1
|
Sayid R, van den Hurk AWM, Rothschild-Rodriguez D, Herrema H, de Jonge PA, Nobrega FL. Characteristics of phage-plasmids and their impact on microbial communities. Essays Biochem 2024; 68:583-592. [PMID: 39611587 DOI: 10.1042/ebc20240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities.
Collapse
Affiliation(s)
- Ruweyda Sayid
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Anne W M van den Hurk
- Departments of Internal and Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam; the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, metabolism & nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam; the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, metabolism & nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Departments of Internal and Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam; the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, metabolism & nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Hepner S, Jolley KA, Castillo-Ramirez S, Mourkas E, Dangel A, Wieser A, Hübner J, Sing A, Fingerle V, Margos G. A core genome MLST scheme for Borrelia burgdorferi sensu lato improves insights into the evolutionary history of the species complex. CELL REPORTS METHODS 2024:100935. [PMID: 39701105 DOI: 10.1016/j.crmeth.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Multi-locus sequence typing (MLST) based on eight genes has become the method of choice for Borrelia typing and is extensively used for population studies. Whole-genome sequencing enables studies to scale up to genomic levels but necessitates extended schemes. We have developed a 639-loci core genome MLST (cgMLST) scheme for Borrelia burgdorferi sensu lato (s.l.) that enables unambiguous genotyping and improves the robustness of phylogenies and lineage resolution within species. Notably, all inner nodes of the cgMLST phylogenies had consistently high statistical support. Analyses of the genetically homogeneous European B. bavariensis population support the notion that cgMLST provides high discriminatory power even for closely related isolates. While isolates differed maximally in one MLST locus, there were up to 179 cgMLST loci differences. Thus, the developed cgMLST scheme for B. burgdorferi s.l. resolves lineages at a finer resolution than MLST and improves insights into the evolutionary history of the species complex.
Collapse
Affiliation(s)
- Sabrina Hepner
- German National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| | | | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evangelos Mourkas
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Andreas Wieser
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany; Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Immunology, Infectious Disease and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Johannes Hübner
- Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Andreas Sing
- German National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
3
|
Reddy PJ, Sun Z, Wippel HH, Baxter DH, Swearingen K, Shteynberg DD, Midha MK, Caimano MJ, Strle K, Choi Y, Chan AP, Schork NJ, Varela-Stokes AS, Moritz RL. Borrelia PeptideAtlas: A proteome resource of common Borrelia burgdorferi isolates for Lyme research. Sci Data 2024; 11:1313. [PMID: 39622905 PMCID: PMC11612207 DOI: 10.1038/s41597-024-04047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Lyme disease is caused by an infection with the spirochete Borrelia burgdorferi, and is the most common vector-borne disease in North America. B. burgdorferi isolates harbor extensive genomic and proteomic variability and further comparison of isolates is key to understanding the infectivity of the spirochetes and biological impacts of identified sequence variants. Here, we applied both transcriptome analysis and mass spectrometry-based proteomics to assemble peptide datasets of B. burgdorferi laboratory isolates B31, MM1, and the infective isolate B31-5A4, to provide a publicly available Borrelia PeptideAtlas. Included are total proteome, secretome, and membrane proteome identifications of the individual isolates. Proteomic data collected from 35 different experiment datasets, totaling 386 mass spectrometry runs, have identified 81,967 distinct peptides, which map to 1,113 proteins. The Borrelia PeptideAtlas covers 86% of the total B31 proteome of 1,291 protein sequences. The Borrelia PeptideAtlas is an extensible comprehensive peptide repository with proteomic information from B. burgdorferi isolates useful for Lyme disease research.
Collapse
Affiliation(s)
- Panga J Reddy
- Institute for Systems Biology, Seattle, Washington, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | | | - Mukul K Midha
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Agnes P Chan
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Andrea S Varela-Stokes
- Tufts University Cummings School of Veterinary Medicine, Department of Comparative Pathobiology, Grafton, MA, 01536, USA
| | | |
Collapse
|
4
|
Hofmann H, Margos G, Todorova A, Ringshausen I, Kuleshov K, Fingerle V. Case report of disseminated borrelial lymphocytoma with isolation of Borrelia burgdorferi sensu stricto in chronic lymphatic leukemia stage Binet A-an 11 year follow up. Front Med (Lausanne) 2024; 11:1465630. [PMID: 39493706 PMCID: PMC11527655 DOI: 10.3389/fmed.2024.1465630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
We report a rare manifestation of cutaneous borreliosis in a patient with pre-existing malignant lymphoproliferative disease, in particular chronic lymphocytic B cell leukemia (B-CLL). The patient's cutaneous lesions were initially diagnosed histologically as leukemia cutis. Distribution pattern of the skin lesions were in typical localizations for borrelial lymphocytoma. Borrelia burgdorferi sensu stricto was isolated and cultured from two sites (ear, mammilla). Antibiotic therapy improved the cutaneous lesions and the general condition of the patient. However, a second round of antibiotic therapy was required to resolve the lesions. At eleven years of follow-up the patient's skin was clear and she still had a stable condition of B-CLL without chemotherapy. In conclusion, the patient suffered from Lyme borreliosis (Borrelia lymphocytoma) and the cutaneous symptoms were aggravated by the underlying condition of chronic B-CLL condition.
Collapse
Affiliation(s)
- Heidelore Hofmann
- Department of Dermatology and Allergy, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Antonia Todorova
- Department of Dermatology and Allergy, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
- Department of Public Health, City of Munich, Munich, Germany
| | - Ingo Ringshausen
- III Medical Department for Hematology and Hematooncology, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
- University College London Cancer Institute, London, United Kingdom
| | | | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
5
|
Hoornstra D, Kuleshov KV, Fingerle V, Hepner S, Wagemakers A, Strube C, Castillo-Ramírez S, Bockenstedt LK, Telford SR, Sprong H, Platonov AE, Margos G, Hovius JW. Combining short- and long-read sequencing unveils geographically structured diversity in Borrelia miyamotoi. iScience 2024; 27:110616. [PMID: 39262806 PMCID: PMC11388275 DOI: 10.1016/j.isci.2024.110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Borrelia miyamotoi is an emerging Ixodes tick-borne human pathogen in the Northern hemisphere. The aim of the current study was to compare whole genome sequences of B. miyamotoi isolates from different continents. Using a combination of Illumina and PacBio platforms and a novel genome assembly and plasmid typing pipeline, we reveal that the 21 sequenced B. miyamotoi isolates and publically available B. miyamotoi genomes from North America, Asia, and Europe form genetically distinct populations and cluster according to their geographical origin, where distinct Ixodes species are endemic. We identified 20 linear and 17 circular plasmid types and the presence of specific plasmids for isolates originating from different continents. Linear plasmids lp12, lp23, lp41, and lp72 were core plasmids found in all isolates, with lp41 consistently containing the vmp expression site. Our data provide insights into the genetic basis of vector competence, virulence, and pathogenesis of B. miyamotoi.
Collapse
Affiliation(s)
- Dieuwertje Hoornstra
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | | | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Alex Wagemakers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | - Sam R Telford
- Tufts Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Hein Sprong
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology & Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Akther S, Mongodin EF, Morgan RD, Di L, Yang X, Golovchenko M, Rudenko N, Margos G, Hepner S, Fingerle V, Kawabata H, Norte AC, de Carvalho IL, Núncio MS, Marques A, Schutzer SE, Fraser CM, Luft BJ, Casjens SR, Qiu W. Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria. mBio 2024; 15:e0174924. [PMID: 39145656 PMCID: PMC11389397 DOI: 10.1128/mbio.01749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
Collapse
Affiliation(s)
- Saymon Akther
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | | | | | - Lia Di
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | - Xiaohua Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | | | - Ana Cláudia Norte
- Department of Life Sciences, University of Coimbra, MARE-Marine and Environmental Sciences Centre, Coimbra, Portugal
| | | | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, Águas de Moura, Portugal
| | - Adriana Marques
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Claire M Fraser
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Sherwood R Casjens
- University of Utah School of Medicine and School of Biological Sciences, Salt Lake City, Utah, USA
| | - Weigang Qiu
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
7
|
Grąźlewska W, Chmielewski T, Fiecek B, Holec-Gąsior L. New BB0108, BB0126, BB0298, BB0323, and BB0689 Chromosomally Encoded Recombinant Proteins of Borrelia burgdorferi sensu lato for Serodiagnosis of Lyme Disease. Pathogens 2024; 13:767. [PMID: 39338958 PMCID: PMC11434722 DOI: 10.3390/pathogens13090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Five chromosomally encoded proteins, BB0108, BB0126, BB0298, BB0323, and BB0689, from Borrelia burgdorferi sensu lato (s.l.), were obtained in three variants each, representing the most common genospecies found in Europe (Borrelia afzelii, Borrelia burgdorferi sensu stricto (s.s.), and Borrelia garinii). The reactivity of these recombinant proteins with the IgM and IgG antibodies present in human serum was assessed using Western blot (WB) and the ELISA. In IgG-WB, the proteins exhibited varying reactivity, peaking at approximately 40-50% for BB0108 and BB0689. However, none of these proteins were recognized by specific antibodies in the IgM-WB. The sensitivity of IgG-ELISA based on three variants of BB0108 and BB0323 ranged from 71% to 82% and from 62% to 72%, respectively. Conversely, the specificity of both tested proteins was consistently above 82%. Tests utilizing single variants of BB0323 did not yield any diagnostic value in detecting IgM antibodies. However, BB0108 demonstrated recognition by antibodies present in 52% to 63% of the tested sera. These antigens appear advantageous due to the consistent reactivity observed across their variants. This observation suggests that appropriate selection of antigens conserved within B. burgdorferi s.l. could offer a solution to the issue of variable sensitivity encountered in serodiagnostic tests across Europe.
Collapse
Affiliation(s)
- Weronika Grąźlewska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Tomasz Chmielewski
- Department of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Beata Fiecek
- Department of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Lucyna Holec-Gąsior
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
8
|
Chakraborty S, Gnanagobal H, Hossain A, Cao T, Vasquez I, Boyce D, Santander J. Inactivated Aeromonas salmonicida impairs adaptive immunity in lumpfish (Cyclopterus lumpus). JOURNAL OF FISH DISEASES 2024; 47:e13944. [PMID: 38523320 DOI: 10.1111/jfd.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Danny Boyce
- Department of Ocean Sciences, Dr. Joe Brown Aquatic Research Building, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Socarras KM, Marino MC, Earl JP, Ehrlich RL, Cramer NA, Mell JC, Sen B, Ahmed A, Marconi RT, Ehrlich GD. Characterization of the family-level Borreliaceae pan-genome and development of an episomal typing protocol. RESEARCH SQUARE 2024:rs.3.rs-4491589. [PMID: 38947078 PMCID: PMC11213207 DOI: 10.21203/rs.3.rs-4491589/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The Borreliaceae family includes many obligate parasitic bacterial species which are etiologically associated with a myriad of zoonotic borrelioses including Lyme disease and vector-borne relapsing fevers. Infections by the Borreliaceae are difficult to detect by both direct and indirect methods, often leading to delayed and missed diagnoses. Efforts to improve diagnoses center around the development of molecular diagnostics (MDx), but due to deep tissue sequestration of the causative spirochaetes and the lack of persistent bacteremias, even MDx assays suffer from a lack of sensitivity. Additionally, the highly extensive genomic heterogeneity among isolates, even within the same species, contributes to the lack of assay sensitivity as single target assays cannot provide universal coverage. This within-species heterogeneity is partly due to differences in replicon repertoires and genomic structures that have likely arisen to support the complex Borreliaceae lifecycle in which these parasites have to survive in multiple hosts each with unique immune responses. Results We constructed a Borreliaceae family-level pangenome and characterized the phylogenetic relationships among the constituent taxa which supports the recent taxonomy of splitting the family into at least two genera. Gene content pro les were created for the majority of the Borreliaceae replicons, providing for the first time their unambiguous molecular typing. Conclusion Our characterization of the Borreliaceae pan-genome supports the splitting of the former Borrelia genus into two genera and provides for the phylogenetic placement of several non-species designated isolates. Mining this family-level pangenome will enable precision diagnostics corresponding to gene content-driven clinical outcomes while also providing targets for interventions.
Collapse
Affiliation(s)
- Kayla M Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Mary C Marino
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Joshua P Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | | | - Nicholas A Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center
| | - Joshua C Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Bhaswati Sen
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Azad Ahmed
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center
| | - Garth D Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| |
Collapse
|
10
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. PLoS Pathog 2024; 20:e1012122. [PMID: 38558079 PMCID: PMC11008901 DOI: 10.1371/journal.ppat.1012122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - Andrew Santiago-Frangos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
11
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574763. [PMID: 38260690 PMCID: PMC10802411 DOI: 10.1101/2024.01.08.574763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | | | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
12
|
Brangulis K, Akopjana I, Bogans J, Kazaks A, Tars K. Structural studies of chromosomally encoded outer surface lipoprotein BB0158 from Borrelia burgdorferi sensu stricto. Ticks Tick Borne Dis 2024; 15:102287. [PMID: 38016210 DOI: 10.1016/j.ttbdis.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Lyme disease, or also known as Lyme borreliosis, is caused by the spirochetes belonging to the Borrelia burgdorferi sensu lato complex, which can enter the human body following the bite of an infected tick. Many membrane lipid-bound proteins, also known as lipoproteins, are located on the surface of B. burgdorferi sensu lato and play a crucial role in the spirochete to interact with its environment, whether in ticks or mammals. Since the spirochete needs to perform various tasks, such as resisting the host's immune system or spreading throughout the organism, it is not surprising that numerous surface proteins have been found to be essential for B. burgdorferi sensu lato complex bacteria in causing Lyme disease. In this study, we have determined (at 2.4 Å resolution) and characterized the 3D structure of BB0158, one of the few chromosomally encoded outer surface proteins from B. burgdorferi sensu stricto. BB0158 belongs to the paralogous gene family 44 (PFam44), consisting of four other members (BB0159, BBA04, BBE09 and BBK52). The characterization of BB0158, which appears to form a domain-swapped dimer, in conjunction with the characterization of the corresponding PFam44 members, certainly contribute to our understanding of B. burgdorferi sensu stricto proteins.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
13
|
Gwynne PJ, Stocks KLK, Karozichian ES, Pandit A, Hu LT. Metabolic modeling predicts unique drug targets in Borrelia burgdorferi. mSystems 2023; 8:e0083523. [PMID: 37855615 PMCID: PMC10734484 DOI: 10.1128/msystems.00835-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Lyme disease is often treated using long courses of antibiotics, which can cause side effects for patients and risks the evolution of antimicrobial resistance. Narrow-spectrum antimicrobials would reduce these risks, but their development has been slow because the Lyme disease bacterium, Borrelia burgdorferi, is difficult to work with in the laboratory. To accelerate the drug discovery pipeline, we developed a computational model of B. burgdorferi's metabolism and used it to predict essential enzymatic reactions whose inhibition prevented growth in silico. These predictions were validated using small-molecule enzyme inhibitors, several of which were shown to have specific activity against B. burgdorferi. Although the specific compounds used are not suitable for clinical use, we aim to use them as lead compounds to develop optimized drugs targeting the pathways discovered here.
Collapse
Affiliation(s)
- Peter J. Gwynne
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Kee-Lee K. Stocks
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Elysse S. Karozichian
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Aarya Pandit
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Linden T. Hu
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Grąźlewska W, Holec-Gąsior L, Sołowińska K, Chmielewski T, Fiecek B, Contreras M. Epitope Mapping of BmpA and BBK32 Borrelia burgdorferi Sensu Stricto Antigens for the Design of Chimeric Proteins with Potential Diagnostic Value. ACS Infect Dis 2023; 9:2160-2172. [PMID: 37803965 PMCID: PMC10722512 DOI: 10.1021/acsinfecdis.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 10/08/2023]
Abstract
Lyme disease is a tick-borne zoonosis caused by Gram-negative bacteria belonging to the Borrelia burgdorferi sensu lato (s.l.) group. In this study, IgM- and IgG-specific linear epitopes of two B. burgdorferi sensu stricto (s.s.) antigens BmpA and BBK32 were mapped using a polypeptide array. Subsequently, two chimeric proteins BmpA-BBK32-M and BmpA-BBK32-G were designed to validate the construction of chimeras using the identified epitopes for the detection of IgM and IgG, respectively, by ELISA. IgG-ELISA based on the BmpA-BBK32-G antigen showed 71% sensitivity and 95% specificity, whereas a slightly lower diagnostic utility was obtained for IgM-ELISA based on BmpA-BBK32-M, where the sensitivity was also 71% but the specificity decreased to 89%. The reactivity of chimeric proteins with nondedicated antibodies was much lower. These results suggest that the identified epitopes may be useful in the design of new forms of antigens to increase the effectiveness of Lyme disease serodiagnosis. It has also been proven that appropriate selection of epitopes enables the construction of chimeric proteins exhibiting reactivity with a specific antibody isotype.
Collapse
Affiliation(s)
- Weronika Grąźlewska
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
- SaBio,
Instituto de Investigación en Recursos Cinegéticos IREC−CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Lucyna Holec-Gąsior
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
| | - Karolina Sołowińska
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
| | - Tomasz Chmielewski
- Department
of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH - National Research Institute, 00-791 Warsaw, Poland
| | - Beata Fiecek
- Department
of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH - National Research Institute, 00-791 Warsaw, Poland
| | - Marinela Contreras
- SaBio,
Instituto de Investigación en Recursos Cinegéticos IREC−CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| |
Collapse
|
15
|
Margos G, Hofmann M, Casjens S, Dupraz M, Heinzinger S, Hartberger C, Hepner S, Schmeusser M, Sing A, Fingerle V, McCoy KD. Genome diversity of Borrelia garinii in marine transmission cycles does not match host associations but reflects the strains evolutionary history. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105502. [PMID: 37716446 DOI: 10.1016/j.meegid.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that occupy different ecological niches which is reflected in their reservoir host- and vector-associations. Borrelia genomes possess numerous linear and circular plasmids. Proteins encoded by plasmid genes play a major role in host- and vector-interaction and are important for Borrelia niche adaptation. However, the plasmid composition and therewith the gene repertoire may vary even in strains of a single species. Borrelia garinii, one of the six human pathogenic species, is common in Europe (vector Ixodes ricinus), Asia (vector Ixodes persulcatus) and in marine birds (vector Ixodes uriae). For the latter, only a single culture isolate (Far04) and its genome were previously available. The genome was rather small containing only one circular and six linear plasmids with a notable absence of cp32 plasmids. To further investigate B. garinii from marine transmission cycles and to explore i) whether the small number of plasmids found in isolate Far04 is a common feature in B. garinii from marine birds and presents an adaptation to this particular niche and ii) whether there may be a correlation between genome type and host species, we initiated in vitro cultures from live I. uriae collected in 2017 and 2018 from marine avian hosts and their nests. Hosts included common guillemots, Atlantic Puffin, razorbill, and kittiwake. We obtained 17 novel isolates of which 10 were sequenced using Illumina technology, one also with Pacific Bioscience technology. The 10 genomes segregated into five different genome types defined by plasmid types (based on PFam32 loci). We show that the genomes of seabird associated B. garinii contain fewer plasmids (6-9) than B. garinii from terrestrial avian species (generally ≥10), potentially suggesting niche adaptation. However, genome type did not match an association with the diverse avian seabird hosts investigated but matched the clonal complex they originated from, perhaps reflecting the isolates evolutionary history. Questions that should be addressed in future studies are (i) how is plasmid diversity related to host- and/or vector adaptation; (ii) do the different seabird species differ in reservoir host competence, and (iii) can the genome types found in seabirds use terrestrial birds as reservoir hosts.
Collapse
Affiliation(s)
- Gabriele Margos
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Markus Hofmann
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Sherwood Casjens
- Pathology Department, School of Medicine, University of Utah, 15 North Medical Drive East Ste. #1100, Salt Lake City, UT 84112, USA.
| | - Marlene Dupraz
- MIVEGEC, University of Montpellier - CNRS - IRD, Centre IRD, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France
| | - Susanne Heinzinger
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Christine Hartberger
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Sabrina Hepner
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Mercy Schmeusser
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Andreas Sing
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Karen D McCoy
- MIVEGEC, University of Montpellier - CNRS - IRD, Centre IRD, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France.
| |
Collapse
|
16
|
Grąźlewska W, Holec-Gąsior L. Antibody Cross-Reactivity in Serodiagnosis of Lyme Disease. Antibodies (Basel) 2023; 12:63. [PMID: 37873860 PMCID: PMC10594444 DOI: 10.3390/antib12040063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease is a tick-borne disease caused by spirochetes belonging to the Borrelia burgdorferi sensu lato complex. The disease is characterized by a varied course; therefore, the basis for diagnosis is laboratory methods. Currently, a two-tiered serological test is recommended, using an ELISA as a screening test and a Western blot as a confirmatory test. This approach was introduced due to the relatively high number of false-positive results obtained when using an ELISA alone. However, even this approach has not entirely solved the problem of false-positive results caused by cross-reactive antibodies. Many highly immunogenic B. burgdorferi s.l. proteins are recognized nonspecifically by antibodies directed against other pathogens. This also applies to antigens, such as OspC, BmpA, VlsE, and FlaB, i.e., those commonly used in serodiagnostic assays. Cross-reactions can be caused by both bacterial (relapsing fever Borrelia, Treponema pallidum) and viral (Epstein-Baar virus, Cytomegalovirus) infections. Additionally, a rheumatoid factor has also been shown to nonspecifically recognize B. burgdorferi s.l. proteins, resulting in false-positive results. Therefore, it is necessary to carefully interpret the results of serodiagnostic tests so as to avoid overdiagnosis of Lyme disease, which causes unnecessary implementations of strong antibiotic therapies and delays in the correct diagnosis.
Collapse
Affiliation(s)
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| |
Collapse
|
17
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. Microbiol Spectr 2023; 11:e0089523. [PMID: 37737593 PMCID: PMC10580987 DOI: 10.1128/spectrum.00895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have uniquely complex genomes, consisting of a linear chromosome and both circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of plasmids from Lyme disease causing spirochetes is more refined compared to RF Borrelia because of limited plasmid-resolved genome assemblies for the latter. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all the RF Borrelia species that we examined. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the putative expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia. IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally that infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled in most available genome assemblies. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genome assemblies for seven Borrelia spp. found in the Western Hemisphere. This current study is an in-depth investigation into the linear plasmids that were conserved and syntenic across species. We identified differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-localized genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Hepner S, Kuleshov K, Tooming-Kunderud A, Alig N, Gofton A, Casjens S, Rollins RE, Dangel A, Mourkas E, Sheppard SK, Wieser A, Hübner J, Sing A, Fingerle V, Margos G. A high fidelity approach to assembling the complex Borrelia genome. BMC Genomics 2023; 24:401. [PMID: 37460975 DOI: 10.1186/s12864-023-09500-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Bacteria of the Borrelia burgdorferi sensu lato (s.l.) complex can cause Lyme borreliosis. Different B. burgdorferi s.l. genospecies vary in their host and vector associations and human pathogenicity but the genetic basis for these adaptations is unresolved and requires completed and reliable genomes for comparative analyses. The de novo assembly of a complete Borrelia genome is challenging due to the high levels of complexity, represented by a high number of circular and linear plasmids that are dynamic, showing mosaic structure and sequence homology. Previous work demonstrated that even advanced approaches, such as a combination of short-read and long-read data, might lead to incomplete plasmid reconstruction. Here, using recently developed high-fidelity (HiFi) PacBio sequencing, we explored strategies to obtain gap-free, complete and high quality Borrelia genome assemblies. Optimizing genome assembly, quality control and refinement steps, we critically appraised existing techniques to create a workflow that lead to improved genome reconstruction. RESULTS Despite the latest available technologies, stand-alone sequencing and assembly methods are insufficient for the generation of complete and high quality Borrelia genome assemblies. We developed a workflow pipeline for the de novo genome assembly for Borrelia using several types of sequence data and incorporating multiple assemblers to recover the complete genome including both circular and linear plasmid sequences. CONCLUSION Our study demonstrates that, with HiFi data and an ensemble reconstruction pipeline with refinement steps, chromosomal and plasmid sequences can be fully resolved, even for complex genomes such as Borrelia. The presented pipeline may be of interest for the assembly of further complex microbial genomes.
Collapse
Affiliation(s)
- Sabrina Hepner
- German National Reference Centre for Borrelia, Oberschleissheim, Germany.
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| | | | - Ave Tooming-Kunderud
- Department of Biosciences, Norwegian Sequencing Centre at Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Nikolas Alig
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert E Rollins
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | | | - Andreas Wieser
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Imunology, Infectious Disease and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich, Germany
| | - Johannes Hübner
- Dr. Von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Andreas Sing
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
19
|
Reddy PJ, Sun Z, Wippel HH, Baxter D, Swearingen K, Shteynberg DD, Midha MK, Caimano MJ, Strle K, Choi Y, Chan AP, Schork NJ, Moritz RL. Borrelia PeptideAtlas: A proteome resource of common Borrelia burgdorferi isolates for Lyme research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545244. [PMID: 37398146 PMCID: PMC10312716 DOI: 10.1101/2023.06.16.545244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lyme disease, caused by an infection with the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America. B. burgdorferi strains harbor extensive genomic and proteomic variability and further comparison is key to understanding the spirochetes infectivity and biological impacts of identified sequence variants. To achieve this goal, both transcript and mass spectrometry (MS)-based proteomics was applied to assemble peptide datasets of laboratory strains B31, MM1, B31-ML23, infective isolates B31-5A4, B31-A3, and 297, and other public datasets, to provide a publicly available Borrelia PeptideAtlas http://www.peptideatlas.org/builds/borrelia/. Included is information on total proteome, secretome, and membrane proteome of these B. burgdorferi strains. Proteomic data collected from 35 different experiment datasets, with a total of 855 mass spectrometry runs, identified 76,936 distinct peptides at a 0.1% peptide false-discovery-rate, which map to 1,221 canonical proteins (924 core canonical and 297 noncore canonical) and covers 86% of the total base B31 proteome. The diverse proteomic information from multiple isolates with credible data presented by the Borrelia PeptideAtlas can be useful to pinpoint potential protein targets which are common to infective isolates and may be key in the infection process.
Collapse
Affiliation(s)
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - David Baxter
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | | | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Agnes P. Chan
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
20
|
Kasumba IN, Tilly K, Lin T, Norris SJ, Rosa PA. Strict Conservation yet Non-Essential Nature of Plasmid Gene bba40 in the Lyme Disease Spirochete Borrelia burgdorferi. Microbiol Spectr 2023; 11:e0047723. [PMID: 37010416 PMCID: PMC10269632 DOI: 10.1128/spectrum.00477-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
The highly segmented genome of Borrelia burgdorferi, the tick-borne bacterium that causes Lyme disease, is composed of a linear chromosome and more than 20 co-existing endogenous plasmids. Many plasmid-borne genes are unique to B. burgdorferi and some have been shown to provide essential functions at discrete points of the infectious cycle between a tick vector and rodent host. In this study, we investigated the role of bba40, a highly conserved and differentially expressed gene on a ubiquitous linear plasmid of B. burgdorferi. In a prior genome-wide analysis, inactivation of bba40 by transposon insertion was linked with a noninfectious phenotype in mice, suggesting that conservation of the gene in the Lyme disease spirochete reflected a critical function of the encoded protein. To address this hypothesis, we moved the bba40::Tn allele into a similar wild-type background and compared the phenotypes of isogenic wild-type, mutant and complemented strains in vitro and throughout the in vivo mouse/tick infectious cycle. In contrast to the previous study, we identified no defect in the ability of the bba40 mutant to colonize the tick vector or murine host, or to be efficiently transmitted between them. We conclude that bba40 joins a growing list of unique, highly conserved, yet fully dispensable plasmid-borne genes of the Lyme disease spirochete. We infer that the experimental infectious cycle, while including the tick vector and murine host, lacks key selective forces imposed during the natural enzootic cycle. IMPORTANCE The key finding of this study contradicts our premise that the ubiquitous presence and strict sequence conservation of a unique gene in the Lyme disease spirochete, Borrelia burgdorferi, reflect a critical role in either the murine host or tick vector in which these bacteria are maintained in nature. Instead, the outcome of this investigation illustrates the inadequate nature of the experimental infectious cycle currently employed in the laboratory to fully model the enzootic cycle of the Lyme disease spirochete. This study also highlights the importance of complementation for accurate interpretation of mutant phenotypes in genetic studies of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Irene N. Kasumba
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kit Tilly
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Patricia A. Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
21
|
Stevenson B, Brissette CA. Erp and Rev Adhesins of the Lyme Disease Spirochete's Ubiquitous cp32 Prophages Assist the Bacterium during Vertebrate Infection. Infect Immun 2023; 91:e0025022. [PMID: 36853019 PMCID: PMC10016077 DOI: 10.1128/iai.00250-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
22
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531354. [PMID: 36945547 PMCID: PMC10028826 DOI: 10.1101/2023.03.06.531354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have a uniquely complex genome consisting of a linear chromosome and circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of Lyme disease causing Borrelia plasmids is more refined compared to RF spirochetes because of limited plasmid-resolved genomes for RF spirochetes. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all species. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia . IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally and infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genomes for seven Borrelia spp. found in the Western Hemisphere. This current study is a more in-depth investigation into the linear plasmids that were conserved and syntenic across species. This analysis determined differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-borne genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Multilayer networks of plasmid genetic similarity reveal potential pathways of gene transmission. THE ISME JOURNAL 2023; 17:649-659. [PMID: 36759552 PMCID: PMC10119158 DOI: 10.1038/s41396-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Antimicrobial resistance (AMR) is a significant threat to public health. Plasmids are principal vectors of AMR genes, significantly contributing to their spread and mobility across hosts. Nevertheless, little is known about the dynamics of plasmid genetic exchange across animal hosts. Here, we use theory and methodology from network and disease ecology to investigate the potential of gene transmission between plasmids using a data set of 21 plasmidomes from a single dairy cow population. We constructed a multilayer network based on pairwise plasmid genetic similarity. Genetic similarity is a signature of past genetic exchange that can aid in identifying potential routes and mechanisms of gene transmission within and between cows. Links between cows dominated the transmission network, and plasmids containing mobility genes were more connected. Modularity analysis revealed a network cluster where all plasmids contained a mobM gene, and one where all plasmids contained a beta-lactamase gene. Cows that contain both clusters also share transmission pathways with many other cows, making them candidates for super-spreading. In support, we found signatures of gene super-spreading in which a few plasmids and cows are responsible for most gene exchange. An agent-based transmission model showed that a new gene invading the cow population will likely reach all cows. Finally, we showed that edge weights contain a non-random signature for the mechanisms of gene transmission, allowing us to differentiate between dispersal and genetic exchange. These results provide insights into how genes, including those providing AMR, spread across animal hosts.
Collapse
|
24
|
Wachter J, Cheff B, Hillman C, Carracoi V, Dorward DW, Martens C, Barbian K, Nardone G, Renee Olano L, Kinnersley M, Secor PR, Rosa PA. Coupled induction of prophage and virulence factors during tick transmission of the Lyme disease spirochete. Nat Commun 2023; 14:198. [PMID: 36639656 PMCID: PMC9839762 DOI: 10.1038/s41467-023-35897-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The alternative sigma factor RpoS plays a central role in the critical host-adaptive response of the Lyme disease spirochete, Borrelia burgdorferi. We previously identified bbd18 as a negative regulator of RpoS but could not inactivate bbd18 in wild-type spirochetes. In the current study we employed an inducible bbd18 gene to demonstrate the essential nature of BBD18 for viability of wild-type spirochetes in vitro and at a unique point in vivo. Transcriptomic analyses of BBD18-depleted cells demonstrated global induction of RpoS-dependent genes prior to lysis, with the absolute requirement for BBD18, both in vitro and in vivo, circumvented by deletion of rpoS. The increased expression of plasmid prophage genes and the presence of phage particles in the supernatants of lysing cultures indicate that RpoS regulates phage lysis-lysogeny decisions. Through this work we identify a mechanistic link between endogenous prophages and the RpoS-dependent adaptive response of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA. .,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Britney Cheff
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Chad Hillman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Valentina Carracoi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David W Dorward
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Glenn Nardone
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - L Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Margie Kinnersley
- Division of Biological Sciences, The University of Montana, Missoula, MT, USA
| | - Patrick R Secor
- Division of Biological Sciences, The University of Montana, Missoula, MT, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
25
|
Xing L, Chen Y, Ling X, Wu D, Sun L, Lin J, Chen Y. Genomic Characterization of Livestock-Associated Methicillin-Resistant Staphylococcus aureus ST7 Isolates from a Case of Human Bacteremia in China. Infect Drug Resist 2022; 15:7449-7457. [PMID: 36544989 PMCID: PMC9762264 DOI: 10.2147/idr.s385061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
The detection of novel livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) is important in both clinics and livestock. In this study, we report a MRSA-infected patient who was associated with livestock as a butcher, from whom we collected two MRSA strains FJ0318 and FJ0322. To further understand the correlation between these MRSA isolates and livestock, whole-genome sequencing and comparative genomic analyses were performed for these two isolates. Phylogenetic analysis revealed that these two strains were homologous. Multilocus sequence typing showed that these two strains belong to ST7, which is a common lineage in retail meat and meat products in China. The genetic islands in FJ0318 and FJ0322 were different from those in other common clones, such as ST59, ST8, and ST5. A mosaic plasmid with a sequence identical to that of the plasmid pE2 from livestock was found in strain FJ0318. Additionally, a novel prophage island was identified on the chromosome. Furthermore, the sequence of the island was similar to that of phage SP6 identified in livestock. ST7 may originate from livestock and be transmitted to communities, causing invasive infections.
Collapse
Affiliation(s)
- Linli Xing
- Office of Nutrition and Diet, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xia Ling
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Laboratory Medicine, Blood Center of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingrong Lin
- Department of Respiratory Medicine, the Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
26
|
Takacs CN, Nakajima Y, Haber JE, Jacobs-Wagner C. Cas9-mediated endogenous plasmid loss in Borrelia burgdorferi. PLoS One 2022; 17:e0278151. [PMID: 36441794 PMCID: PMC9704580 DOI: 10.1371/journal.pone.0278151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The spirochete Borrelia burgdorferi, which causes Lyme disease, has the most segmented genome among known bacteria. In addition to a linear chromosome, the B. burgdorferi genome contains over 20 linear and circular endogenous plasmids. While many of these plasmids are dispensable under in vitro culture conditions, they are maintained during the natural life cycle of the pathogen. Plasmid-encoded functions are required for colonization of the tick vector, transmission to the vertebrate host, and evasion of host immune defenses. Different Borrelia strains can vary substantially in the type of plasmids they carry. The gene composition within the same type of plasmid can also differ from strain to strain, impeding the inference of plasmid function from one strain to another. To facilitate the investigation of the role of specific B. burgdorferi plasmids, we developed a Cas9-based approach that targets a plasmid for removal. As a proof-of-principle, we showed that targeting wild-type Cas9 to several loci on the endogenous plasmids lp25 or lp28-1 of the B. burgdorferi type strain B31 results in sgRNA-specific plasmid loss even when homologous sequences (i.e., potential sequence donors for DNA recombination) are present nearby. Cas9 nickase versions, Cas9D10A or Cas9H840A, also cause plasmid loss, though not as robustly. Thus, sgRNA-directed Cas9 DNA cleavage provides a highly efficient way to eliminate B. burgdorferi endogenous plasmids that are non-essential in axenic culture.
Collapse
Affiliation(s)
- Constantin N. Takacs
- Department of Biology, Stanford University, Palo Alto, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| | - Yuko Nakajima
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
27
|
Takacs CN, Wachter J, Xiang Y, Ren Z, Karaboja X, Scott M, Stoner MR, Irnov I, Jannetty N, Rosa PA, Wang X, Jacobs-Wagner C. Polyploidy, regular patterning of genome copies, and unusual control of DNA partitioning in the Lyme disease spirochete. Nat Commun 2022; 13:7173. [PMID: 36450725 PMCID: PMC9712426 DOI: 10.1038/s41467-022-34876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Borrelia burgdorferi, the tick-transmitted spirochete agent of Lyme disease, has a highly segmented genome with a linear chromosome and various linear or circular plasmids. Here, by imaging several chromosomal loci and 16 distinct plasmids, we show that B. burgdorferi is polyploid during growth in culture and that the number of genome copies decreases during stationary phase. B. burgdorferi is also polyploid inside fed ticks and chromosome copies are regularly spaced along the spirochete's length in both growing cultures and ticks. This patterning involves the conserved DNA partitioning protein ParA whose localization is controlled by a potentially phage-derived protein, ParZ, instead of its usual partner ParB. ParZ binds its own coding region and acts as a centromere-binding protein. While ParA works with ParZ, ParB controls the localization of the condensin, SMC. Together, the ParA/ParZ and ParB/SMC pairs ensure faithful chromosome inheritance. Our findings underscore the plasticity of cellular functions, even those as fundamental as chromosome segregation.
Collapse
Affiliation(s)
- Constantin N Takacs
- Department of Biology, Stanford University, Palo Alto, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Bacterial Vaccine Development Group, Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yingjie Xiang
- Department of Mechanical Engineering, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Molly Scott
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Matthew R Stoner
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Irnov Irnov
- Department of Biology, Stanford University, Palo Alto, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
| | - Nicholas Jannetty
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA.
- The Howard Hughes Medical Institute, Palo Alto, CA, USA.
| |
Collapse
|
28
|
FtlA and FtlB Are Candidates for Inclusion in a Next-Generation Multiantigen Subunit Vaccine for Lyme Disease. Infect Immun 2022; 90:e0036422. [PMID: 36102656 PMCID: PMC9584329 DOI: 10.1128/iai.00364-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) is a tick-transmitted bacterial infection caused by Borreliella burgdorferi and other closely related species collectively referred to as the LD spirochetes. The LD spirochetes encode an uncharacterized family of proteins originally designated protein family twelve (PF12). In B. burgdorferi strain B31, PF12 consists of four plasmid-carried genes, encoding BBK01, BBG01, BBH37, and BBJ08. Henceforth, we designate the PF12 proteins family twelve lipoprotein (Ftl) A (FtlA) (BBK01), FtlB (BBG01), FtlC (BBH37), and FtlD (BBJ08). The goal of this study was to assess the potential utility of the Ftl proteins in subunit vaccine development. Immunoblot analyses of LD spirochete cell lysates demonstrated that one or more of the Ftl proteins are produced by most LD isolates during cultivation. The Ftl proteins were verified to be membrane associated, and nondenaturing PAGE revealed that FtlA, FtlB, and FtlD formed dimers, while FtlC formed hexamers. Analysis of serum samples from B. burgdorferi antibody (Ab)-positive client-owned dogs (n = 50) and horses (n = 90) revealed that a majority were anti-Ftl Ab positive. Abs to the Ftl proteins were detected in serum samples from laboratory-infected dogs out to 497 days postinfection. Anti-FtlA and FtlB antisera displayed potent complement-dependent Ab-mediated killing activity, and epitope localization revealed that the bactericidal epitopes reside within the N-terminal domain of the Ftl proteins. This study suggests that FtlA and FtlB are potential candidates for inclusion in a multivalent vaccine for LD.
Collapse
|
29
|
Socarras KM, Haslund-Gourley BS, Cramer NA, Comunale MA, Marconi RT, Ehrlich GD. Large-Scale Sequencing of Borreliaceae for the Construction of Pan-Genomic-Based Diagnostics. Genes (Basel) 2022; 13:1604. [PMID: 36140772 PMCID: PMC9498496 DOI: 10.3390/genes13091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects-particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kayla M. Socarras
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Garth D. Ehrlich
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
30
|
Combs M, Marcinkiewicz AL, Dupuis AP, Davis AD, Lederman P, Nowak TA, Stout JL, Strle K, Fingerle V, Margos G, Ciota AT, Diuk-Wasser MA, Kolokotronis SO, Lin YP. Phylogenomic Diversity Elucidates Mechanistic Insights into Lyme Borreliae-Host Association. mSystems 2022; 7:e0048822. [PMID: 35938719 PMCID: PMC9426539 DOI: 10.1128/msystems.00488-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Host association-the selective adaptation of pathogens to specific host species-evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi sensu lato complex, including B. burgdorferi (Bb), the main LD pathogen in North America-a useful model for the study of mechanisms underlying host-pathogen association. Host adaptation requires pathogens' ability to evade host immune responses, such as complement, the first-line innate immune defense mechanism. We tested the hypothesis that different host-adapted phenotypes among Bb strains are linked to polymorphic loci that confer complement evasion traits in a host-specific manner. We first examined the survivability of 20 Bb strains in sera in vitro and/or bloodstream and tissues in vivo from rodent and avian LD models. Three groups of complement-dependent host-association phenotypes emerged. We analyzed complement-evasion genes, identified a priori among all strains and sequenced and compared genomes for individual strains representing each phenotype. The evolutionary history of ospC loci is correlated with host-specific complement-evasion phenotypes, while comparative genomics suggests that several gene families and loci are potentially involved in host association. This multidisciplinary work provides novel insights into the functional evolution of host-adapted phenotypes, building a foundation for further investigation of the immunological and genomic determinants of host association. IMPORTANCE Host association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD)-causing agent, B. burgdorferi (Bb), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts. A widespread yet untested concept posits that host association in Bb strains is linked to Bb functional genetic variation conferring evasion to complement, an innate defense mechanism in vertebrate sera. Here, we tested this concept by grouping 20 Bb strains into three complement-dependent host-association phenotypes based on their survivability in sera and/or bloodstream and distal tissues in rodent and avian LD models. Phylogenomic analysis of these strains further correlated several gene families and loci, including ospC, with host-specific complement-evasion phenotypes. Such multifaceted studies thus pave the road to further identify the determinants of host association, providing mechanistic insights into host-pathogen interaction.
Collapse
Affiliation(s)
- Matthew Combs
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Ashley L. Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Alan P. Dupuis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - April D. Davis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patricia Lederman
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Tristan A. Nowak
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| | - Jessica L. Stout
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Alexander T. Ciota
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| |
Collapse
|
31
|
Divers TJ, Mongodin EF, Miller CB, Belgrave RL, Gardner RB, Fraser CM, Schutzer SE. Genomic hybrid capture assay to detect Borrelia burgdorferi: an application to diagnose neuroborreliosis in horses. J Vet Diagn Invest 2022; 34:909-912. [PMID: 35864735 DOI: 10.1177/10406387221112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antemortem diagnosis of neuroborreliosis in horses has been hindered by both the low sensitivity of PCR testing for Borrelia burgdorferi in CSF and the low specificity of serum:CSF ELISA ratios used to determine intrathecal antibody production against the bacterium. PCR testing of the CSF of an adult horse with acute neurologic disease for the B. burgdorferi flagellin gene was negative. However, we enriched B. burgdorferi DNA through nucleic acid hybrid capture, followed by next-generation sequencing, and identified B. burgdorferi in the CSF of the horse, confirming a diagnosis of neuroborreliosis.
Collapse
Affiliation(s)
- Thomas J Divers
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emmanuel F Mongodin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - Claire M Fraser
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven E Schutzer
- Institute of Genome Sciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
32
|
Kneubehl AR, Krishnavajhala A, Leal SM, Replogle AJ, Kingry LC, Bermúdez SE, Labruna MB, Lopez JE. Comparative genomics of the Western Hemisphere soft tick-borne relapsing fever borreliae highlights extensive plasmid diversity. BMC Genomics 2022; 23:410. [PMID: 35641918 PMCID: PMC9158201 DOI: 10.1186/s12864-022-08523-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tick-borne relapsing fever (TBRF) is a globally prevalent, yet under-studied vector-borne disease transmitted by soft and hard bodied ticks. While soft TBRF (sTBRF) spirochetes have been described for over a century, our understanding of the molecular mechanisms facilitating vector and host adaptation is poorly understood. This is due to the complexity of their small (~ 1.5 Mb) but fragmented genomes that typically consist of a linear chromosome and both linear and circular plasmids. A majority of sTBRF spirochete genomes' plasmid sequences are either missing or are deposited as unassembled sequences. Consequently, our goal was to generate complete, plasmid-resolved genomes for a comparative analysis of sTBRF species of the Western Hemisphere. RESULTS Utilizing a Borrelia specific pipeline, genomes of sTBRF spirochetes from the Western Hemisphere were sequenced and assembled using a combination of short- and long-read sequencing technologies. Included in the analysis were the two recently isolated species from Central and South America, Borrelia puertoricensis n. sp. and Borrelia venezuelensis, respectively. Plasmid analyses identified diverse sequences that clustered plasmids into 30 families; however, only three families were conserved and syntenic across all species. We also compared two species, B. venezuelensis and Borrelia turicatae, which were isolated ~ 6,800 km apart and from different tick vector species but were previously reported to be genetically similar. CONCLUSIONS To truly understand the biological differences observed between species of TBRF spirochetes, complete chromosome and plasmid sequences are needed. This comparative genomic analysis highlights high chromosomal synteny across the species yet diverse plasmid composition. This was particularly true for B. turicatae and B. venezuelensis, which had high average nucleotide identity yet extensive plasmid diversity. These findings are foundational for future endeavors to evaluate the role of plasmids in vector and host adaptation.
Collapse
Affiliation(s)
- Alexander R Kneubehl
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Sebastián Muñoz Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
| | - Adam J Replogle
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Luke C Kingry
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sergio E Bermúdez
- Medical Entomology Department, Gorgas Memorial Institute for Health Research, Panamá City, Panamá
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva E Saúde Animal, Faculdade de Medicina Veterinária E Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Job E Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Stevenson B, Krusenstjerna AC, Castro-Padovani TN, Savage CR, Jutras BL, Saylor TC. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. J Bacteriol 2022; 204:e0060621. [PMID: 35380872 PMCID: PMC9112904 DOI: 10.1128/jb.00606-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Borrelia burgdorferi BmpA-BBK32 and BmpA-BBA64: New Recombinant Chimeric Proteins with Potential Diagnostic Value. Pathogens 2021; 10:pathogens10060767. [PMID: 34207025 PMCID: PMC8234703 DOI: 10.3390/pathogens10060767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, the diagnosis of Lyme disease is based mostly on two-tiered serologic testing. In the new generation of immunoenzymatic assays, antigens comprise whole-cell lysates of members of the Borrelia burgdorferi sensu lato (s.l.) species complex, with the addition of selected recombinant proteins. Due to the high diversity of members of the B. burgdorferi s.l. genospecies and the low degree of conservation among the amino acid sequences of their proteins, serodiagnostic methods currently in use are not sufficient for the correct diagnosis of borreliosis. Two divalent chimeric proteins (BmpA-BBK32 and BmpA-BBA64) were expressed in Escherichia coli. Following purification by one-step metal-affinity chromatography, preparations were obtained containing milligram levels of chimeric protein exhibiting electrophoretic purity in excess of 98%. Reactivity of the new chimeric proteins with specific human IgG antibodies was preliminarily determined by Western blot. For this purpose, 20 negative sera and 20 positive sera was used. The new chimeric proteins were highly reactive with IgG antibodies contained in the serum of patients suffering from borreliosis. Moreover, no immunoreactivity of chimeric proteins was observed with antibodies in the sera of healthy people. These promising results suggest that new chimeric proteins have the potential to discriminate between positive and negative sera.
Collapse
|
35
|
Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021; 49:2655-2673. [PMID: 33590101 PMCID: PMC7969092 DOI: 10.1093/nar/gkab064] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Plasmids and temperate phages are key contributors to bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage–plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage–plasmids are poorly known. Here, we screened for these elements among ca. 2500 phages and 12000 plasmids and identified 780 phage–plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to eight defined groups and 18 other broader communities of elements. The existence of these large groups suggests that phage–plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage–plasmids and found the key phage genes to be conserved and co-localized within distinct groups, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage–plasmids are a sizeable fraction of the sequenced plasmids (∼7%) and phages (∼5%), and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | | | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| |
Collapse
|
36
|
Shan J, Jia Y, Teulières L, Patel F, Clokie MRJ. Targeting Multicopy Prophage Genes for the Increased Detection of Borrelia burgdorferi Sensu Lato (s.l.), the Causative Agents of Lyme Disease, in Blood. Front Microbiol 2021; 12:651217. [PMID: 33790883 PMCID: PMC8005754 DOI: 10.3389/fmicb.2021.651217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Because delayed diagnosis of LD incurs high healthcare costs and great suffering, new highly sensitive tests are in need. To overcome these challenges, we developed an internally controlled quantitative PCR (Ter-qPCR) that targets the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. The terL protein helps phages pack their DNA. Strikingly, the detection limit of the Ter-qPCR was analytically estimated to be 22 copies and one bacterial cell in bacteria spiked blood. Furthermore, significant quantitative differences was observed in terms of the amount of terL detected in healthy individuals and patients with either early or late disease. Together, the data suggests that the prophage-targeting PCR has significant power to improve success detection for LD. After rigorous clinical validation, this new test could deliver a step-change in the detection of LD. Prophage encoded markers are prevalent in many other pathogenic bacteria rendering this approach highly applicable to bacterial identification in general.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ying Jia
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Louis Teulières
- PhelixRD Charity 230 Rue du Faubourg St Honoré, Paris, France
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
37
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
38
|
Abstract
Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.
Collapse
Affiliation(s)
- Patricia A. Rosa
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
39
|
Krishnavajhala A, Armstrong BA, Lopez JE. The impact of in vitro cultivation on the natural life cycle of the tick-borne relapsing fever spirochete Borrelia turicatae. PLoS One 2020; 15:e0239089. [PMID: 33044963 PMCID: PMC7549772 DOI: 10.1371/journal.pone.0239089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022] Open
Abstract
Tick-borne relapsing fever is an infectious disease caused by Borrelia species and are primarily transmitted by Ornithodoros ticks. Prior work indicated that in vitro cultivated spirochetes remain infectious to mice by needle inoculation; however, the impact of laboratory propagation on the pathogens natural life cycle has not been determined. Our current study assessed the effect of serial cultivation on the natural tick-mammalian transmission cycle. First, we evaluated genomic DNA profiles from B. turicatae grown to 30, 60, 120, and 300 generations, and these spirochetes were used to needle inoculate mice. Uninfected nymphal ticks were fed on these mice and acquisition, transstadial maintenance, and subsequent transmission after tick bite was determined. Infection frequencies in mice that were fed upon by ticks colonized with B. turicatae grown to 30, 60, and 120 generations were 100%, 100%, and 30%, respectively. Successful infection of mice by tick feeding was not detected after 120 generations. Quantifying B. turicatae in tick tissues indicated that by 300 generations they no longer colonized the vector. The results indicate that in vitro cultivation significantly affects the establishment of tick colonization and murine infection. This work provides a foundation for the identification of essential genetic elements in the tick-mammalian infectious cycle.
Collapse
Affiliation(s)
- Aparna Krishnavajhala
- Department of Pediatrics, National School of Tropical Medicine, Baylor College Medicine, Houston, Texas, United States of America
| | - Brittany A. Armstrong
- Department of Pediatrics, National School of Tropical Medicine, Baylor College Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Job E. Lopez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Vincent AT, Hosseini N, Charette SJ. The Aeromonas salmonicida plasmidome: a model of modular evolution and genetic diversity. Ann N Y Acad Sci 2020; 1488:16-32. [PMID: 33040386 DOI: 10.1111/nyas.14503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
High-throughput genomic sequencing has helped to reveal the plasmidome of Aeromonas salmonicida. This literature review provides an overview of A. salmonicida's rich plasmidome by presenting all the plasmids identified so far, addressing their biological importance and the functional links between them. The plasmids of A. salmonicida, especially those bearing antibiotic resistance genes, can provide clues about interactions of this species with other pathogens (animals and humans), as is the case for pRAS3-3432 and Chlamydia suis or pSN254b and Salmonella enterica. In addition to antibiotic resistance, plasmids play an important role in the virulence of A. salmonicida, particularly for the subspecies salmonicida and the plasmid pAsa5, which carries genes for the type-three secretion system, a virulence factor essential for the bacterium. The A. salmonicida plasmidome also has many cryptic plasmids with no known biological function, but which can be used for the acquisition of new genetic elements. Striking examples are pAsa7 and pAsaXII that provide, respectively, resistance to chloramphenicol and formaldehyde and are derivatives of cryptic pAsa2.
Collapse
Affiliation(s)
- Antony T Vincent
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
| | - Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
41
|
Becker NS, Rollins RE, Nosenko K, Paulus A, Martin S, Krebs S, Takano A, Sato K, Kovalev SY, Kawabata H, Fingerle V, Margos G. High conservation combined with high plasticity: genomics and evolution of Borrelia bavariensis. BMC Genomics 2020; 21:702. [PMID: 33032522 PMCID: PMC7542741 DOI: 10.1186/s12864-020-07054-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Borrelia bavariensis is one of the agents of Lyme Borreliosis (or Lyme disease) in Eurasia. The genome of the Borrelia burgdorferi sensu lato species complex, that includes B. bavariensis, is known to be very complex and fragmented making the assembly of whole genomes with next-generation sequencing data a challenge. Results We present a genome reconstruction for 33 B. bavariensis isolates from Eurasia based on long-read (Pacific Bioscience, for three isolates) and short-read (Illumina) data. We show that the combination of both sequencing techniques allows proper genome reconstruction of all plasmids in most cases but use of a very close reference is necessary when only short-read sequencing data is available. B. bavariensis genomes combine a high degree of genetic conservation with high plasticity: all isolates share the main chromosome and five plasmids, but the repertoire of other plasmids is highly variable. In addition to plasmid losses and gains through horizontal transfer, we also observe several fusions between plasmids. Although European isolates of B. bavariensis have little diversity in genome content, there is some geographic structure to this variation. In contrast, each Asian isolate has a unique plasmid repertoire and we observe no geographically based differences between Japanese and Russian isolates. Comparing the genomes of Asian and European populations of B. bavariensis suggests that some genes which are markedly different between the two populations may be good candidates for adaptation to the tick vector, (Ixodes ricinus in Europe and I. persulcatus in Asia). Conclusions We present the characterization of genomes of a large sample of B. bavariensis isolates and show that their plasmid content is highly variable. This study opens the way for genomic studies seeking to understand host and vector adaptation as well as human pathogenicity in Eurasian Lyme Borreliosis agents.
Collapse
Affiliation(s)
- Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.
| | - Robert E Rollins
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Kateryna Nosenko
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Alexander Paulus
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Samantha Martin
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,University of Helsinki, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, FIN-00014, Helsinki, Finland
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Ai Takano
- Department of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
42
|
Neumann-Cip AC, Fingerle V, Margos G, Straubinger RK, Overzier E, Ulrich S, Wieser A. A Novel Rapid Sample Preparation Method for MALDI-TOF MS Permits Borrelia burgdorferi Sensu Lato Species and Isolate Differentiation. Front Microbiol 2020; 11:690. [PMID: 32373099 PMCID: PMC7186393 DOI: 10.3389/fmicb.2020.00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Borrelia comprises vector-borne bacterial pathogens that can severely affect human and animal health. Members of the Borrelia burgdorferi sensu lato species complex can cause Lyme borreliosis, one of the most common vector-borne diseases in the Northern hemisphere. Besides, members of the relapsing fever group of spirochetes can cause tick-borne relapsing fever in humans and various febrile illnesses in animals in tropical, subtropical and temperate regions. Borrelia spp. organisms are fastidious to cultivate and to maintain in vitro, and therefore, difficult to work with in the laboratory. Currently, borrelia identification is mainly performed using PCR and DNA sequencing methods, which can be complicated/frustrating on complex DNA templates and may still be relatively expensive. Alternative techniques such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) are not well established for Borrelia spp., although this technique is currently one of the most used techniques for rapid identification of bacteria in microbiological diagnostic laboratories. This is mainly due to unsatisfactory results obtained by use of simple sample preparation techniques and medium-contamination obscuring the mass spectra. In addition, comprehensive libraries for Borrelia spp. MALDI-TOF MS have yet to be established. In this study, we developed a new filter-based chemical extraction technique that allows measurement of high quality Borrelia spp. spectra from less than 100,000 bacteria per spot in MALDI-TOF MS. We used 49 isolates of 13 different species to produce the largest mass-library for Borrelia spp. so far and to validate the protocol. The library was successfully established and identifies >96% of used isolates correctly to species level. Cluster analysis on the sum spectra was applied to all the different isolates, which resulted in tight cluster generation for most species. Comparative analysis of the generated cluster to a phylogeny based on concatenated multi-locus sequence typing genes provided a surprising homology. Our data demonstrate that the technique described here can be used for fast and reliable species and strain typing within the borrelia complex.
Collapse
Affiliation(s)
- Anna-Cathrine Neumann-Cip
- Division of Infectious Diseases and Tropical Medicine, University Hospital LMU, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Reinhard K Straubinger
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Evelyn Overzier
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sebastian Ulrich
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital LMU, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.,Chair of Medical Microbiology and Hospital Epidemiology, Faculty of Medicine, Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
43
|
Margos G, Fedorova N, Becker NS, Kleinjan JE, Marosevic D, Krebs S, Hui L, Fingerle V, Lane RS. Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. Int J Syst Evol Microbiol 2020; 70:849-856. [PMID: 31793856 DOI: 10.1099/ijsem.0.003833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borrelia species are vector-borne parasitic bacteria with unusual, highly fragmented genomes that include a linear chromosome and linear as well as circular plasmids that differ numerically between and within various species. Strain CA690T, which was cultivated from a questing Ixodes spinipalpis nymph in the San Francisco Bay area, CA, was determined to be genetically distinct from all other described species belonging to the Borrelia burgdorferi sensu lato complex. The genome, including plasmids, was assembled using a hybrid assembly of short Illumina reads and long reads obtained via Oxford Nanopore Technology. We found that strain CA690T has a main linear chromosome containing 902176 bp with a blast identity ≤91 % compared with other Borrelia species chromosomes and five linear and two circular plasmids. A phylogeny based on 37 single-copy genes of the main linear chromosome and rooted with the relapsing fever species Borrelia duttonii strain Ly revealed that strain CA690T had a sister-group relationship with, and occupied a basal position to, species occurring in North America. We propose to name this species Borrelia maritima sp. nov. The type strain, CA690T, has been deposited in two national culture collections, DSMZ (=107169) and ATCC (=TSD-160).
Collapse
Affiliation(s)
- Gabriele Margos
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Natalia Fedorova
- Alameda County Vector Control Services District, Alameda, CA, USA
| | - Noémie S Becker
- LMU Munich, Faculty of Biology, Division of Evolutionary Biology, Großhaderner Str. 2, Germany
| | - Joyce E Kleinjan
- Alameda County Vector Control Services District, Alameda, CA, USA
| | - Durdica Marosevic
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Stefan Krebs
- LMU Munich, Gene Centre, Laboratory for Functional Genome Analysis, Feodor-Lynen-Strasse 25, 81377 Munich, LMU, Germany
| | - Lucia Hui
- Alameda County Vector Control Services District, Alameda, CA, USA
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Robert S Lane
- University of California, Department of Environmental Science, Policy and Management, Berkeley, CA, USA
| |
Collapse
|
44
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
45
|
Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Kirdyashkina NP, Shipulin GA, Hovius JW, Platonov AE. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial genome. BMC Genomics 2020; 21:16. [PMID: 31906865 PMCID: PMC6945570 DOI: 10.1186/s12864-019-6388-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The genus Borrelia comprises spirochaetal bacteria maintained in natural transmission cycles by tick vectors and vertebrate reservoir hosts. The main groups are represented by a species complex including the causative agents of Lyme borreliosis and relapsing fever group Borrelia. Borrelia miyamotoi belongs to the relapsing fever group of spirochetes and forms distinct populations in North America, Asia, and Europe. As all Borrelia species B. miyamotoi possess an unusual and complex genome consisting of a linear chromosome and a number of linear and circular plasmids. The species is considered an emerging human pathogen and an increasing number of human cases are being described in the Northern hemisphere. The aim of this study was to produce a high quality reference genome that will facilitate future studies into genetic differences between different populations and the genome plasticity of B. miyamotoi. RESULTS We used multiple available sequencing methods, including Pacific Bioscience single-molecule real-time technology (SMRT) and Oxford Nanopore technology (ONT) supplemented with highly accurate Illumina sequences, to explore the suitability for whole genome assembly of the Russian B. miyamotoi isolate, Izh-4. Plasmids were typed according to their potential plasmid partitioning genes (PF32, 49, 50, 57/62). Comparing and combining results of both long-read (SMRT and ONT) and short-read methods (Illumina), we determined that the genome of the isolate Izh-4 consisted of one linear chromosome, 12 linear and two circular plasmids. Whilst the majority of plasmids had corresponding contigs in the Asian B. miyamotoi isolate FR64b, there were only four that matched plasmids of the North American isolate CT13-2396, indicating differences between B. miyamotoi populations. Several plasmids, e.g. lp41, lp29, lp23, and lp24, were found to carry variable major proteins. Amongst those were variable large proteins (Vlp) subtype Vlp-α, Vlp-γ, Vlp-δ and also Vlp-β. Phylogenetic analysis of common plasmids types showed the uniqueness in Russian/Asian isolates of B. miyamotoi compared to other isolates. CONCLUSIONS We here describe the genome of a Russian B. miyamotoi clinical isolate, providing a solid basis for future comparative genomics of B. miyamotoi isolates. This will be a great impetus for further basic, molecular and epidemiological research on this emerging tick-borne pathogen.
Collapse
Affiliation(s)
- Konstantin V Kuleshov
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Joris Koetsveld
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Irina A Goptar
- Izmerov Research Institute of Occupational Health, Moscow, Russia
| | | | - Nadezhda M Kolyasnikova
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Denis S Sarksyan
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Izhevsk State Medical Academy, Izhevsk, Russia
| | | | - German A Shipulin
- Center of Strategical Planning and Management of Biomedical Health Risks of the Ministry of Health, Moscow, Russia
| | - Joppe W Hovius
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
Caimano MJ, Groshong AM, Belperron A, Mao J, Hawley KL, Luthra A, Graham DE, Earnhart CG, Marconi RT, Bockenstedt LK, Blevins JS, Radolf JD. The RpoS Gatekeeper in Borrelia burgdorferi: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity. Front Microbiol 2019; 10:1923. [PMID: 31507550 PMCID: PMC6719511 DOI: 10.3389/fmicb.2019.01923] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 11/28/2022] Open
Abstract
Maintenance of Borrelia burgdorferi within its enzootic cycle requires a complex regulatory pathway involving the alternative σ factors RpoN and RpoS and two ancillary trans-acting factors, BosR and Rrp2. Activation of this pathway occurs within ticks during the nymphal blood meal when RpoS, the effector σ factor, transcribes genes required for tick transmission and mammalian infection. RpoS also exerts a 'gatekeeper' function by repressing σ70-dependent tick phase genes (e.g., ospA, lp6.6). Herein, we undertook a broad examination of RpoS functionality throughout the enzootic cycle, beginning with modeling to confirm that this alternative σ factor is a 'genuine' RpoS homolog. Using a novel dual color reporter system, we established at the single spirochete level that ospA is expressed in nymphal midguts throughout transmission and is not downregulated until spirochetes have been transmitted to a naïve host. Although it is well established that rpoS/RpoS is expressed throughout infection, its requirement for persistent infection has not been demonstrated. Plasmid retention studies using a trans-complemented ΔrpoS mutant demonstrated that (i) RpoS is required for maximal fitness throughout the mammalian phase and (ii) RpoS represses tick phase genes until spirochetes are acquired by a naïve vector. By transposon mutant screening, we established that bba34/oppA5, the only OppA oligopeptide-binding protein controlled by RpoS, is a bona fide persistence gene. Lastly, comparison of the strain 297 and B31 RpoS DMC regulons identified two cohorts of RpoS-regulated genes. The first consists of highly conserved syntenic genes that are similarly regulated by RpoS in both strains and likely required for maintenance of B. burgdorferi sensu stricto strains in the wild. The second includes RpoS-regulated plasmid-encoded variable surface lipoproteins ospC, dbpA and members of the ospE/ospF/elp, mlp, revA, and Pfam54 paralogous gene families, all of which have evolved via inter- and intra-strain recombination. Thus, while the RpoN/RpoS pathway regulates a 'core' group of orthologous genes, diversity within RpoS regulons of different strains could be an important determinant of reservoir host range as well as spirochete virulence.
Collapse
Affiliation(s)
- Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, CT, United States,Department of Pediatrics, UConn Health, Farmington, CT, United States,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States,*Correspondence: Melissa J. Caimano,
| | | | - Alexia Belperron
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jialing Mao
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, CT, United States,Division of Infectious Diseases and Immunology, Connecticut Children’s Medical Center, Hartford, CT, United States
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Danielle E. Graham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher G. Earnhart
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jon S. Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT, United States,Department of Pediatrics, UConn Health, Farmington, CT, United States,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States,Department of Genetics and Genome Science, UConn Health, Farmington, CT, United States,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
48
|
Diversity of the Lyme Disease Spirochetes and its Influence on Immune Responses to Infection and Vaccination. Vet Clin North Am Small Anim Pract 2019; 49:671-686. [PMID: 30967254 DOI: 10.1016/j.cvsm.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Lyme disease spirochetes are a highly diverse group of bacteria with unique biological properties. Their ability to cycle between ticks and mammals requires that they adapt to variable and constantly changing environmental conditions. Outer surface protein C is an essential virulence determinant that has received considerable attention in vaccine and diagnostic assay development. Knowledge of OspC diversity, its antigenic determinants, and its production patterns throughout the enzootic cycle, as well as in the laboratory setting, is essential for understanding immune responses induced by infection or vaccination.
Collapse
|
49
|
Schutzer SE, Body BA, Boyle J, Branson BM, Dattwyler RJ, Fikrig E, Gerald NJ, Gomes-Solecki M, Kintrup M, Ledizet M, Levin AE, Lewinski M, Liotta LA, Marques A, Mead PS, Mongodin EF, Pillai S, Rao P, Robinson WH, Roth KM, Schriefer ME, Slezak T, Snyder JL, Steere AC, Witkowski J, Wong SJ, Branda JA. Direct Diagnostic Tests for Lyme Disease. Clin Infect Dis 2019; 68:1052-1057. [PMID: 30307486 PMCID: PMC6399434 DOI: 10.1093/cid/ciy614] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi was discovered to be the cause of Lyme disease in 1983, leading to seroassays. The 1994 serodiagnostic testing guidelines predated a full understanding of key B. burgdorferi antigens and have a number of shortcomings. These serologic tests cannot distinguish active infection, past infection, or reinfection. Reliable direct-detection methods for active B. burgdorferi infection have been lacking in the past but are needed and appear achievable. New approaches have effectively been applied to other emerging infections and show promise in direct detection of B. burgdorferi infections.
Collapse
Affiliation(s)
- Steven E Schutzer
- Department of Medicine, Rutgers New Jersey Medical School, Newark,Correspondence: S. E. Schutzer, Rutgers New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103 ()
| | - Barbara A Body
- Laboratory Corporation of America, Burlington, North Carolina,Retired
| | | | | | | | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Noel J Gerald
- Office of In Vitro Diagnostics and Radiological Health, Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis
| | | | | | | | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, Virginia
| | - Adriana Marques
- Clinical Studies Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Paul S Mead
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Emmanuel F Mongodin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - Segaran Pillai
- Office of Laboratory Science and Safety, US Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - Prasad Rao
- Office of In Vitro Diagnostics and Radiological Health, Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - William H Robinson
- Department of Medicine, Stanford University School of Medicine, California
| | - Kristian M Roth
- Office of In Vitro Diagnostics and Radiological Health, Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - Martin E Schriefer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | | | - Allen C Steere
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | | | - Susan J Wong
- Wadsworth Center, New York State Department of Health, Albany
| | - John A Branda
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
50
|
Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Plasmid 2019; 102:10-18. [PMID: 30797764 DOI: 10.1016/j.plasmid.2019.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
Mosaic plasmids, plasmids composed of genetic elements from distinct sources, are associated with the spread of antibiotic resistance genes. Transposons are considered the primary mechanism for mosaic plasmid formation, though other mechanisms have been observed in specific instances. The frequency with which mosaic plasmids have been described suggests they may play an important role in plasmid population dynamics. Our survey of the confirmed plasmid sequences available from complete and draft genomes in the RefSeq database shows that 46% of them fit a strict definition of mosaic. Mosaic plasmids are also not evenly distributed over the taxa represented in the database. Plasmids from some genera, including Piscirickettsia and Yersinia, are almost all mosaic, while plasmids from other genera, including Borrelia, are rarely mosaic. While some mosaic plasmids share identical regions with hundreds of others, the median mosaic plasmid only shares with 8 other plasmids. When considering only plasmids from finished genomes (51.6% of the total), mosaic plasmids have significantly higher proportions of transposase and antibiotic resistance genes. Conversely, only 56.6% of mosaic fragments (DNA fragments shared between mosaic plasmids) contain a recognizable transposase gene, and only 1.2% of mosaic fragments are flanked by inverted repeats. Mosaic fragments associated with the IS26 transposase gene are 3.8-fold more abundant than any other sequence shared between mosaic plasmids in the database, though this is at least partly due to overrepresentation of Enterobacteriaceae plasmids. Mosaic plasmids are a complicated trait of some plasmid populations, only partly explained by transposition. Though antibiotic resistance genes led to the identification of many mosaic plasmids, mosaic plasmids are a broad phenomenon encompassing many more traits than just antibiotic resistance. Further research will be required to determine the influence of ecology, host repair mechanisms, conjugation, and plasmid host range on the formation and influence of mosaic plasmids. AUTHOR SUMMARY: Plasmids are extrachromosomal genetic entities that are found in many prokaryotes. They serve as flexible storage for genes, and individual cells can make substantial changes to their characteristics by acquiring, losing, or modifying a plasmid. In some pathogenic bacteria, such as Escherichia coli, antibiotic resistance genes are known to spread primarily on plasmids. By analyzing a database of 8592 plasmid sequences we determined that many of these plasmids have exchanged genes with each other, becoming mosaics of genes from different sources. We next separated these plasmids into groups based on the organism they were isolated from and found that different groups had different fractions of mosaic plasmids. This result was unexpected and suggests that the mechanisms and selective pressures causing mosaic plasmids do not occur evenly over all species. It also suggests that plasmids may provide different levels of potential variation to different species. This work uncovers a previously unrecognized pattern in plasmids across prokaryotes, that could lead to new insights into the evolutionary role that plasmids play.
Collapse
|