1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kohvakka A, Sattari M, Nättinen J, Aapola U, Gregorová P, Tammela TLJ, Uusitalo H, Sarin LP, Visakorpi T, Latonen L. Long noncoding RNA EPCART regulates translation through PI3K/AKT/mTOR pathway and PDCD4 in prostate cancer. Cancer Gene Ther 2024; 31:1536-1546. [PMID: 39147845 PMCID: PMC11489079 DOI: 10.1038/s41417-024-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.
Collapse
Affiliation(s)
- Annika Kohvakka
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
| | - Mina Sattari
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
| | - Janika Nättinen
- Eye and Vision Research Group, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Ulla Aapola
- Eye and Vision Research Group, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Pavlína Gregorová
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Teuvo L J Tammela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Eye and Vision Research Group, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
- Tays Eye Centre, Tampere University Hospital, 33520, Tampere, Finland
| | - L Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland.
- Fimlab Laboratories Ltd, Tampere University Hospital, 00014, Tampere, Finland.
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
4
|
Pang Y, Zheng K, Min Q, Wang Y, Xue X, Li W, Zhao H, Qiao F, Han S. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Int J Mol Sci 2024; 25:6226. [PMID: 38892412 PMCID: PMC11172603 DOI: 10.3390/ijms25116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
Collapse
Affiliation(s)
- Yanrong Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Qinyue Min
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
5
|
Xu W, Li T, Li J, Liu S, Yu X, Tang M, Dong J, Liu J, Bu X, Xia X, Zhou H, Nie L. The First Identification of Homomorphic XY Sex Chromosomes by Integrating Cytogenetic and Transcriptomic Approaches in Plestiodon elegans (Scincidae). Genes (Basel) 2024; 15:664. [PMID: 38927599 PMCID: PMC11203037 DOI: 10.3390/genes15060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The sex chromosomes of skinks are usually poorly differentiated and hardly distinguished by cytogenetic methods. Therefore, identifying sex chromosomes in species lacking easily recognizable heteromorphic sex chromosomes is necessary to fully understand sex chromosome diversity. In this paper, we employed cytogenetics, sex quantification of genes, and transcriptomic approaches to characterize the sex chromosomes in Plestiodon elegans. Cytogenetic examination of metaphases revealed a diploid number of 2n = 26, consisting of 12 macrochromosomes and 14 microchromosomes, with no significant heteromorphic chromosome pairs, speculating that the sex chromosomes may be homomorphic or poorly differentiated. The results of the sex quantification of genes showed that Calumenin (calu), COPI coat complex subunit γ 2 (copg2), and Smoothened (smo) were at half the dose in males as in females, suggesting that they are on the X chromosome. Transcriptomic data analysis from the gonads yielded the excess expression male-specific genes (n = 16), in which five PCR molecular markers were developed. Restricting the observed heterozygosity to males suggests the presence of homomorphic sex chromosomes in P. elegans, XX/XY. This is the first breakthrough in the study of the sex chromosomes of Plestiodon.
Collapse
Affiliation(s)
- Wannan Xu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Taiyue Li
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Jiahui Li
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Siqi Liu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Xing Yu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Min Tang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Jingxiu Dong
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Jianjun Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210098, China;
| | - Xingjiang Bu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Xingquan Xia
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Huaxing Zhou
- Anhui Key Laboratory of Aquaculture & Stock Enhancement, Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Liuwang Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| |
Collapse
|
6
|
Kurosaki T, Rambout X, Maquat LE. FMRP-mediated spatial regulation of physiologic NMD targets in neuronal cells. Genome Biol 2024; 25:31. [PMID: 38263082 PMCID: PMC10804635 DOI: 10.1186/s13059-023-03146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
In non-polarized cells, nonsense-mediated mRNA decay (NMD) generally begins during the translation of newly synthesized mRNAs after the mRNAs are exported to the cytoplasm. Binding of the FMRP translational repressor to UPF1 on NMD targets mainly inhibits NMD. However, in polarized cells like neurons, FMRP additionally localizes mRNAs to cellular projections. Here, we review the literature and evaluate available transcriptomic data to conclude that, in neurons, the translation of physiologic NMD targets bound by FMRP is partially inhibited until the mRNAs localize to projections. There, FMRP displacement in response to signaling induces a burst in protein synthesis followed by rapid mRNA decay.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Villanueva E, Smith T, Pizzinga M, Elzek M, Queiroz RML, Harvey RF, Breckels LM, Crook OM, Monti M, Dezi V, Willis AE, Lilley KS. System-wide analysis of RNA and protein subcellular localization dynamics. Nat Methods 2024; 21:60-71. [PMID: 38036857 PMCID: PMC10776395 DOI: 10.1038/s41592-023-02101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.
Collapse
Affiliation(s)
- Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mariavittoria Pizzinga
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - Mohamed Elzek
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, UK
| | - Mie Monti
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Rizavi HS, Gavin HE, Krishnan HR, Gavin DP, Sharma RP. Ethanol- and PARP-Mediated Regulation of Ribosome-Associated Long Non-Coding RNA (lncRNA) in Pyramidal Neurons. Noncoding RNA 2023; 9:72. [PMID: 37987368 PMCID: PMC10661276 DOI: 10.3390/ncrna9060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Although, by definition, long noncoding RNAs (lncRNAs) are not translated, they are sometimes associated with ribosomes. In fact, some estimates suggest the existence of more than 50 K lncRNA molecules that could encode for small peptides. We examined the effects of an ethanol and Poly-ADP Ribose Polymerase (PARP) inhibitor (ABT-888) on ribosome-bound lncRNAs. Mice were administered via intraperitoneal injection (i.p.) either normal saline (CTL) or ethanol (EtOH) twice a day for four consecutive days. On the fourth day, a sub-group of mice administered with ethanol also received ABT-888 (EtOH+ABT). Ribosome-bound lncRNAs in CaMKIIα-expressing pyramidal neurons were measured using the Translating Ribosome Affinity Purification (TRAP) technique. Our findings show that EtOH altered the attachment of 107 lncRNA transcripts, while EtOH+ABT altered 60 lncRNAs. Among these 60 lncRNAs, 49 were altered by both conditions, while EtOH+ABT uniquely altered the attachment of 11 lncRNA transcripts that EtOH alone did not affect. To validate these results, we selected eight lncRNAs (Mir124-2hg, 5430416N02Rik, Snhg17, Snhg12, Snhg1, Mir9-3hg, Gas5, and 1110038B12Rik) for qRT-PCR analysis. The current study demonstrates that ethanol-induced changes in lncRNA attachment to ribosomes can be mitigated by the addition of the PARP inhibitor ABT-888.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Hannah E. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
| | - Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - David P. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
| | - Rajiv P. Sharma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Bin Wang, Yuan C, Qie Y, Dang S. Long non-coding RNAs and pancreatic cancer: A multifaceted view. Biomed Pharmacother 2023; 167:115601. [PMID: 37774671 DOI: 10.1016/j.biopha.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with a 5-year survival rate of only 10%. Families with PC are at greater risk, as are type 2 diabetes, pancreatitis, and other factors. Insufficient early detection methods make this cancer have a poor prognosis. Additionally, the molecular mechanisms underlying PC development remain unclear. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to PC pathology,which may control gene expression by recruiting histone modification complexes to chromatin and interacting with proteins and RNAs. In recent studies, abnormal regulation of lncRNAs has been implicated in PC proliferation, metastasis, invasion, angiogenesis, apoptosis, and chemotherapy resistance suggesting potential clinical implications. The paper reviews the progress of lncRNA research in PC about diabetes mellitus, pancreatitis, cancer metastasis, tumor microenvironment regulation, and chemoresistance. Furthermore, lncRNAs may serve as potential therapeutic targets and biomarkers for PC diagnosis and prognosis. This will help improve PC patients' survival rate from a lncRNA perspective.
Collapse
Affiliation(s)
- Bin Wang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Chang Yuan
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yinyin Qie
- General Surgery Department, Yixing People's Hospital, Wuxi, Jiangsu 214200, China
| | - Shengchun Dang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China; Siyang Hospital, Suqian, Jiangsu 223700, China.
| |
Collapse
|
10
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Romerio F. Origin and functional role of antisense transcription in endogenous and exogenous retroviruses. Retrovirology 2023; 20:6. [PMID: 37194028 DOI: 10.1186/s12977-023-00622-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.
Collapse
Affiliation(s)
- Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Fellah S, Larrue R, Truchi M, Vassaux G, Mari B, Cauffiez C, Pottier N. Pervasive role of the long noncoding RNA DNM3OS in development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1736. [PMID: 35491542 DOI: 10.1002/wrna.1736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Thousands of unique noncoding RNAs (ncRNAs) are expressed in human cells, some are tissue or cell type specific whereas others are considered as house-keeping molecules. Studies over the last decade have modified our perception of ncRNAs from transcriptional noise to functional regulatory transcripts that influence a variety of molecular processes such as chromatin remodeling, transcription, post-transcriptional modifications, or signal transduction. Consequently, aberrant expression of many ncRNAs plays a causative role in the initiation and progression of various diseases. Since the identification of its developmental role, the long ncRNA DNM3OS (Dynamin 3 Opposite Strand) has attracted attention of researchers in distinct fields including oncology, fibroproliferative diseases, or bone disorders. Mechanistic studies have in particular revealed the multifaceted nature of DNM3OS and its important pathogenic role in several human disorders. In this review, we summarize the current knowledge of DNM3OS functions in diseases, with an emphasis on its potential as a novel therapeutic target. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Sandy Fellah
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Romain Larrue
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Georges Vassaux
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Christelle Cauffiez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Nicolas Pottier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| |
Collapse
|
13
|
Yuan GH, Wang Y, Wang GZ, Yang L. RNAlight: a machine learning model to identify nucleotide features determining RNA subcellular localization. Brief Bioinform 2022; 24:6868526. [PMID: 36464487 PMCID: PMC9851306 DOI: 10.1093/bib/bbac509] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
Different RNAs have distinct subcellular localizations. However, nucleotide features that determine these distinct distributions of lncRNAs and mRNAs have yet to be fully addressed. Here, we develop RNAlight, a machine learning model based on LightGBM, to identify nucleotide k-mers contributing to the subcellular localizations of mRNAs and lncRNAs. With the Tree SHAP algorithm, RNAlight extracts nucleotide features for cytoplasmic or nuclear localization of RNAs, indicating the sequence basis for distinct RNA subcellular localizations. By assembling k-mers to sequence features and subsequently mapping to known RBP-associated motifs, different types of sequence features and their associated RBPs were additionally uncovered for lncRNAs and mRNAs with distinct subcellular localizations. Finally, we extended RNAlight to precisely predict the subcellular localizations of other types of RNAs, including snRNAs, snoRNAs and different circular RNA transcripts, suggesting the generality of using RNAlight for RNA subcellular localization prediction.
Collapse
Affiliation(s)
| | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Corresponding author. Li Yang, Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Dong-An Road, 131, Shanghai, China. Tel: +86-021-54237325; E-mail:
| |
Collapse
|
14
|
Lelong EIJ, Khelifi G, Adjibade P, Joncas FH, Grenier St-Sauveur V, Paquette V, Gris T, Zoubeidi A, Audet-Walsh E, Lambert JP, Toren P, Mazroui R, Hussein SMI. Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation. NAR Cancer 2022; 4:zcac034. [PMID: 36348939 PMCID: PMC9634437 DOI: 10.1093/narcan/zcac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Emeline I J Lelong
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Valérie Grenier St-Sauveur
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Virginie Paquette
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Typhaine Gris
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia V6H 3Z6, Canada
| | - Etienne Audet-Walsh
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Paul Toren
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| |
Collapse
|
15
|
Changizian M, Nourisanami F, Hajpoor V, Parvaresh M, Bahri Z, Motovali-Bashi M. LINC00467: A key oncogenic long non-coding RNA. Clin Chim Acta 2022; 536:112-125. [PMID: 36122666 DOI: 10.1016/j.cca.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
The significance of long non-coding RNAs (lncRNAs) in the development and progression of human cancers has attracted increasing attention in recent years of investigations. Having versatile interactions and diverse functions, lncRNAs can act as oncogenes or tumor-suppressors to actively regulate cell proliferation, survival, stemness, drug resistance, invasion and metastasis. LINC00467, an oncogenic member of long intergenic non-coding RNAs, is upregulated in numerous malignancies and its high expression is often related to poor clinicopathological features. LINC00467 facilitates the progression of cancer via sponging tumor-suppressive microRNAs, inhibiting cell death cascade, modulating cell cycle controllers, and regulating signalling pathways including AKT, STAT3, NF-κB and Wnt/β-catenin. A growing number of studies have revealed that LINC00467 may serve as a novel prognostic biomarker and its inhibitory targeting has a valuable therapeutic potential to suppress the malignant phenotypes of cancer cells. In the present review, we discuss the importance of LINC00467 and provide a comprehensive collection of its functions and molecular mechanisms in a variety of cancer types.
Collapse
Affiliation(s)
- Mohammad Changizian
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Farahdokht Nourisanami
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Vida Hajpoor
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15, Tehran - Karaj Highway, Tehran 14965/161, Iran
| | - Maryam Parvaresh
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Zahra Bahri
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Majid Motovali-Bashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| |
Collapse
|
16
|
Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Mol Biol Rep 2022; 49:11515-11534. [PMID: 36097122 DOI: 10.1007/s11033-022-07819-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/06/2022]
Abstract
Long non-coding RNAs (lncRNAs) are 200 nucleotide extended transcripts that do not encode proteins or possess limited coding ability. LncRNAs epigenetically control several biological functions such as gene regulation, transcription, mRNA splicing, protein interaction, and genomic imprinting. Over the years, drastic progress in understanding the role of lncRNAs in diverse biological processes has been made. LncRNAs are reported to show tissue-specific expression patterns suggesting their potential as novel candidate biomarkers for diseases. Among all other non-coding RNAs, lncRNAs are highly expressed within the brain-enriched or brain-specific regions of the neural tissues. They are abundantly expressed in the neocortex and pre-mature frontal regions of the brain. LncRNAs are co-expressed with the protein-coding genes and have a significant role in the evolution of functions of the brain. Any deregulation in the lncRNAs contributes to disruptions in normal brain functions resulting in multiple neurological disorders. Neuropsychiatric disorders such as schizophrenia, bipolar disease, autism spectrum disorders, and anxiety are associated with the abnormal expression and regulation of lncRNAs. This review aims to highlight the understanding of lncRNAs concerning normal brain functions and their deregulation associated with neuropsychiatric disorders. We have also provided a survey on the available computational tools for the prediction of lncRNAs, their protein coding potentials, and sub-cellular locations, along with a section on existing online databases with known lncRNAs, and their interactions with other molecules.
Collapse
Affiliation(s)
- Cinmoyee Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, Napaam, Sonitpur, Assam, India
| | - Prangan Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, Napaam, Sonitpur, Assam, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, 784028, Napaam, Sonitpur, Assam, India.
| |
Collapse
|
17
|
Bornelöv S, Czech B, Hannon GJ. An evolutionarily conserved stop codon enrichment at the 5' ends of mammalian piRNAs. Nat Commun 2022; 13:2118. [PMID: 35440552 PMCID: PMC9018710 DOI: 10.1038/s41467-022-29787-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small RNAs required to recognize and silence transposable elements. The 5' ends of mature piRNAs are defined through cleavage of long precursor transcripts, primarily by Zucchini (Zuc). Zuc-dependent cleavage typically occurs immediately upstream of a uridine. However, Zuc lacks sequence preference in vitro, pointing towards additional unknown specificity factors. Here, we examine murine piRNAs and reveal a strong and specific enrichment of three sequences (UAA, UAG, UGA)-corresponding to stop codons-at piRNA 5' ends. Stop codon sequences are also enriched immediately after piRNA processing intermediates, reflecting their Zuc-dependent tail-to-head arrangement. Further analyses reveal that a Zuc in vivo cleavage preference at four sequences (UAA, UAG, UGA, UAC) promotes 5' end stop codons. This observation is conserved across mammals and possibly further. Our work provides new insights into Zuc-dependent cleavage and may point to a previously unrecognized connection between piRNA biogenesis and the translational machinery.
Collapse
Affiliation(s)
- Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| |
Collapse
|
18
|
Ribosome-Associated ncRNAs (rancRNAs) Adjust Translation and Shape Proteomes. Noncoding RNA 2022; 8:ncrna8020022. [PMID: 35314615 PMCID: PMC8938821 DOI: 10.3390/ncrna8020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
The regulation of protein synthesis is of extreme importance for cell survival in challenging environmental conditions. Modulating gene expression at the level of translation allows a swift and low-energy-cost response to external stimuli. In the last decade, an emerging class of regulatory ncRNAs, namely ribosome-associated non-coding RNAs (rancRNAs), has been discovered. These rancRNAs have proven to be efficient players in the regulation of translation as a first wave of stress adaptation by directly targeting the ribosome, the central enzyme of protein production. This underlying principle appears to be highly conserved, since rancRNAs are present in all three domains of life. Here, we review the major findings and mechanistic peculiarities of rancRNAs, a class of transcripts that is providing new and broader perspectives on the complexity of the ribosome and translation regulation.
Collapse
|
19
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
20
|
Zeng C, Takeda A, Sekine K, Osato N, Fukunaga T, Hamada M. Bioinformatics Approaches for Determining the Functional Impact of Repetitive Elements on Non-coding RNAs. Methods Mol Biol 2022; 2509:315-340. [PMID: 35796972 DOI: 10.1007/978-1-0716-2380-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With a large number of annotated non-coding RNAs (ncRNAs), repetitive sequences are found to constitute functional components (termed as repetitive elements) in ncRNAs that perform specific biological functions. Bioinformatics analysis is a powerful tool for improving our understanding of the role of repetitive elements in ncRNAs. This chapter summarizes recent findings that reveal the role of repetitive elements in ncRNAs. Furthermore, relevant bioinformatics approaches are systematically reviewed, which promises to provide valuable resources for studying the functional impact of repetitive elements on ncRNAs.
Collapse
Affiliation(s)
- Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
| | - Atsushi Takeda
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Sekine
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Naoki Osato
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
| |
Collapse
|
21
|
Berloco MF, Minervini CF, Moschetti R, Palazzo A, Viggiano L, Marsano RM. Evidence of the Physical Interaction between Rpl22 and the Transposable Element Doc5, a Heterochromatic Transposon of Drosophila melanogaster. Genes (Basel) 2021; 12:1997. [PMID: 34946947 PMCID: PMC8701128 DOI: 10.3390/genes12121997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transposable element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila.
Collapse
Affiliation(s)
- Maria Francesca Berloco
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Roberta Moschetti
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Antonio Palazzo
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Luigi Viggiano
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | | |
Collapse
|
22
|
Kang YJ, Li JY, Ke L, Jiang S, Yang DC, Hou M, Gao G. Quantitative model suggests both intrinsic and contextual features contribute to the transcript coding ability determination in cells. Brief Bioinform 2021; 23:6445106. [PMID: 34849565 DOI: 10.1093/bib/bbab483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Gene transcription and protein translation are two key steps of the 'central dogma.' It is still a major challenge to quantitatively deconvolute factors contributing to the coding ability of transcripts in mammals. Here, we propose ribosome calculator (RiboCalc) for quantitatively modeling the coding ability of RNAs in human genome. In addition to effectively predicting the experimentally confirmed coding abundance via sequence and transcription features with high accuracy, RiboCalc provides interpretable parameters with biological information. Large-scale analysis further revealed a number of transcripts with a variety of coding ability for distinct types of cells (i.e. context-dependent coding transcripts), suggesting that, contrary to conventional wisdom, a transcript's coding ability should be modeled as a continuous spectrum with a context-dependent nature.
Collapse
Affiliation(s)
- Yu-Jian Kang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jing-Yi Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lan Ke
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuai Jiang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - De-Chang Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Mei Hou
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ge Gao
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Bonilauri B, Holetz FB, Dallagiovanna B. Long Non-Coding RNAs Associated with Ribosomes in Human Adipose-Derived Stem Cells: From RNAs to Microproteins. Biomolecules 2021; 11:1673. [PMID: 34827671 PMCID: PMC8615451 DOI: 10.3390/biom11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosome profiling reveals the translational dynamics of mRNAs by capturing a ribosomal footprint snapshot. Growing evidence shows that several long non-coding RNAs (lncRNAs) contain small open reading frames (smORFs) that are translated into functional peptides. The difficulty in identifying bona-fide translated smORFs is a constant challenge in experimental and bioinformatics fields due to their unconventional characteristics. This motivated us to isolate human adipose-derived stem cells (hASC) from adipose tissue and perform a ribosome profiling followed by bioinformatics analysis of transcriptome, translatome, and ribosome-protected fragments of lncRNAs. Here, we demonstrated that 222 lncRNAs were associated with the translational machinery in hASC, including the already demonstrated lncRNAs coding microproteins. The ribosomal occupancy of some transcripts was consistent with the translation of smORFs. In conclusion, we were able to identify a subset of 15 lncRNAs containing 35 smORFs that likely encode functional microproteins, including four previously demonstrated smORF-derived microproteins, suggesting a possible dual role of these lncRNAs in hASC self-renewal.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Fabiola Barbieri Holetz
- Laboratory of Gene Expression Regulation (LABREG), Carlos Chagas Institute-Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| |
Collapse
|
24
|
Fesenko I, Shabalina SA, Mamaeva A, Knyazev A, Glushkevich A, Lyapina I, Ziganshin R, Kovalchuk S, Kharlampieva D, Lazarev V, Taliansky M, Koonin EV. A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Res 2021; 49:10328-10346. [PMID: 34570232 DOI: 10.1093/nar/gkab816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Pervasive transcription of eukaryotic genomes results in expression of long non-coding RNAs (lncRNAs) most of which are poorly conserved in evolution and appear to be non-functional. However, some lncRNAs have been shown to perform specific functions, in particular, transcription regulation. Thousands of small open reading frames (smORFs, <100 codons) located on lncRNAs potentially might be translated into peptides or microproteins. We report a comprehensive analysis of the conservation and evolutionary trajectories of lncRNAs-smORFs from the moss Physcomitrium patens across transcriptomes of 479 plant species. Although thousands of smORFs are subject to substantial purifying selection, the majority of the smORFs appear to be evolutionary young and could represent a major pool for functional innovation. Using nanopore RNA sequencing, we show that, on average, the transcriptional level of conserved smORFs is higher than that of non-conserved smORFs. Proteomic analysis confirmed translation of 82 novel species-specific smORFs. Numerous conserved smORFs containing low complexity regions (LCRs) or transmembrane domains were identified, the biological functions of a selected LCR-smORF were demonstrated experimentally. Thus, microproteins encoded by smORFs are a major, functionally diverse component of the plant proteome.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Andrey Knyazev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Anna Glushkevich
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Rustam Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Sergey Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Daria Kharlampieva
- Department of Cell Biology, Federal Research and Clinical Center of Physical -Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russian Federation
| | - Vassili Lazarev
- Department of Cell Biology, Federal Research and Clinical Center of Physical -Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, 141701, Russian Federation
| | - Michael Taliansky
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russian Federation.,The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
25
|
Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 185:107522. [PMID: 34547434 DOI: 10.1016/j.nlm.2021.107522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
A striking proportion of long non-coding RNAs are expressed specifically in the mammalian brain. Advances in genome-wide sequencing detected widespread diversity in neuronal lncRNAs based on their expression pattern, localization and function. A growing body of literature proposes that localization of lncRNAs is a critical determinant of their function. A rising number of recent findings documented distinct cytoplasmic functions of lncRNAs that are linked to activity-induced control of synaptic plasticity. However, the comprehensive role of cytoplasmic lncRNAs in neuronal functions is less understood. This review surveys our current understanding of lncRNAs that regulate the cytoplasmic life of mRNAs. We discuss the necessity of subcellular localization of lncRNAs in neuronal dendrites and the impact of their compartmentalized positioning on localized translation at the synapse. We have highlighted how lncRNAs modify a functional compartment to meet the demand for input-specific control of synaptic plasticity and memory.
Collapse
|
26
|
Tu Z, Schmoellerl J, Mariani O, Zheng Y, Hu Y, Vincent-Salomon A, Karnoub AE. The LINC01119-SOCS5 axis as a critical theranostic in triple-negative breast cancer. NPJ Breast Cancer 2021; 7:69. [PMID: 34059683 PMCID: PMC8166834 DOI: 10.1038/s41523-021-00259-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
The development of triple-negative breast cancer (TNBC) is critically regulated by certain tumor-microenvironment-associated cells called mesenchymal stem/stromal cells (MSCs), which we and others have shown promote TNBC progression by activating pro-malignant signaling in neighboring cancer cells. Characterization of these cascades would better our understanding of TNBC biology and bring about therapeutics that eliminate the morbidity and mortality associated with advanced disease. Here, we focused on the emerging class of RNAs called long non-coding RNAs or lncRNAs and utilized a MSC-supported TNBC progression model to identify specific family members of functional relevance to TNBC pathogenesis. Indeed, although some have been described to play functional roles in TNBC, activities of lncRNAs as mediators of tumor-microenvironment-driven TNBC development remain to be fully explored. We report that MSCs stimulate robust expression of LINC01119 in TNBC cells, which in turn induces suppressor of cytokine signaling 5 (SOCS5), leading to accelerated cancer cell growth and tumorigenesis. We show that LINC01119 and SOCS5 exhibit tight correlation across multiple breast cancer gene sets and that they are highly enriched in TNBC patient cohorts. Importantly, we present evidence that the LINC01119-SOCS5 axis represents a powerful prognostic indicator of adverse outcomes in TNBC patients, and demonstrate that its repression severely impairs cancer cell growth. Altogether, our findings identify LINC01119 as a major driver of TNBC development and delineate critical non-coding RNA theranostics of potential translational utility in the management of advanced TNBC, a class of tumors in most need of effective and targeted therapy.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Johannes Schmoellerl
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yi Hu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
27
|
Montigny A, Tavormina P, Duboe C, San Clémente H, Aguilar M, Valenti P, Lauressergues D, Combier JP, Plaza S. Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8. Genome Biol 2021; 22:118. [PMID: 33892772 PMCID: PMC8063413 DOI: 10.1186/s13059-021-02345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/09/2021] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. RESULTS We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. CONCLUSION Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.
Collapse
Affiliation(s)
- Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Patrizia Tavormina
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Carine Duboe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Hélène San Clémente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Philippe Valenti
- Laboratoire MCD, Centre de Biologie Intégrative, Université de Toulouse 3, CNRS UMR5077, Bat 4R4, 118 route de Narbonne, 31062, Toulouse, France
| | - Dominique Lauressergues
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France.
| |
Collapse
|
28
|
Rodrigues DC, Mufteev M, Weatheritt RJ, Djuric U, Ha KCH, Ross PJ, Wei W, Piekna A, Sartori MA, Byres L, Mok RSF, Zaslavsky K, Pasceri P, Diamandis P, Morris Q, Blencowe BJ, Ellis J. Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. Cell Rep 2021; 30:4179-4196.e11. [PMID: 32209477 DOI: 10.1016/j.celrep.2020.02.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Regulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis). Approximately 35% of abundant intergenic long noncoding RNAs (lncRNAs) are ribosome engaged. Neurons translate mRNAs more efficiently and have longer 3' UTRs, and RE correlates with elements for RNA-binding proteins. RTT neurons have reduced global translation and compromised mTOR signaling, and >2,100 genes are translationally dysregulated. NEDD4L E3-ubiquitin ligase is translationally impaired, ubiquitinated protein levels are reduced, and protein targets accumulate in RTT neurons. Overall, the dynamic translatome in neurodevelopment is disturbed in RTT and provides insight into altered ubiquitination that may have therapeutic implications.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ugljesa Djuric
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria A Sartori
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Loryn Byres
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter Pasceri
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Phedias Diamandis
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
29
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Minati L, Firrito C, Del Piano A, Peretti A, Sidoli S, Peroni D, Belli R, Gandolfi F, Romanel A, Bernabo P, Zasso J, Quattrone A, Guella G, Lauria F, Viero G, Clamer M. One-shot analysis of translated mammalian lncRNAs with AHARIBO. eLife 2021; 10:59303. [PMID: 33594971 PMCID: PMC7932693 DOI: 10.7554/elife.59303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here, we present AHA-mediated RIBOsome isolation (AHARIBO), a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs, and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds of lncRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Daniele Peroni
- Mass Spectrometry Facility, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Romina Belli
- Mass Spectrometry Facility, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Gandolfi
- Laboratory of Bioinformatics and Computational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Jacopo Zasso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | | | | |
Collapse
|
31
|
Zeng C, Hamada M. Detection and Characterization of Ribosome-Associated Long Noncoding RNAs. Methods Mol Biol 2021; 2254:179-194. [PMID: 33326076 DOI: 10.1007/978-1-0716-1158-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ribosome profiling shows potential for studying the function of long noncoding RNAs (lncRNAs). We introduce a bioinformatics pipeline for detecting ribosome-associated lncRNAs (ribo-lncRNAs) from ribosome profiling data. Further, we describe a machine-learning approach for the characterization of ribo-lncRNAs based on their sequence features. Scripts for ribo-lncRNA analysis can be accessed at ( https://ribolnc.hamadalab.com/ ).
Collapse
Affiliation(s)
- Chao Zeng
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.,Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan. .,Faculty of Science and Engineering, Waseda University, Tokyo, Japan. .,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan. .,Institute for Medical-oriented Structural Biology, Waseda University, Tokyo, Japan. .,Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
32
|
Duan Y, Zhang W, Cheng Y, Shi M, Xia XQ. A systematic evaluation of bioinformatics tools for identification of long noncoding RNAs. RNA (NEW YORK, N.Y.) 2021; 27:80-98. [PMID: 33055239 PMCID: PMC7749630 DOI: 10.1261/rna.074724.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
High-throughput RNA sequencing unveiled the complexity of transcriptome and significantly increased the records of long noncoding RNAs (lncRNAs), which were reported to participate in a variety of biological processes. Identification of lncRNAs is a key step in lncRNA analysis, and a bunch of bioinformatics tools have been developed for this purpose in recent years. While these tools allow us to identify lncRNA more efficiently and accurately, they may produce inconsistent results, making selection a confusing issue. We compared the performance of 41 analysis models based on 14 software packages and different data sets, including high-quality data and low-quality data from 33 species. In addition, computational efficiency, robustness, and joint prediction of the models were explored. As a practical guidance, key points for lncRNA identification under different situations were summarized. In this investigation, no one of these models could be superior to others under all test conditions. The performance of a model relied to a great extent on the source of transcripts and the quality of assemblies. As general references, FEELnc_all_cl, CPC, and CPAT_mouse work well in most species while COME, CNCI, and lncScore are good choices for model organisms. Since these tools are sensitive to different factors such as the species involved and the quality of assembly, researchers must carefully select the appropriate tool based on the actual data. Alternatively, our test suggests that joint prediction could behave better than any single model if proper models were chosen. All scripts/data used in this research can be accessed at http://bioinfo.ihb.ac.cn/elit.
Collapse
Affiliation(s)
- You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Bogard B, Francastel C, Hubé F. Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel? RNA Biol 2020; 17:1707-1720. [PMID: 32559119 PMCID: PMC7714488 DOI: 10.1080/15476286.2020.1783868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | | | - Florent Hubé
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| |
Collapse
|
34
|
Ho-Xuan H, Glažar P, Latini C, Heizler K, Haase J, Hett R, Anders M, Weichmann F, Bruckmann A, Van den Berg D, Hüttelmaier S, Rajewsky N, Hackl C, Meister G. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res 2020; 48:10368-10382. [PMID: 32955563 PMCID: PMC7544230 DOI: 10.1093/nar/gkaa704] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) encompass a widespread and conserved class of RNAs, which are generated by back-splicing of downstream 5' to upstream 3' splice sites. CircRNAs are tissue-specific and have been implicated in diseases including cancer. They can function as sponges for microRNAs (miRNAs) or RNA binding proteins (RBPs), for example. Moreover, some contain open reading frames (ORFs) and might be translated. The functional relevance of such peptides, however, remains largely elusive. Here, we report that the ORF of circZNF609 is efficiently translated when expressed from a circZNF609 overexpression construct. However, endogenous proteins could not be detected. Moreover, initiation of circZNF609 translation is independent of m6A-generating enzyme METTL3 or RNA sequence elements such as internal ribosome entry sites (IRESs). Surprisingly, a comprehensive mutational analysis revealed that deletion constructs, which are deficient in producing circZNF609, still generate the observed protein products. This suggests that the apparent circZNF609 translation originates from trans-splicing by-products of the overexpression plasmids and underline that circRNA overexpression constructs need to be evaluated carefully, particularly when functional studies are performed.
Collapse
Affiliation(s)
- Hung Ho-Xuan
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Petar Glažar
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Claudia Latini
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Kevin Heizler
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Jacob Haase
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle, Germany
| | - Robert Hett
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Marvin Anders
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Franziska Weichmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Debbie Van den Berg
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
Mechanisms of Long Noncoding RNA Nuclear Retention. Trends Biochem Sci 2020; 45:947-960. [DOI: 10.1016/j.tibs.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
36
|
Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020; 12:E2879. [PMID: 33036391 PMCID: PMC7600129 DOI: 10.3390/cancers12102879] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic instability of tumors leads to the appearance of numerous tumor-specific somatic mutations that could potentially result in the production of mutated peptides that are presented on the cell surface by the MHC molecules. Peptides of this kind are commonly called neoantigens. Their presence on the cell surface specifically distinguishes tumors from healthy tissues. This feature makes neoantigens a promising target for immunotherapy. The rapid evolution of high-throughput genomics and proteomics makes it possible to implement these techniques in clinical practice. In particular, they provide useful tools for the investigation of neoantigens. The most valuable genomic approach to this problem is whole-exome sequencing coupled with RNA-seq. High-throughput mass-spectrometry is another option for direct identification of MHC-bound peptides, which is capable of revealing the entire MHC-bound peptidome. Finally, structure-based predictions could significantly improve the understanding of physicochemical and structural features that affect the immunogenicity of peptides. The development of pipelines combining such tools could improve the accuracy of the peptide selection process and decrease the required time. Here we present a review of the main existing approaches to investigating the neoantigens and suggest a possible ideal pipeline that takes into account all modern trends in the context of neoantigen discovery.
Collapse
Affiliation(s)
| | | | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.V.G.); (E.N.K.)
| |
Collapse
|
37
|
Back to the Future: Rethinking the Great Potential of lncRNA S for Optimizing Chemotherapeutic Response in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12092406. [PMID: 32854207 PMCID: PMC7564391 DOI: 10.3390/cancers12092406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is one of the most fatal cancers in women worldwide. Currently, platinum- and taxane-based chemotherapy is the mainstay for the treatment of OC. Yet, the emergence of chemoresistance results in therapeutic failure and significant relapse despite a consistent rate of primary response. Emerging evidence substantiates the potential role of lncRNAs in determining the response to standard chemotherapy in OC. The objective of this narrative review is to provide an integrated, synthesized overview of the current state of knowledge regarding the role of lncRNAs in the emergence of resistance to platinum- and taxane-based chemotherapy in OC. In addition, we sought to develop conceptual frameworks for harnessing the therapeutic potential of lncRNAs in strategies aimed at enhancing the chemotherapy response of OC. Furthermore, we offered significant new perspectives and insights on the interplay between lncRNAs and the molecular circuitries implicated in chemoresistance to determine their impacts on therapeutic response. Although this review summarizes robust data concerning the involvement of lncRNAs in the emergence of acquired resistance to platinum- and taxane-based chemotherapy in OC, effective approaches for translating these lncRNAs into clinical practice warrant further investigation.
Collapse
|
38
|
Othoum G, Coonrod E, Zhao S, Dang HX, Maher CA. Pan-cancer proteogenomic analysis reveals long and circular noncoding RNAs encoding peptides. NAR Cancer 2020; 2:zcaa015. [PMID: 32803163 PMCID: PMC7418880 DOI: 10.1093/narcan/zcaa015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Recent studies show that annotated long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) encode for stable, functional peptides that contribute to human development and disease. To systematically discover lncRNAs and circRNAs encoding peptides, we performed a comprehensive integrative analysis of mass spectrometry-based proteomic and transcriptomic sequencing data from >900 patients across nine cancer types. This enabled us to identify 19,871 novel peptides derived from 8,903 lncRNAs. Further, we exploited open reading frames overlapping the backspliced region of circRNAs to identify 3,238 peptides that are uniquely derived from 2,834 circRNAs and not their corresponding linear RNAs. Collectively, our pan-cancer proteogenomic analysis will serve as a resource for evaluating the coding potential of lncRNAs and circRNAs that could aid future mechanistic studies exploring their function in cancer.
Collapse
Affiliation(s)
- Ghofran Othoum
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Emily Coonrod
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Sidi Zhao
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ha X Dang
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
39
|
Chen Y, Singh A, Kaithakottil GG, Mathers TC, Gravino M, Mugford ST, van Oosterhout C, Swarbreck D, Hogenhout SA. An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proc Natl Acad Sci U S A 2020; 117:12763-12771. [PMID: 32461369 PMCID: PMC7293609 DOI: 10.1073/pnas.1918410117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aphids are sap-feeding insects that colonize a broad range of plant species and often cause feeding damage and transmit plant pathogens, including bacteria, viruses, and viroids. These insects feed from the plant vascular tissue, predominantly the phloem. However, it remains largely unknown how aphids, and other sap-feeding insects, establish intimate long-term interactions with plants. To identify aphid virulence factors, we took advantage of the ability of the green peach aphid Myzus persicae to colonize divergent plant species. We found that a M. persicae clone of near-identical females established stable colonies on nine plant species of five representative plant eudicot and monocot families that span the angiosperm phylogeny. Members of the novel aphid gene family Ya are differentially expressed in aphids on the nine plant species and are coregulated and organized as tandem repeats in aphid genomes. Aphids translocate Ya transcripts into plants, and some transcripts migrate to distal leaves within several plant species. RNAi-mediated knockdown of Ya genes reduces M. persicae fecundity, and M. persicae produces more progeny on transgenic plants that heterologously produce one of the systemically migrating Ya transcripts as a long noncoding (lnc) RNA. Taken together, our findings show that beyond a range of pathogens, M. persicae aphids translocate their own transcripts into plants, including a Ya lncRNA that migrates to distal locations within plants, promotes aphid fecundity, and is a member of a previously undescribed host-responsive aphid gene family that operate as virulence factors.
Collapse
Affiliation(s)
- Yazhou Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Archana Singh
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | | | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Matteo Gravino
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
40
|
Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome. Genes (Basel) 2020; 11:genes11050542. [PMID: 32408516 PMCID: PMC7290577 DOI: 10.3390/genes11050542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors’ expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.
Collapse
|
41
|
Vila-Sanjurjo A, Juarez D, Loyola S, Torres M, Leguia M. Minority Gene Expression Profiling: Probing the Genetic Signatures of Pathogenesis Using Ribosome Profiling. J Infect Dis 2020; 221:S341-S357. [PMID: 32221545 DOI: 10.1093/infdis/jiz565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Minority Gene Expression Profiling (MGEP) refers to a scenario where the expression profiles of specific genes of interest are concentrated in a small cellular pool that is embedded within a larger, non-expressive pool. An example of this is the analysis of disease-related genes within sub-populations of blood or biopsied tissues. These systems are characterized by low signal-to-noise ratios that make it difficult, if not impossible, to uncover the desired signatures of pathogenesis in the absence of lengthy, and often problematic, technical manipulations. We have adapted ribosome profiling (RP) workflows from the Illumina to the Ion Proton platform and used them to analyze signatures of pathogenesis in an MGEP model system consisting of human cells eliciting <3% productive dengue infection. We find that RP is powerful enough to identify relevant responses of differentially expressed genes, even in the presence of significant noise. We discuss how to deal with sources of unwanted variation, and propose ways to further improve this powerful approach to the study of pathogenic signatures within MGEP systems.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Diana Juarez
- Genomics Laboratory, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.,Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Steev Loyola
- Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Michael Torres
- Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.,Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| |
Collapse
|
42
|
D’Angelo D, Arra C, Fusco A. RPSAP52 lncRNA Inhibits p21Waf1/CIP Expression by Interacting With the RNA Binding Protein HuR. Oncol Res 2020; 28:191-201. [PMID: 31831098 PMCID: PMC7851518 DOI: 10.3727/096504019x15761465603129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs have been recently demonstrated to have an important role in fundamental biological processes, and their deregulated expression has been found in several human neoplasias. Our group has recently reported a drastic overexpression of the long noncoding RNA (lncRNA) RPSAP52 (ribosomal protein SA pseudogene 52) in pituitary adenomas. We have shown that this lncRNA increased cell proliferation by upregulating the expression of the chromatinic proteins HMGA1 and HMGA2, functioning as a competing endogenous RNA (ceRNA) through competitively binding to microRNA-15a (miR-15a), miR-15b, and miR-16. The aim of this work was to identify further mechanisms by which RPSAP52 overexpression could contribute to the development of pituitary adenomas. We investigated the involvement of RPSAP52 in the modulation of the expression of cell cycle-related genes, such as p21Waf1/CIP, whose deregulation plays a critical role in pituitary cell transformation. We report that RPSAP52, interacting with the RNA binding protein HuR (human antigen R), favors the delocalization of miR-15a, miR-15b, and miR-16 on the cyclin-dependent kinase inhibitor p21Waf1/CIP1 that, accordingly, results in downregulation in pituitary adenomas. A RNA immunoprecipitation sequencing (RIPseq) analysis performed on cells overexpressing RPSAP52 identified 40 messenger RNAs (mRNAs) enriched in Argonaute 2 (AGO2) immunoprecipitated samples. Among them, we focused on GAS8 (growth arrest-specific protein 8) gene. Consistently, GAS8 expression was downregulated in all the analyzed pituitary adenomas with respect to normal pituitary and in RPSAP52-overepressing cells, supporting the role of RPSAP52 in addressing genes involved in growth inhibition and cell cycle arrest to miRNA-induced degradation. This study unveils another RPSAP52-mediated molecular mechanism in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Daniela D’Angelo
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| | - Claudio Arra
- †Animal Facility Unit, Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| |
Collapse
|
43
|
Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Long Non-coding RNAs in Myeloid Malignancies. Front Oncol 2019; 9:1048. [PMID: 31681586 PMCID: PMC6813191 DOI: 10.3389/fonc.2019.01048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of adult leukemias and 15-20% of childhood leukemias. AML are characterized by the presence of 20% blasts or more in the bone marrow, or defining cytogenetic abnormalities. Laboratory diagnoses of myelodysplastic syndromes (MDS) depend on morphological changes based on dysplasia in peripheral blood and bone marrow, including peripheral blood smears, bone marrow aspirate smears, and bone marrow biopsies. As leukemic cells are not functional, the patient develops anemia, neutropenia, and thrombocytopenia, leading to fatigue, recurrent infections, and hemorrhage. The genetic background and associated mutations in AML blasts determine the clinical course of the disease. Over the last decade, non-coding RNAs transcripts that do not codify for proteins but play a role in regulation of functions have been shown to have multiple applications in the diagnosis, prognosis and therapeutic approach of various types of cancers, including myeloid malignancies. After a comprehensive review of current literature, we found reports of multiple long non-coding RNAs (lncRNAs) that can differentiate between AML types and how their exogenous modulation can dramatically change the behavior of AML cells. These lncRNAs include: H19, LINC00877, RP11-84C10, CRINDE, RP11848P1.3, ZNF667-AS1, AC111000.4-202, SFMBT2, LINC02082-201, MEG3, AC009495.2, PVT1, HOTTIP, SNHG5, and CCAT1. In addition, by performing an analysis on available AML data in The Cancer Genome Atlas (TCGA), we found 10 lncRNAs with significantly differential expression between patients in favorable, intermediate/normal, or poor cytogenetic risk categories. These are: DANCR, PRDM16-DT, SNHG6, OIP5-AS1, SNHG16, JPX, FTX, KCNQ1OT1, TP73-AS1, and GAS5. The identification of a molecular signature based on lncRNAs has the potential for have deep clinical significance, as it could potentially help better define the evolution from low-grade MDS to high-grade MDS to AML, changing the course of therapy. This would allow clinicians to provide a more personalized, patient-tailored therapeutic approach, moving from transfusion-based therapy, as is the case for low-grade MDS, to the introduction of azacytidine-based chemotherapy or allogeneic stem cell transplantation, which is the current treatment for high-grade MDS.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|
44
|
Hebras J, Krogh N, Marty V, Nielsen H, Cavaillé J. Developmental changes of rRNA ribose methylations in the mouse. RNA Biol 2019; 17:150-164. [PMID: 31566069 DOI: 10.1080/15476286.2019.1670598] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A sequencing-based profiling method (RiboMeth-seq) for ribose methylations was used to study methylation patterns in mouse adult tissues and during development. In contrast to previous reports based on studies of human cancer cell lines, almost all methylation sites were close to fully methylated in adult tissues. A subset of sites was differentially modified in developing tissues compared to their adult counterparts and showed clear developmental dynamics. This provides the first evidence for ribosome heterogeneity at the level of rRNA modifications during mouse development. In a prominent example, the expression levels of SNORD78 during development appeared to be regulated by alternative splicing of the Gas5 host-gene and to correlate with the methylation level of its target site at LSU-G4593. The results are discussed in the context of the specialized ribosome hypothesis.
Collapse
Affiliation(s)
- Jade Hebras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Virginie Marty
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
45
|
Carlevaro-Fita J, Johnson R. Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Mol Cell 2019; 73:869-883. [PMID: 30849394 DOI: 10.1016/j.molcel.2019.02.008] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 02/09/2023]
Abstract
The localization of long noncoding RNAs (lncRNAs) within the cell is the primary determinant of their molecular functions. LncRNAs are often thought of as chromatin-restricted regulators of gene transcription and chromatin structure. However, a rich population of cytoplasmic lncRNAs has come to light, with diverse roles including translational regulation, signaling, and respiration. RNA maps of increasing resolution and scope are revealing a subcellular world of highly specific localization patterns and hint at sequence-based address codes specifying lncRNA fates. We propose a new framework for analyzing sequencing-based data, which suggests that numbers of cytoplasmic lncRNA molecules rival those in the nucleus. New techniques promise to create high-resolution, transcriptome-wide maps associated with all organelles of the mammalian cell. Given its intimate link to molecular roles, subcellular localization provides a means of unlocking the mystery of lncRNA functions.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
46
|
Memon D, Bi J, Miller CJ. In silico prediction of housekeeping long intergenic non-coding RNAs reveals HKlincR1 as an essential player in lung cancer cell survival. Sci Rep 2019; 9:7372. [PMID: 31089191 PMCID: PMC6517443 DOI: 10.1038/s41598-019-43758-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022] Open
Abstract
Prioritising long intergenic noncoding RNAs (lincRNAs) for functional characterisation is a significant challenge. Here we applied computational approaches to discover lincRNAs expected to play a critical housekeeping (HK) role within the cell. Using the Illumina Human BodyMap RNA sequencing dataset as a starting point, we first identified lincRNAs ubiquitously expressed across a panel of human tissues. This list was then further refined by reference to conservation score, secondary structure and promoter DNA methylation status. Finally, we used tumour expression and copy number data to identify lincRNAs rarely downregulated or deleted in multiple tumour types. The resulting list of candidate essential lincRNAs was then subjected to co-expression analyses using independent data from ENCODE and The Cancer Genome Atlas (TCGA). This identified a substantial subset with a predicted role in DNA replication and cell cycle regulation. One of these, HKlincR1, was selected for further characterisation. Depletion of HKlincR1 affected cell growth in multiple lung cancer cell lines, and led to disruption of genes involved in cell growth and viability. In addition, HKlincR1 expression was correlated with overall survival in lung adenocarcinoma patients. Our in silico studies therefore reveal a set of housekeeping noncoding RNAs of interest both in terms of their role in normal homeostasis, and their relevance in tumour growth and maintenance.
Collapse
Affiliation(s)
- Danish Memon
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
- European Bioinformatics Institute (EMBL-EBI)/Cancer Research UK Cambridge Institute, The University of Cambridge, Cambridge, UK
| | - Jing Bi
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Crispin J Miller
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK.
| |
Collapse
|
47
|
Li YP, Duan FF, Zhao YT, Gu KL, Liao LQ, Su HB, Hao J, Zhang K, Yang N, Wang Y. A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nat Commun 2019; 10:1368. [PMID: 30911006 PMCID: PMC6433952 DOI: 10.1038/s41467-019-08911-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important components of gene regulatory network in embryonic stem cells (ESCs). However, the function and molecular mechanism of lncRNAs are still largely unknown. Here we identifies Trincr1 (TRIM71 interacting long noncoding RNA 1) lncRNA that regulates the FGF/ERK signaling and self-renewal of ESCs. Trincr1 is exported by THOC complex to cytoplasm where it binds and represses TRIM71, leading to the downregulation of SHCBP1 protein. Knocking out Trincr1 leads to the upregulation of phosphorylated ERK and ERK pathway target genes and the decrease of ESC self-renewal, while knocking down Trim71 completely rescues the defects of Trincr1 knockout. Furthermore, ectopic expression of Trincr1 represses FGF/ERK signaling and the self-renewal of neural progenitor cells (NPCs). Together, this study highlights lncRNA as an important player in cell signaling network to coordinate cell fate specification. FGF signaling through ERK is known to promote the differentiation of embryonic stem cells (ES cells). Here, the authors demonstrate that the lncRNA Trincr1 binds and represses TRIM71 in ES cells, leading to downregulation of SHCBP1 protein, the reduction of FGF/ERK signaling and the promotion of self-renewal.
Collapse
Affiliation(s)
- Ya-Pu Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Fei-Fei Duan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yu-Ting Zhao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Kai-Li Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Le-Qi Liao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Huai-Bin Su
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300353, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300353, Tianjin, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
48
|
A gene expression map of shoot domains reveals regulatory mechanisms. Nat Commun 2019; 10:141. [PMID: 30635575 PMCID: PMC6329838 DOI: 10.1038/s41467-018-08083-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Gene regulatory networks control development via domain-specific gene expression. In seed plants, self-renewing stem cells located in the shoot apical meristem (SAM) produce leaves from the SAM peripheral zone. After initiation, leaves develop polarity patterns to form a planar shape. Here we compare translating RNAs among SAM and leaf domains. Using translating ribosome affinity purification and RNA sequencing to quantify gene expression in target domains, we generate a domain-specific translatome map covering representative vegetative stage SAM and leaf domains. We discuss the predicted cellular functions of these domains and provide evidence that dome seemingly unrelated domains, utilize common regulatory modules. Experimental follow up shows that the RABBIT EARS and HANABA TARANU transcription factors have roles in axillary meristem initiation. This dataset provides a community resource for further study of shoot development and response to internal and environmental signals. The shoot apical meristem (SAM) maintains stem cells and generates new leaves and flowers from its periphery. Here via spatially resolved translatome profiling, Tian et al. define distinct molecular signatures of different SAM and leaf domains and identify regulators of axillary meristem initiation.
Collapse
|
49
|
Abstract
BACKGROUND With the increasing number of annotated long noncoding RNAs (lncRNAs) from the genome, researchers are continually updating their understanding of lncRNAs. Recently, thousands of lncRNAs have been reported to be associated with ribosomes in mammals. However, their biological functions or mechanisms are still unclear. RESULTS In this study, we tried to investigate the sequence features involved in the ribosomal association of lncRNA. We have extracted ninety-nine sequence features corresponding to different biological mechanisms (i.e., RNA splicing, putative ORF, k-mer frequency, RNA modification, RNA secondary structure, and repeat element). An [Formula: see text]-regularized logistic regression model was applied to screen these features. Finally, we obtained fifteen and nine important features for the ribosomal association of human and mouse lncRNAs, respectively. CONCLUSION To our knowledge, this is the first study to characterize ribosome-associated lncRNAs and ribosome-free lncRNAs from the perspective of sequence features. These sequence features that were identified in this study may shed light on the biological mechanism of the ribosomal association and provide important clues for functional analysis of lncRNAs.
Collapse
Affiliation(s)
- Chao Zeng
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, Tokyo, 169-8555, Japan.
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-41-6 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
- Institute for Medical-oriented Structural Biology, Waseda University, 2-2, Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.
- Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|