1
|
Günay-Esiyok Ö, Gupta N. Eimeria falciformis. Trends Parasitol 2024; 40:1197-1198. [PMID: 39362799 PMCID: PMC7616687 DOI: 10.1016/j.pt.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Eimeria species (>1700) are widespread causative agents of coccidiosis in animals. Most species reproduce in the intestinal epithelial cells of distinct hosts. Eimeria falciformis infects the cecum of Mus musculus for its asexual and sexual reproduction. Parasite infection results in diarrhea and weight loss, and pathogenicity depends on the dose of infection as well as the age and immune status of the host. The short, monoxenous life cycle of E. falciformis in a model host (i.e ., mouse) enables in vivo research on poorly studied coccidian stages. Several parasite-specific biological phenomena, such as schizogony, gametogenesis, oocyst formation, sporulation. and mucosal immunity can be examined in significant detail. The Eimeria –mouse model is valuable for deciphering the network design principles and molecular determinants of intracellular parasitism, and thereby developing novel antiparasitic intervention strategies against poultry and livestock coccidiosis caused by host-specific Eimeria species.
Collapse
Affiliation(s)
- Özlem Günay-Esiyok
- Vaccine Development Application and Research Center, Ege University, Izmir, Türkiye; Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Science and Technology, Pilani (BITS-P), Hyderabad Campus, India; Department of Molecular Parasitology, Humboldt University, Berlin, Germany.
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Science and Technology, Pilani (BITS-P), Hyderabad Campus, India; Department of Molecular Parasitology, Humboldt University, Berlin, Germany.
| |
Collapse
|
2
|
Sun Y, Liu P, Guo W, Guo J, Chen J, Xue X, Duan C, Wang Z, Yan X. Study on the alleviative effect of Lactobacillus plantarum on Eimeria falciformis infection. Infect Immun 2024; 92:e0013024. [PMID: 38842306 PMCID: PMC11324035 DOI: 10.1128/iai.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.
Collapse
Affiliation(s)
- Yufei Sun
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Pufang Liu
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Wenhui Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jun Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jia Chen
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinyu Xue
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Chao Duan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Zixuan Wang
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinlei Yan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| |
Collapse
|
3
|
Shen Z, Ke Z, Yang Q, Ghebremichael ST, Li T, Li T, Chen J, Meng X, Xiang H, Li C, Zhou Z, Pan G, Chen P. Transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae. BMC Genomics 2024; 25:321. [PMID: 38556880 PMCID: PMC10983672 DOI: 10.1186/s12864-024-10236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.
Collapse
Affiliation(s)
- Zigang Shen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Street, Chongqing, 400716, China
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Zhuojun Ke
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Qiong Yang
- Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Samson Teweldeberhan Ghebremichael
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Tangxin Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China.
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Street, Chongqing, 400716, China.
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China.
| |
Collapse
|
4
|
Tucker MS, O’Brien CN, Johnson AN, Dubey JP, Rosenthal BM, Jenkins MC. RNA-Seq of Phenotypically Distinct Eimeria maxima Strains Reveals Coordinated and Contrasting Maturation and Shared Sporogonic Biomarkers with Eimeria acervulina. Pathogens 2023; 13:2. [PMID: 38276148 PMCID: PMC10818985 DOI: 10.3390/pathogens13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Strains of Eimeria maxima, an enteric parasite of poultry, vary in virulence. Here, we performed microscopy and RNA sequencing on oocysts of strains APU-1 (which exhibits more virulence) and APU-2. Although each underwent parallel development, APU-1 initially approached maturation more slowly. Each strain sporulated by hour 36; their gene expression diverged somewhat thereafter. Candidate biomarkers of viability included 58 genes contributing at least 1000 Transcripts Per Million throughout sporulation, such as cation-transporting ATPases and zinc finger domain-containing proteins. Many genes resemble constitutively expressed genes also important to Eimeria acervulina. Throughout sporulation, the expression of only a few genes differed between strains; these included cyclophilin A, EF-1α, and surface antigens (SAGs). Mature and immature oocysts uniquely differentially express certain genes, such as an X-Pro dipeptidyl-peptidase domain-containing protein in immature oocysts and a profilin in mature oocysts. The immature oocysts of each strain expressed more phosphoserine aminotransferase and the mature oocysts expressed more SAGs and microneme proteins. These data illuminate processes influencing sporulation in Eimeria and related genera, such as Cyclospora, and identify biological processes which may differentiate them. Drivers of development and senescence may provide tools to assess the viability of oocysts, which would greatly benefit the poultry industry and food safety applications.
Collapse
Affiliation(s)
- Matthew S. Tucker
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Celia N. O’Brien
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Alexis N. Johnson
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
- Department of State, Bureau of Consular Affairs, Washington, DC 20006, USA
| | - Jitender P. Dubey
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Mark C. Jenkins
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| |
Collapse
|
5
|
Ferreira SCM, Jarquín-Díaz VH, Heitlinger E. Amplicon sequencing allows differential quantification of closely related parasite species: an example from rodent Coccidia (Eimeria). Parasit Vectors 2023; 16:204. [PMID: 37330545 PMCID: PMC10276917 DOI: 10.1186/s13071-023-05800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Quantifying infection intensity is a common goal in parasitological studies. We have previously shown that the amount of parasite DNA in faecal samples can be a biologically meaningful measure of infection intensity, even if it does not agree well with complementary counts of transmission stages (oocysts in the case of Coccidia). Parasite DNA can be quantified at relatively high throughput using quantitative polymerase chain reaction (qPCR), but amplification needs a high specificity and does not simultaneously distinguish between parasite species. Counting of amplified sequence variants (ASVs) from high-throughput marker gene sequencing using a relatively universal primer pair has the potential to distinguish between closely related co-infecting taxa and to uncover the community diversity, thus being both more specific and more open-ended. METHODS We here compare qPCR to the sequencing-based amplification using standard PCR and a microfluidics-based PCR to quantify the unicellular parasite Eimeria in experimentally infected mice. We use multiple amplicons to differentially quantify Eimeria spp. in a natural house mouse population. RESULTS We show that sequencing-based quantification has high accuracy. Using a combination of phylogenetic analysis and the co-occurrence network, we distinguish three Eimeria species in naturally infected mice based on multiple marker regions and genes. We investigate geographical and host-related effects on Eimeria spp. community composition and find, as expected, prevalence to be largely explained by sampling locality (farm). Controlling for this effect, the novel approach allowed us to find body condition of mice to be negatively associated with Eimeria spp. abundance. CONCLUSIONS We conclude that amplicon sequencing provides the underused potential for species distinction and simultaneous quantification of parasites in faecal material. The method allowed us to detect a negative effect of Eimeria infection on the body condition of mice in the natural environment.
Collapse
Affiliation(s)
- Susana C. M. Ferreira
- Division of Computational Systems Biology, Center for Microbiology and Ecological Systems Science, University of Vienna, Djerassipl. 1, 1030 Vienna, Austria
- Institute for Biology. Department of Molecular Parasitology, Humboldt-Universität zu Berlin (HU), Philippstr. 13, Haus 14, 10115 Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Institute for Biology. Department of Molecular Parasitology, Humboldt-Universität zu Berlin (HU), Philippstr. 13, Haus 14, 10115 Berlin, Germany
- Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW) im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Emanuel Heitlinger
- Institute for Biology. Department of Molecular Parasitology, Humboldt-Universität zu Berlin (HU), Philippstr. 13, Haus 14, 10115 Berlin, Germany
- Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW) im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
6
|
Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Microorganisms 2023; 11:1195. [PMID: 37317169 PMCID: PMC10222646 DOI: 10.3390/microorganisms11051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.
Collapse
Affiliation(s)
- Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Guodong Niu
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jun Li
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Cloning and expression of a cDNA coding for Eimeria acervulina 25 kDa protein associated with oocyst and sporocyst walls. Vet Parasitol 2022; 309:109762. [PMID: 35868164 DOI: 10.1016/j.vetpar.2022.109762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to characterize a gene named EAH 00033530 identified by RNAseq analysis of sporulating Eimeria acervulina oocysts and its encoded protein. Quantitative RT-PCR analysis revealed peak expression of EAH 00033530 mRNA early (3-6 h) in sporulation followed by downregulation at 12-24 h. The gene for EAH 00033530 was expressed in Escherichia coli as a 70 kDa polyHis fusion protein (rEAH 00033530). Antisera prepared against rEAH 00033530 protein identified in immunoblotting a native 25 kDa E. acervulina protein (Ea25) that was present in oocyst-sporocyst extracts after treatment with the reducing agent DTT. Immunofluorescence staining using anti-rEa25 localized the protein to both E. acervulina oocyst and sporocyst walls, but not to sporozoites. The protein may be produced during in vivo oocyst development because immunostaining of duodenal tissue from E. acervulina-infected chickens revealed oocyst wall expression. As observed by ELISA, rEa25 protein appears to elicit a humoral immune response in chickens infected with non-irradiated or radiation-attenuated E. acervulina oocysts.
Collapse
|
8
|
Olajide JS, Xiong L, Yang S, Qu Z, Xu X, Yang B, Wang J, Liu B, Ma X, Cai J. Eimeria falciformis secretes extracellular vesicles to modulate proinflammatory response during interaction with mouse intestinal epithelial cells. Parasit Vectors 2022; 15:245. [PMID: 35804396 PMCID: PMC9270845 DOI: 10.1186/s13071-022-05364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protozoan parasite secretions can be triggered by various modified media and diverse physicochemical stressors. Equally, host-parasite interactions are known to co-opt the exchange and secretion of soluble biochemical components. Analysis of Eimeria falciformis sporozoite secretions in response to interaction with mouse intestinal epithelial cells (MIECs) may reveal parasite secretory motifs, protein composition and inflammatory activities of E. falciformis extracellular vesicles (EVs). METHODS Eimeria falciformis sporozoites were allowed to interact with inactivated MIECs. Parasite secretions were separated into EV and vesicle-free (VF) fractions by discontinuous centrifugation and ultracentrifugation. Secreted EVs were purified in an iodixanol density gradient medium and the protein composition of both EV and VF fractions were analyzed by liquid chromatoraphy-tandem mass spectroscopy. The inflammatory activities of E. falciformis sporozoite EV on MIECs were then investigated. RESULTS During the interaction of E. falciformis sporozoites with inactivated MIECs, the parasite secreted VF and vesicle-bound molecules. Eimeria falciformis vesicles are typical pathogenic protozoan EVs with a mean diameter of 264 ± 2 nm, and enclosed heat shock protein (Hsp) 70 as classical EV marker. Refractile body-associated aspartyl proteinase (or eimepsin), GAP45 and aminopeptidase were the main components of E. falciformis sporozoite EVs, while VF proteins include Hsp90, actin, Vps54 and kinases, among others. Proteomic data revealed that E. falciformis EV and VF proteins are aggregates of bioactive, antigenic and immunogenic molecules which act in concert for E. falciformis sporozoite motility, pathogenesis and survival. Moreover, in MIECs, E. falciformis EVs induced upregulation of gene expression and secretion of IL-1β, IL-6, IL-17, IL-18, MCP1 as well as pyroptosis-dependent caspase 11 and NLRP6 inflammasomes with the concomitant secretion of lactate dehydrogenase. CONCLUSIONS Eimeria falciformis sporozoite interaction with MIECs triggered the secretion of immunogenic and antigenic proteins. In addition, E. falciformis sporozoite EVs constitute parasite-associated molecular pattern that induced inflammatory response and cell death. This study offers additional insight in the secretion and protein composition of E. falciformis secretomes as well as the proinflammatory functions of E. falciformis sporozoite EVs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ling Xiong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xiao Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
9
|
Balard A, Heitlinger E. Shifting focus from resistance to disease tolerance: A review on hybrid house mice. Ecol Evol 2022; 12:e8889. [PMID: 35571751 PMCID: PMC9077717 DOI: 10.1002/ece3.8889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Parasites have been proposed to modulate the fitness of hybridizing hosts in part based on observations in the European house mouse hybrid zone (HMHZ), a tension zone in which hybrids show reduced fitness. We here review evidence (1) for parasite load differences in hybrid versus parental mice and (2) for health and fitness effects of parasites promoting or preventing introgression and hybridization. The question of relative resistance or susceptibility of hybrids to parasites in the HMHZ has long been controversial. Recent field studies found hybrids to be more resistant than mice from parental subspecies against infections with pinworms and protozoans (Eimeria spp.). We argue that the field studies underlying the contradictory impression of hybrid susceptibility have limitations in sample size, statistical analysis and scope, focusing only on macroparasites. We suggest that weighted evidence from field studies indicate hybrid resistance. Health is a fitness component through which resistance can modulate overall fitness. Resistance, however, should not be extrapolated directly to a fitness effect, as the relationship between resistance and health can be modulated by tolerance. In our own recent work, we found that the relationship between health and resistance (tolerance) differs between infections with the related species E. falciformis and E. ferrisi. Health and tolerance need to be assessed directly and the choice of parasite has made this difficult in previous experimental studies of house mice. We discuss how experimental Eimeria spp. infections in hybrid house mice can address resistance, health and tolerance in conjunction.
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Research Group Ecology and Evolution of Molecular Parasite‐Host InteractionsLeibniz‐Institut for Zoo and Wildlife Research (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| | - Emanuel Heitlinger
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Research Group Ecology and Evolution of Molecular Parasite‐Host InteractionsLeibniz‐Institut for Zoo and Wildlife Research (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| |
Collapse
|
10
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
11
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sandholt AKS, Wattrang E, Lilja T, Ahola H, Lundén A, Troell K, Svärd SG, Söderlund R. Dual RNA-seq transcriptome analysis of caecal tissue during primary Eimeria tenella infection in chickens. BMC Genomics 2021; 22:660. [PMID: 34521339 PMCID: PMC8438895 DOI: 10.1186/s12864-021-07959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.
Collapse
Affiliation(s)
- Arnar K S Sandholt
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Tobias Lilja
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
13
|
Ramakrishnan C, Smith NC. Recent achievements and doors opened for coccidian parasite research and development through transcriptomics of enteric sexual stages. Mol Biochem Parasitol 2021; 243:111373. [PMID: 33961917 DOI: 10.1016/j.molbiopara.2021.111373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The Coccidia is the largest group of parasites within the Apicomplexa, a phylum of unicellular, obligate parasites characterized by the possession of an apical complex of organelles and structures in the asexual stages of their life cycles, as well as by a sexual reproductive phase that occurs enterically in host animals. Coccidian sexual reproduction involves morphologically distinct microgametes and macrogametes that combine to form a diploid zygote and, ultimately, following meiosis and mitosis, haploid, infectious sporozoites, inside sporocysts within an oocyst. Recent transcriptomic analyses have identified genes involved in coccidian sexual stage development and reproduction, including genes encoding for microgamete- and macrogamete-specific proteins with roles in gamete motility, fusion and fertilization, and in the formation of the resilient oocyst wall that allows coccidians to persist for long periods in the environment. Transcriptomics has also provided important clues about the regulation of gene expression in the transformation of parasites from one developmental stage to the next, a complex sequence of events that may involve transcription factors such as the apicomplexan Apetala2 (ApiAP2) family, alternative splicing, regulatory RNAs and MORC (a microrchida homologue and regulator of sexual stage development in Toxoplasma gondii). The molecular dissection of coccidian sexual development and reproduction by transcriptomic analyses may lead to the development of novel transmission-blocking strategies.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
14
|
Dual RNA-Seq transcriptome analysis of chicken macrophage-like cells (HD11) infected in vitro with Eimeria tenella. Parasitology 2021; 148:712-725. [PMID: 33536090 PMCID: PMC8056837 DOI: 10.1017/s0031182021000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2–4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.
Collapse
|
15
|
Ren B, Schmid M, Scheiner M, Mollenkopf HJ, Lucius R, Heitlinger E, Gupta N. Toxoplasma and Eimeria co-opt the host cFos expression for intracellular development in mammalian cells. Comput Struct Biotechnol J 2021; 19:719-731. [PMID: 33510872 PMCID: PMC7817532 DOI: 10.1016/j.csbj.2020.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/05/2022] Open
Abstract
Gene expression profiles differ significantly between Toxoplasma and Eimeria-infected host cells. Several distinct and shared host-signaling cascades are regulated by coccidian parasites. cFos is one of the few host transcripts mutually regulated during infection by both pathogens. Host cFos is required for optimal in vitro development of E. falciformis and T. gondii. Transcriptomics of parasitized wild-type and cFos-/- host cells reveals a perturbation of cFos network.
Successful asexual reproduction of intracellular pathogens depends on their potential to exploit host resources and subvert antimicrobial defense. In this work, we deployed two prevalent apicomplexan parasites of mammalian cells, namely Toxoplasma gondii and Eimeria falciformis, to identify potential host determinants of infection. Expression analyses of the young adult mouse colonic (YAMC) epithelial cells upon infection by either parasite showed regulation of several distinct transcripts, indicating that these two pathogens program their intracellular niches in a tailored manner. Conversely, parasitized mouse embryonic fibroblasts (MEFs) displayed a divergent transcriptome compared to corresponding YAMC epithelial cells, suggesting that individual host cells mount a fairly discrete response when encountering a particular pathogen. Among several host transcripts similarly altered by T. gondii and E. falciformis, we identified cFos, a master transcription factor, that was consistently induced throughout the infection. Indeed, asexual growth of both parasites was strongly impaired in MEF host cells lacking cFos expression. Last but not the least, our differential transcriptomics of the infected MEFs (parental and cFos-/- mutant) and YAMC epithelial cells disclosed a cFos-centered network, underlying signal cascades, as well as a repertoire of nucleotides- and ion-binding proteins, which presumably act in consort to acclimatize the mammalian cell and thereby facilitate the parasite development.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Manuela Schmid
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Mattea Scheiner
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Microarray and Genomics Core Facility, Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Research Group Ecology and Evolution of Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
16
|
Martorelli Di Genova B, Knoll LJ. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front Cell Infect Microbiol 2020; 10:604897. [PMID: 33381466 PMCID: PMC7768002 DOI: 10.3389/fcimb.2020.604897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that undergo sexual reproduction during their life cycle. T. gondii can infect any warm-blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines. Eimeria spp. are usually restricted to one host species, and their whole life cycle is completed within this same host. The literature reviewed in this article comprises the recent findings regarding the unique biology of the sexual development of T. gondii and Eimeria spp. The molecular basis of sex in these pathogens has been significantly unraveled by new findings in parasite differentiation along with transcriptional analysis of T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic networks, analysis of these transcriptome datasets shows enrichment for several different metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp. merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-pathogen interaction and host restriction have significantly expanded the understating of the unique biology of these pathogens. This review aims to critically explore advances in the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the sexual cycle of Eimeria spp. and T. gondii.
Collapse
Affiliation(s)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Balard A, Jarquín‐Díaz VH, Jost J, Mittné V, Böhning F, Ďureje Ľ, Piálek J, Heitlinger E. Coupling between tolerance and resistance for two related Eimeria parasite species. Ecol Evol 2020; 10:13938-13948. [PMID: 33391692 PMCID: PMC7771152 DOI: 10.1002/ece3.6986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance (host capacity to reduce parasite burden) and tolerance (host capacity to reduce impact on its health for a given parasite burden) manifest two different lines of defense. Tolerance can be independent from resistance, traded off against it, or the two can be positively correlated because of redundancy in underlying (immune) processes. We here tested whether this coupling between tolerance and resistance could differ upon infection with closely related parasite species. We tested this in experimental infections with two parasite species of the genus Eimeria. We measured proxies for resistance (the (inverse of) number of parasite transmission stages (oocysts) per gram of feces at the day of maximal shedding) and tolerance (the slope of maximum relative weight loss compared to day of infection on number of oocysts per gram of feces at the day of maximal shedding for each host strain) in four inbred mouse strains and four groups of F1 hybrids belonging to two mouse subspecies, Mus musculus domesticus and Mus musculus musculus. We found a negative correlation between resistance and tolerance against Eimeria falciformis, while the two are uncoupled against Eimeria ferrisi. We conclude that resistance and tolerance against the first parasite species might be traded off, but evolve more independently in different mouse genotypes against the latter. We argue that evolution of the host immune defenses can be studied largely irrespective of parasite isolates if resistance-tolerance coupling is absent or weak (E. ferrisi) but host-parasite coevolution is more likely observable and best studied in a system with negatively correlated tolerance and resistance (E. falciformis).
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Leibniz‐Institut für Zoo‐ und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| | - Víctor Hugo Jarquín‐Díaz
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Leibniz‐Institut für Zoo‐ und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| | - Jenny Jost
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
| | - Vivian Mittné
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
| | - Francisca Böhning
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
| | - Ľudovít Ďureje
- Research Facility StudenecInstitute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Jaroslav Piálek
- Research Facility StudenecInstitute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Emanuel Heitlinger
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Leibniz‐Institut für Zoo‐ und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| |
Collapse
|
18
|
Bracamonte SE, Johnston PR, Monaghan MT, Knopf K. Gene expression response to a nematode parasite in novel and native eel hosts. Ecol Evol 2019; 9:13069-13084. [PMID: 31871630 PMCID: PMC6912882 DOI: 10.1002/ece3.5728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
Invasive parasites are involved in population declines of new host species worldwide. The high susceptibilities observed in many novel hosts have been attributed to the lack of protective immunity to the parasites which native hosts acquired during their shared evolution. We experimentally infected Japanese eels (Anguilla japonica) and European eels (Anguilla anguilla) with Anguillicola crassus, a nematode parasite that is native to the Japanese eel and invasive in the European eel. We inferred gene expression changes in head kidney tissue from both species, using RNA-seq data to determine the responses at two time points during the early stages of infection (3 and 23 days postinfection). At both time points, the novel host modified the expression of a larger and functionally more diverse set of genes than the native host. Strikingly, the native host regulated immune gene expression only at the earlier time point and to a small extent while the novel host regulated these genes at both time points. A low number of differentially expressed immune genes, especially in the native host, suggest that a systemic immune response was of minor importance during the early stages of infection. Transcript abundance of genes involved in cell respiration was reduced in the novel host which may affect its ability to cope with harsh conditions and energetically demanding activities. The observed gene expression changes in response to a novel parasite that we observed in a fish follow a general pattern observed in amphibians and mammals, and suggest that the disruption of physiological processes, rather than the absence of an immediate immune response, is responsible for the higher susceptibility of the novel host.
Collapse
Affiliation(s)
- Seraina E. Bracamonte
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Faculty of Life SciencesHumboldt‐Universität zu BerlinBerlinGermany
| | - Paul R. Johnston
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Michael T. Monaghan
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Klaus Knopf
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Faculty of Life SciencesHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
19
|
Frönicke L, Bronner DN, Byndloss MX, McLaughlin B, Bäumler AJ, Westermann AJ. Toward Cell Type-Specific In Vivo Dual RNA-Seq. Methods Enzymol 2018; 612:505-522. [PMID: 30502956 DOI: 10.1016/bs.mie.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dual RNA-seq has emerged as a genome-wide expression profiling technique, simultaneously measuring RNA transcript levels in a given host and its pathogen during an infection. Recently, the method was transferred from cell culture to in vivo models of bacterial infections; however, specific host cell-type resolution has not yet been achieved. Here we present a detailed protocol that describes the application of Dual RNA-seq to murine colonocytes isolated from mice infected with the enteric pathogen Salmonella Typhimurium. At day 5 after oral infection, the mice were humanely euthanized, their colons extracted, and colonocytes isolated and fixed. Upon antibody staining of cell type-specific surface markers, the fraction of Salmonella-invaded colonocytes was collected by fluorescence-activated cell sorting based on a fluorescent signal emitted by the internalized bacteria. Total RNA was extracted from cells enriched by this method, and ribosomal transcripts from host and microbial cells were removed prior to cDNA synthesis and library generation. We compared different protocols for library preparation and discuss their respective advantages and caveats when applied to minute RNA amounts that constitute an inherent challenge for in vivo transcriptomics. Our results introduce an ultralow input protocol that holds promise for cell type-specific in vivo Dual RNA-seq for charting gene expression of a bacterial pathogen within its respective in vivo niche, along with the consequent host response.
Collapse
Affiliation(s)
- Lutz Frönicke
- University of California Davis Genome Center, Davis, CA, United States
| | - Denise N Bronner
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Bridget McLaughlin
- Comprehensive Cancer Center Flow Cytometry Shared Resource, University of California Davis, Davis, CA, United States
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| |
Collapse
|