ostrinia furnacalis. Front Physiol 2019; 10:27. [PMID: 30774599 PMCID: PMC6367224 DOI: 10.3389/fphys.2019.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Asian corn borer (ACB), Ostrinia furnacalis can develop resistance to transgenic Bacillus thuringiensis (Bt) maize expressing Cry1Ah-toxin. However, the mechanisms that regulate the resistance of ACB to Cry1Ah-toxin are unknown. Objective: In order to understand the molecular basis of the Cry1Ah-toxin resistance in ACB, “omics” analyses were performed to examine the difference between Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains of ACB at both transcriptional and translational levels. Results: A total of 7,007 differentially expressed genes (DEGs) and 182 differentially expressed proteins (DEPs) were identified between ACB-AhR and ACB-BtS and 90 genes had simultaneous transcription and translation profiles. Down-regulated genes associated with Cry1Ah resistance included aminopeptidase N, ABCC3, DIMBOA-induced cytochrome P450, alkaline phosphatase, glutathione S-transferase, cadherin-like protein, and V-ATPase. Whereas, anti-stress genes, such as heat shock protein 70 and carboxylesterase were up-regulated in ACB-AhR, displaying that a higher proportion of genes/proteins related to resistance was down-regulated compared to up-regulated. The Kyoto encyclopedia of genes and genomes (KEGG) analysis mapped 578 and 29 DEGs and DEPs, to 27 and 10 pathways, respectively (P < 0.05). Furthermore, real-time quantitative (qRT-PCR) results based on relative expression levels of randomly selected genes confirmed the “omics” response. Conclusion: Despite the previous studies, this is the first combination of a study using RNA-Seq and iTRAQ approaches on Cry1Ah-toxin binding, which led to the identification of longer length of unigenes in ACB. The DEGs and DEPs results are valuable for further clarifying Cry1Ah-mediated resistance.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Sun Z, Xu H. Ryanodine Receptors for Drugs and Insecticides: An Overview. Mini Rev Med Chem 2018; 19:22-33. [DOI: 10.2174/1389557518666180330112908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) are calcium channels located on the endo(sarco)plasmic reticulum
of muscle cells and neurons. They regulate the release of stored intracellular calcium and play a
critical role in muscle contraction. The N-terminal part of these receptors accounts for roughly 80%
and contains the binding sites for diverse RyRs modulators. The C-terminal domain contains the
transmembrane region. This review summarizes the current knowledge about the molecular biology of
insect RyRs, chemicals targeting mammal or insect RyRs, and the reasons for mammal RyR-related
diseases and diamides resistances. It may lay the foundation for effective management of mammal
RyR-related diseases and diamides resistances.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
22
|
Wang JD, Wang WZ, Wang YR, Gao SJ, Elzaki M, Wang R, Wang R, Wu M. Response of detoxification and immune genes and of transcriptome expression in Mythimna separata following chlorantraniliprole exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:90-98. [DOI: 10.1016/j.cbd.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
23
|
Zhang Y, Zhang Y, Fu M, Yin G, Sayre RT, Pennerman KK, Yang F. RNA Interference to Control Asian Corn Borer Using dsRNA from a Novel Glutathione-S-Transferase Gene of Ostrinia furnacalis (Lepidoptera: Crambidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5139638. [PMID: 30346622 PMCID: PMC6195416 DOI: 10.1093/jisesa/iey100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 05/06/2023]
Abstract
Glutathione-S-transferases (GST) comprise a multifunctional protein superfamily, which plays important roles as detoxifiers and antioxidants in insects. The GST in Asian corn borer has not been previously characterized. In this study, we cloned, characterized, and expressed the complete GST genes from the midgut of Asian corn borer. Furthermore, we designed htL4440-OfGST vector to exploit this gene for RNA interference (RNAi) strategy to control this pest. A complete GST cDNA sequence in Asian corn borer was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends technology. The gene was 887bp in length and contained a 705bp open reading frame and 5' UTR and 3' UTR lengths of 89 and 93bp, respectively. The putative sequence encoded a putative 234 amino acid residue peptide and had a predicted molecular weight of ~26kDa. The GST protein of Asian corn borer is hydrophilic and may have a 30 amino acid signal peptide with a cleavage site between L30 and K31. A recombination vector pET28a-OfGST was constructed for purification and antibody preparation. Western blotting analysis showed that this protein reached the maximum expression level around 24 h in Asian corn borer larvae fed the plant toxin 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. A second vector, htL4440-OfGST, was constructed to generate the dsRNA of the GST gene. A larval feeding bioassay showed that the expressed dsRNA significantly reduced the detoxification ability of Asian corn borer larvae and increased mortality rate up to 54%. Our data indicated that GST plays very important roles in detoxifying in Asian corn borer and can be used as an RNAi method to control this pest in the field.
Collapse
Affiliation(s)
- Yuliang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yitong Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, China
| | - Maojie Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Guohua Yin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- New Mexico Consortium and Pebble Labs Inc., Los Alamos, NM
| | | | - Kayla K Pennerman
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| |
Collapse
|
24
|
Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Sci Rep 2018; 8:8915. [PMID: 29891984 PMCID: PMC5995959 DOI: 10.1038/s41598-018-27035-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 04/22/2018] [Indexed: 12/30/2022] Open
Abstract
Cycloxaprid is a novel cis-configuration neonicotinoid insecticide that is effective against a wide range of insect pests, including those that are resistant to conventional neonicotinoids. In this study, life table parameters were applied to estimate the cycloxaprid-induced sublethal effects on Aphis gossypii. The results indicated that the LC20 (0.81 mg a.i. L−1) of cycloxaprid significantly decreased the pre-oviposition period in first-progeny adults. Additionally, the life expectancy of F1 generation adults was reduced. However, no significant differences were observed for the intrinsic rate of increase (ri), finite rate of increase (λ), net reproductive rate (R0), or mean generation time (T) of F1 individuals. Therefore, resurgence in the A. gossypii population induced by a low concentration of cycloxaprid might not occur. Additionally, the response of the detoxification enzymes showed that cycloxaprid at the LC20 inhibited cytochrome P450 monooxygenase (P450) and glutathione S-transferase (GST) activities at 6 h after exposure. Such inhibition of P450 and GST activities could lead to a decrease in the metabolism of cycloxaprid, which would increase the efficacy of cycloxaprid. Therefore, our results contribute to the assessment of the overall effects of cycloxaprid on A. gossypii.
Collapse
|
25
|
Sarkar S, Roy S. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:557. [PMID: 29030761 DOI: 10.1007/s10661-017-6287-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5-100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure. Graphical abstract The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration, reduction in fecundity and alteration in male-female ratio is also observed.
Collapse
Affiliation(s)
- Saurabh Sarkar
- Toxicological Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Sumedha Roy
- Toxicological Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
26
|
Meher PK, Sahu TK, Banchariya A, Rao AR. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins. BMC Bioinformatics 2017; 18:190. [PMID: 28340571 PMCID: PMC5364559 DOI: 10.1186/s12859-017-1587-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. RESULTS Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. CONCLUSIONS This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:8080/dirprot/ . The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides in wet-lab by targeting the insecticide resistant proteins.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Tanmaya Kumar Sahu
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anjali Banchariya
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.,Department of Bioinformatics, Janta Vedic College, Baraut, Baghpat, 250611, Uttar Pradesh, India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| |
Collapse
|