1
|
Wang Z, Wang R, Sang Y, Wang T, Su Y, Liao W. Comparative analysis of mitochondrial genomes of invasive weed Mikania micrantha and its indigenous congener Mikania cordata. Int J Biol Macromol 2024; 281:136357. [PMID: 39378918 DOI: 10.1016/j.ijbiomac.2024.136357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Mikania micrantha and Mikania cordata are two distinct species in China. The former is notorious as one of the top 100 worst invasive species, whereas the latter is an indigenous species harmless to native plants or the environment. They form an ideal congener pair for comparative studies aimed at deeply understanding the invasion mechanisms of the exotic weed. In this study, we have assembled and annotated the mitogenomes of both species using Illumina and PacBio sequencing data and compared their characteristic differences. The complete mitogenome of M. micrantha is a double-stranded DNA with a length of 336,564 bp, while the mitogenome of M. cordata exhibits a branching structure, consisting of two small circular molecules and six linear molecules, with a combined length totaling 335,444 bp. Compared to M. cordata, M. micrantha has less SSRs, tandem repeats, dispersed repeats, mitochondrial protein coding genes (PCGs). The two plants show similar codon usage patterns. This comparative study has revealed the structure and function of the mitogenomes of the two species and laid a solid foundation for investigating the effects of gene loss and duplication on the development of invasive traits in M. micrantha.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ruonan Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yatong Sang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China.
| | - Wenbo Liao
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| |
Collapse
|
2
|
Khattak WA, Sun J, Hameed R, Zaman F, Abbas A, Khan KA, Elboughdiri N, Akbar R, He F, Ullah MW, Al-Andal A, Du D. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. Biol Rev Camb Philos Soc 2024; 99:753-777. [PMID: 38174626 DOI: 10.1111/brv.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.
Collapse
Affiliation(s)
- Wajid Ali Khattak
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, PO Box 215009, Suzhou City, Jiangsu Province, P.R. China
| | - Rashida Hameed
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
| | - Adeel Abbas
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Rasheed Akbar
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Department of Entomology, The University of Haripur, PO Box 22620, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Feng He
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of The Environmental and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, PO Box 960, Abha, 61413, Saudi Arabia
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
3
|
Huang P, Hameed R, Abbas M, Balooch S, Alharthi B, Du Y, Abbas A, Younas A, Du D. Integrated omic techniques and their genomic features for invasive weeds. Funct Integr Genomics 2023; 23:44. [PMID: 36680630 DOI: 10.1007/s10142-023-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manzer Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Sidra Balooch
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, PO. Box 11099, Taif, 21944, Saudi Arabia
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
4
|
Comparative transcriptome analysis on the mangrove Acanthus ilicifolius and its two terrestrial relatives provides insights into adaptation to intertidal habitats. Gene 2022; 839:146730. [PMID: 35840004 DOI: 10.1016/j.gene.2022.146730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Acanthus is a unique genus covering both mangroves and terrestrial species, and thus is an ideal system to comparatively analyze the mechanisms of mangrove adaptation to intertidal habitats. We performed RNA sequencing of the mangrove plant Acanthus ilicifolius and its two terrestrial relatives, Acanthus leucostachyus and Acanthus mollis. A total of 91,125, 118,290, and 141,640 unigenes were obtained. Simple sequence repeats (SSR) analysis showed that A. ilicifolius had more SSRs, the highest frequency of distribution, and higher in polymorphism potential compared to the two terrestrial relatives. Phylogenetic analyses suggested a relatively recent split between A. ilicifolius and A. leucostachyus, i.e., about 16.76 million years ago (Mya), after their ancestor divergence with A. mollis (32.11 Mya), indicating that speciation of three Acanthus species occurred in the Early to Middle Miocene. Gene Ontology (GO) enrichment revealed that the unique unigenes in A. ilicifolius are predominantly related to rhythmic process, reproductive process and response to stimuli. The accelerated evolution and positive selection analyses indicated that the genus Acanthus migrated from terrestrial to intertidal habitats, where 311 pairs may be under positive selection. Functional enrichment analysis revealed that these genes associated with essential metabolism and biosynthetic pathways such as oxidative phosphorylation, plant hormone signal transduction, photosynthetic carbon fixation and arginine and proline metabolism, are related to the adaptation of A. ilicifolius to intertidal habitats, which are characterized by high salinity and hypoxia. Our results indicate the evolutionary processes and the mechanisms underlying the adaptability of Acanthus to various harsh environments from the arid terrestrial to intertidal habitats.
Collapse
|
5
|
Liu XW, Wang YH, Shen SK. Transcriptomic and metabolomic analyses reveal the altitude adaptability and evolution of different-colored flowers in alpine Rhododendron species. TREE PHYSIOLOGY 2022; 42:1100-1113. [PMID: 34850945 DOI: 10.1093/treephys/tpab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Understanding the molecular mechanisms and evolutionary process of plant adaptation to the heterogeneous environment caused by altitude gradients in plateau mountain ecosystems can provide novel insight into species' responses to global changes. Flower color is the most conspicuous and highly diverse trait in nature. Herein, the gene expression patterns, evolutionary adaptation and metabolites changes of different-colored flowers of alpine Rhododendron L. species along altitude gradients were investigated based on a combined analysis of transcriptomics and metabolomics. Differentially expressed genes were found to be related to the biosynthesis of carbohydrates, fatty acids, amino acids and flavonoids, suggesting their important roles in the altitude adaptability of Rhododendron species. The evolution rate of high-altitude species was faster than that of low-altitude species. Genes related to DNA repair, mitogen-activated protein kinase and ABA signal transduction, and lipoic acid and propanoate metabolism were positively selected in the flowers of high-altitude Rhododendron species and those associated with carotenoid biosynthesis pathway, ABA signal transduction and ethylene signal transduction were positively selected in low-altitude species. These results indicated that the genes with differentiated expressions or functions exhibit varying evolution during the adaptive divergence of heterogeneous environment caused by altitude gradients. Flower-color variation might be attributed to the significant differences in gene expression or metabolites related to sucrose, flavonoids and carotenoids at the transcription or metabolism levels of Rhododendron species. This work suggests that Rhododendron species have multiple molecular mechanisms in their adaptation to changing environments caused by altitude gradients.
Collapse
Affiliation(s)
- Xing-Wen Liu
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| |
Collapse
|
6
|
Ruan X, Wang Z, Su Y, Wang T. Full-length transcriptome analysis of multiple organs and identification of adaptive genes and pathways in Mikania micrantha. Sci Rep 2022; 12:3272. [PMID: 35228580 PMCID: PMC8885683 DOI: 10.1038/s41598-022-07198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mikania micrantha is a notorious invasive weed that has caused huge economic loss and negative ecological consequences in invaded areas. This species can adapt well to invasive environments with various stress factors. The identification of gene families and functional pathways related to environmental adaptability is lack in M. micrantha at the multi-organ full-length transcriptome level. In this study, we sequenced the transcriptomes of five M. micrantha organs using PacBio single-molecule real-time sequencing and Illumina RNA sequencing technologies. Based on the transcriptome data, full-length transcripts were captured and gene expression patterns among the five organs were analyzed. KEGG enrichment analysis of genes with higher expression indicated their special roles in environmental stress response and adversity adaptation in the various five organs. The gene families and pathways related to biotic and abiotic factors, including terpene synthases, glutathione S-transferases, antioxidant defense system, and terpenoid biosynthesis pathway, were characterized. The expression levels of most differentially expressed genes in the antioxidant defense system and terpenoid biosynthesis pathway were higher in root, stem, and leaf than in the other two organs, suggesting that root, stem, and leaf have strong ability to respond to adverse stresses and form the important organs of terpenoid synthesis and accumulation. Additionally, a large number of transcription factors and alternative splicing events were predicted. This study provides a comprehensive transcriptome resource for M. micrantha, and our findings facilitate further research on the adaptive evolution and functional genomics of this species.
Collapse
Affiliation(s)
- Xiaoxian Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China. .,College of Life Sciences, South China Agricultural University, Guangzhou, 510641, China.
| |
Collapse
|
7
|
Marx HE, Carboni M, Douzet R, Perrier C, Delbart F, Thuiller W, Lavergne S, Tank DC. Can functional genomic diversity provide novel insights into mechanisms of community assembly? A pilot study from an invaded alpine streambed. Ecol Evol 2021; 11:12075-12091. [PMID: 34522362 PMCID: PMC8427620 DOI: 10.1002/ece3.7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
An important focus of community ecology, including invasion biology, is to investigate functional trait diversity patterns to disentangle the effects of environmental and biotic interactions. However, a notable limitation is that studies usually rely on a small and easy-to-measure set of functional traits, which might not immediately reflect ongoing ecological responses to changing abiotic or biotic conditions, including those that occur at a molecular or physiological level. We explored the potential of using the diversity of expressed genes-functional genomic diversity (FGD)-to understand ecological dynamics of a recent and ongoing alpine invasion. We quantified FGD based on transcriptomic data measured for 26 plant species occurring along adjacent invaded and pristine streambeds. We used an RNA-seq approach to summarize the overall number of expressed transcripts and their annotations to functional categories, and contrasted this with functional trait diversity (FTD) measured from a suite of characters that have been traditionally considered in plant ecology. We found greater FGD and FTD in the invaded community, independent of differences in species richness. However, the magnitude of functional dispersion was greater from the perspective of FGD than from FTD. Comparing FGD between congeneric alien-native species pairs, we did not find many significant differences in the proportion of genes whose annotations matched functional categories. Still, native species with a greater relative abundance in the invaded community compared with the pristine tended to express a greater fraction of genes at significant levels in the invaded community, suggesting that changes in FGD may relate to shifts in community composition. Comparisons of diversity patterns from the community to the species level offer complementary insights into processes and mechanisms driving invasion dynamics. FGD has the potential to illuminate cryptic changes in ecological diversity, and we foresee promising avenues for future extensions across taxonomic levels and macro-ecosystems.
Collapse
Affiliation(s)
- Hannah E. Marx
- Department of Biology & Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Rolland Douzet
- CNRSLautaretJardin du LautaretUniversité Grenoble AlpesGrenobleFrance
| | | | - Franck Delbart
- CNRSLautaretJardin du LautaretUniversité Grenoble AlpesGrenobleFrance
| | - Wilfried Thuiller
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Sébastien Lavergne
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - David C. Tank
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdahoUSA
- Stillinger HerbariumUniversity of IdahoMoscowIdahoUSA
- Present address:
Department of Botany and Rocky Mountain HerbariumUniversity of WyomingLaramieWY82072‐3165USA
| |
Collapse
|
8
|
Rai PK, Singh JS. Plant invasion in protected areas, the Indian Himalayan region, and the North East India: progress and prospects. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00013-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhao N, Ze S, Liu N, Hu L, Ji M, Li Q, Yang B. Exogenous phytohormone application and transcriptome analysis of Mikania micrantha provides insights for a potential control strategy. Genomics 2021; 113:964-975. [PMID: 33610796 DOI: 10.1016/j.ygeno.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Effective and complete control of the invasive weed Mikania micrantha is required to avoid increasing damages. We exogenously applied indole 3-acetic acid (IAA), gibberellin (GA), and N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), and their combinations i.e. IAA + CPPU (IC), GA + CPPU (GC), and GA + IAA + CPPU (GIC), at 5, 10, 25, 50, and 75 ppm against distilled water as a control (CK), to examine their effects on the weed. The increasing concentrations of these hormones when applied alone or in combination were fatal to M. micrantha and led towards the death of inflorescences and/or florets. CPPU and GIC were found as the most effective phytohormones. Transcriptome analysis revealed differential regulation of genes in auxin, cytokinin, gibberellin and abscisic acid signaling pathways, suggesting their role in the prohibition of axillary bud differentiation. Collectively, CPPU and GIC at a high concentration (75 ppm) could be used as a control measure to protect forests and other lands from the invasion of M. micrantha.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650051, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Lianrong Hu
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Mei Ji
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Qiao Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
10
|
Genome Survey Sequencing of In Vivo Mother Plant and In Vitro Plantlets of Mikania cordata. PLANTS 2020; 9:plants9121665. [PMID: 33261119 PMCID: PMC7759884 DOI: 10.3390/plants9121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Mikania cordata, the only native congener of the invasive weed Mikania micrantha in China, is an ideal species for comparative study to reveal the invasion mechanism. However, its genome resources are lagging far behind its congener, which limits the comparative genomic analysis. Our goal is to characterize the genome of M. cordata by next-generation sequencing and propose a scheme for long-read genome sequencing. Previous studies have shown that the genomic resources of the host plant would be affected by the endophytic microbial DNA. An aseptic sample of M. cordata will ensure the proper genome in downstream analysis. Because endophytes are ubiquitous in the greenhouse-grown M. cordata, the in vitro culture with cefotaxime or timentin treatment was undertaken to obtain the aseptic plantlets. The in vivo mother plant and in vitro plantlets were used to survey the genome. The microbial contamination in M. cordata was recognized by blast search and eliminated from the raw reads. The decontaminated sequencing reads were used to predict the genome size, heterozygosity, and repetitive rate. The in vivo plant was so contaminated that microbes occupied substantial sequencing resources and misled the scaffold assembly. Compared with cefotaxime, treatment with timentin performed better in cultivating robust in vitro plantlets. The survey result from the in vitro plantlets was more accurate due to low levels of contamination. The genome size was estimated to be 1.80 Gb with 0.50% heterozygosity and 78.35% repetitive rate. Additionally, 289,831 SSRs were identified in the genome. The genome is heavily contaminated and repetitive; therefore, the in vitro culture technique and long-read sequencing technology are recommended to generate a high-quality and highly contiguous genome.
Collapse
|
11
|
Kumar Rai P, Singh JS. Invasive alien plant species: Their impact on environment, ecosystem services and human health. ECOLOGICAL INDICATORS 2020; 111:106020. [PMID: 32372880 PMCID: PMC7194640 DOI: 10.1016/j.ecolind.2019.106020] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/03/2019] [Accepted: 12/15/2019] [Indexed: 05/18/2023]
Abstract
Ecological perturbations caused by biotic invasion have been identified as a growing threat to global sustainability. Invasive alien plants species (IAPS) are considered to be one of the major drivers of biodiversity loss and thereby altering the ecosystem services and socio-economic conditions through different mechanisms. Although the ecological impacts of IAPS are well documented, there is a dearth of studies regarding their economic quantification, livelihood considerations, biotechnological prospects (phytoremediation, bioenergy, phyto-synthesis of nanoparticles, biomedical, industrial applications etc.) and human health risk assessments of IAPS. In this context, the current panoramic review aimed to investigate the environmental, socio-ecological and health risks posed by IAPS as well as the compounded impact of IAPS with habitat fragmentation, climate and land use changes. To this end, the need of an integrated trans-disciplinary research is emphasized for the sustainable management of IAPS. The management prospects can be further strengthened through their linkage with geo-spatial technologies (remote sensing and GIS) by mapping and monitoring the IAPS spread. Further, the horizon of IAPS management is expanded to ecological indicator perspectives of IAPS, biosecurity, and risk assessment protocols with critical discussion. Moreover, positive as well as negative implications of the IAPS on environment, health, ecosystem services and socio-economy (livelihood) are listed so that a judicious policy framework could be developed for the IAPS management in order to mitigate the human health implications.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-technologies and Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (B.H.U.), Varanasi, 221005, India
| |
Collapse
|
12
|
De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance. Sci Rep 2020; 10:5192. [PMID: 32251358 PMCID: PMC7089983 DOI: 10.1038/s41598-020-61857-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
With the rapidly deteriorating environmental conditions, the development of stress tolerant plants has become a priority for sustaining agricultural productivity. Therefore, studying the process of stress tolerance in naturally tolerant species hold significant promise. Phragmites karka is an invasive plant species found abundantly in tropical and sub tropical regions, fresh water regions and brackish marshy areas, such as river banks and lake shores. The plant possesses the ability to adapt and survive under conditions of high salinity. We subjected P. karka seedlings to salt stress and carried out whole transcriptome profiling of leaf and root tissues. Assessing the global transcriptome changes under salt stress resulted in the identification of several genes that are differentially regulated under stress conditions in root and leaf tissue. A total of 161,403 unigenes were assembled and used as a reference for digital gene expression analysis. A number of key metabolic pathways were found to be over-represented. Digital gene expression analysis was validated using qRT-PCR. In addition, a number of different transcription factor families including WRKY, MYB, CCCH, NAC etc. were differentially expressed under salinity stress. Our data will facilitate further characterisation of genes involved in salinity stress tolerance in P. karka. The DEGs from our results are potential candidates for understanding and engineering abiotic stress tolerance in plants.
Collapse
|
13
|
Liu M, Liao H, Peng S. Salt-tolerant native plants have greater responses to other environments when compared to salt-tolerant invasive plants. Ecol Evol 2019; 9:7808-7818. [PMID: 31346442 PMCID: PMC6635938 DOI: 10.1002/ece3.5368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/24/2019] [Indexed: 11/09/2022] Open
Abstract
The strong expansion potential of invasive plants is often attributed to fast adaptive responses to stress. However, the evolution of tolerance to one stressor may affect the responses to other stressors. Currently, it remains unclear what effect the evolution to one stressor might have on the responses to other single or combined stressors. Moreover, it is unknown how this might differ between invasive and native species.Invasive plants (Mikania micrantha and Bidens pilosa) and native plants (Merremia hederacea and Sida acuta) from low- and high-salinity habitats were grown under control and stressful conditions [salt stress, water stress (drought/waterlogging), and their combinations]. We explored the effects of evolved salt tolerance on the responses to water stress/combined stresses and the underlying trait mechanisms.The high-salinity populations of all species exhibited stronger salt tolerance than the low-salinity populations. As to the tolerance to other stressors, the high-salinity and low-salinity populations of the invasive species were similar, whereas the high-salinity populations of the native species exhibited stronger tolerance than the low-salinity populations under most stress treatments. However, the enhanced salt tolerance in native species was accompanied by reduced total biomass under control condition. The stress tolerance of native species correlated with leaf production rate and allocation to root, while the performance of native species under control condition correlated with leaf morphology and carbon assimilation rate. This suggests a trade-off between salt tolerance and performance in the native but not the invasive species, probably resulting from altered phenotypic/physiological traits. SYNTHESIS Our work suggests that the evolution of tolerance to one stressor may have stronger effects on the tolerance to other stressors of the native compared with the invasive species. This may be a new paradigm to explain the greater advantage of invasive vs. native species in highly stressful habitats.
Collapse
Affiliation(s)
- Muxin Liu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Huixuan Liao
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| |
Collapse
|
14
|
Xu C, Ge Y, Wang J. Molecular basis underlying the successful invasion of hexaploid cytotypes of Solidago canadensis L.: Insights from integrated gene and miRNA expression profiling. Ecol Evol 2019; 9:4820-4852. [PMID: 31031947 PMCID: PMC6476842 DOI: 10.1002/ece3.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/04/2022] Open
Abstract
Dissecting complex connections between cytogenetic traits (ploidy levels) and plant invasiveness has emerged as a popular research subject in the field of invasion biology. Although recent work suggests that polyploids are more likely to be invasive than their corresponding diploids, the molecular basis underlying the successful invasion of polyploids remains largely unexplored. To this end, we adopted an RNA-seq and sRNA-seq approach to describe how polyploids mediate invasiveness differences in two contrasting cytotypes of Solidago canadensis L., a widespread wild hexaploid invader with localized cultivated diploid populations. Our analysis of the leaf transcriptome revealed 116,801 unigenes, of which 12,897 unigenes displayed significant differences in expression levels. A substantial number of these differentially expressed unigenes (DEUs) were significantly associated with the biosynthesis of secondary metabolites, carbohydrate metabolism, lipid metabolism, and environmental adaptation pathways. Gene Ontology term enrichment-based categorization of DEU-functions was consistent with this observation, as terms related to single-organism, cellular, and metabolic processes including catalytic, binding, transporter, and enzyme regulator activity were over-represented. Concomitantly, 186 miRNAs belonging to 44 miRNA families were identified in the same leaf tissues, with 59 miRNAs being differentially expressed. Furthermore, we discovered 83 miRNA-target interacting pairs that were oppositely regulated, and a meticulous study of these targets depicted that several unigenes encoding transcription factors, DNA methyltransferase, and leucine-rich repeat receptor-like kinases involved in the stress response were greatly influenced. Collectively, these transcriptional and epigenetic data provide new insights into miRNA-mediated gene expression regulatory mechanisms that may operate in hexaploid cytotypes to favor successful invasion.
Collapse
Affiliation(s)
- Chanchan Xu
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Yimeng Ge
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|