1
|
Chaudhry A, Chen Z, Gallavotti A. Hormonal influence on maize inflorescence development and reproduction. PLANT REPRODUCTION 2024; 37:393-407. [PMID: 39367960 PMCID: PMC11511735 DOI: 10.1007/s00497-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE Different plant hormones contribute to maize reproductive success. Maize is a major crop species and significantly contributes directly and indirectly to human calorie uptake. Its success can be mainly attributed to its unisexual inflorescences, the tassel and the ear, whose formation is regulated by complex genetic and hormonal networks, and is influenced by environmental cues such as temperature, and nutrient and water availability. Traditional genetic analysis of classic developmental mutants, together with new molecular approaches, have shed light on many crucial aspects of maize reproductive development including the influence that phytohormones exert on key developmental steps leading to successful reproduction and seed yield. Here we will review both historical and recent findings concerning the main roles that phytohormones play in maize reproductive development, from the commitment to reproductive development to sexual reproduction.
Collapse
Affiliation(s)
- Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Zhao Z, Yang Y, Iqbal A, Wu Q, Zhou L. Biological Insights and Recent Advances in Plant Long Non-Coding RNA. Int J Mol Sci 2024; 25:11964. [PMID: 39596034 PMCID: PMC11593582 DOI: 10.3390/ijms252211964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Long non-coding RNA (lncRNA) refers to an RNA molecule longer than 200 nucleotides (nt) that plays a significant role in regulating essential molecular and biological processes. It is commonly found in animals, plants, and viruses, and is characterized by features such as epigenetic markers, developmental stage-specific expression, and tissue-specific expression. Research has shown that lncRNA participates in anatomical processes like plant progression, while also playing a crucial role in plant disease resistance and adaptation mechanisms. In this review, we provide a concise overview of the formation mechanism, structural characteristics, and databases related to lncRNA in recent years. We primarily discuss the biological roles of lncRNA in plant progression as well as its involvement in response to biotic and abiotic stresses. Additionally, we examine the current challenges associated with lncRNA and explore its potential application in crop production and breeding. Studying plant lncRNAs is highly significant for multiple reasons: It reveals the regulatory mechanisms of plant growth and development, promotes agricultural production and food security, and drives research in plant genomics and epigenetics. Additionally, it facilitates ecological protection and biodiversity conservation.
Collapse
Affiliation(s)
- Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Industrial Development Department, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| |
Collapse
|
3
|
Gupta P, Jaiswal P. Transcriptional Modulation during Photomorphogenesis in Rice Seedlings. Genes (Basel) 2024; 15:1072. [PMID: 39202430 PMCID: PMC11353317 DOI: 10.3390/genes15081072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Light is one of the most important factors regulating plant gene expression patterns, metabolism, physiology, growth, and development. To explore how light may induce or alter transcript splicing, we conducted RNA-Seq-based transcriptome analyses by comparing the samples harvested as etiolated seedlings grown under continuous dark conditions vs. the light-treated green seedlings. The study aims to reveal differentially regulated protein-coding genes and novel long noncoding RNAs (lncRNAs), their light-induced alternative splicing, and their association with biological pathways. We identified 14,766 differentially expressed genes, of which 4369 genes showed alternative splicing. We observed that genes mapped to the plastid-localized methyl-erythritol-phosphate (MEP) pathway were light-upregulated compared to the cytosolic mevalonate (MVA) pathway genes. Many of these genes also undergo splicing. These pathways provide crucial metabolite precursors for the biosynthesis of secondary metabolic compounds needed for chloroplast biogenesis, the establishment of a successful photosynthetic apparatus, and photomorphogenesis. In the chromosome-wide survey of the light-induced transcriptome, we observed intron retention as the most predominant splicing event. In addition, we identified 1709 novel lncRNA transcripts in our transcriptome data. This study provides insights on light-regulated gene expression and alternative splicing in rice.
Collapse
Affiliation(s)
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
4
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
5
|
Das P, Grover M, Mishra DC, Guha Majumdar S, Shree B, Kumar S, Mir ZA, Chaturvedi KK, Bhardwaj SC, Singh AK, Rai A. Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. FRONTIERS IN PLANT SCIENCE 2023; 14:1120898. [PMID: 37650000 PMCID: PMC10465180 DOI: 10.3389/fpls.2023.1120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
Wheat stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is a serious biotic stress factor limiting wheat production worldwide. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) participate in various developmental processes in plants via post-transcription regulation. In this study, RNA sequencing (RNA-seq) was performed on a pair of near-isogenic lines-rust resistance line FLW29 and rust susceptible line PBW343-which differed only in the rust susceptibility trait. A total of 6,807 lncRNA transcripts were identified using bioinformatics analyses, among which 10 lncRNAs were found to be differentially expressed between resistance and susceptible lines. In order to find the target genes of the identified lncRNAs, their interactions with wheat microRNA (miRNAs) were predicted. A total of 199 lncRNAs showed interactions with 65 miRNAs, which further target 757 distinct mRNA transcripts. Moreover, detailed functional annotations of the target genes were used to identify the candidate genes, pathways, domains, families, and transcription factors that may be related to stripe rust resistance response in wheat plants. The NAC domain protein, disease resistance proteins RPP13 and RPM1, At1g58400, monodehydroascorbate reductase, NBS-LRR-like protein, rust resistance kinase Lr10-like, LRR receptor, serine/threonine-protein kinase, and cysteine proteinase are among the identified targets that are crucial for wheat stripe rust resistance. Semiquantitative PCR analysis of some of the differentially expressed lncRNAs revealed variations in expression profiles of two lncRNAs between the Pst-resistant and Pst-susceptible genotypes at least under one condition. Additionally, simple sequence repeats (SSRs) were also identified from wheat lncRNA sequences, which may be very useful for conducting targeted gene mapping studies of stripe rust resistance in wheat. These findings improved our understanding of the molecular mechanism responsible for the stripe rust disease that can be further utilized to develop wheat varieties with durable resistance to this disease.
Collapse
Affiliation(s)
- Parinita Das
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Bharti Shree
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
6
|
Zheng K, Wu X, Xue X, Li W, Wang Z, Chen J, Zhang Y, Qiao F, Zhao H, Zhang F, Han S. Transcriptome Screening of Long Noncoding RNAs and Their Target Protein-Coding Genes Unmasks a Dynamic Portrait of Seed Coat Coloration Associated with Anthocyanins in Tibetan Hulless Barley. Int J Mol Sci 2023; 24:10587. [PMID: 37445765 PMCID: PMC10341697 DOI: 10.3390/ijms241310587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Many plants have the capability to accumulate anthocyanins for coloration, and anthocyanins are advantageous to human health. In the case of hulless barley (Hordeum vulgare L. var. nudum), investigation into the mechanism of anthocyanin formation is limited to the level of protein-coding genes (PCGs). Here, we conducted a comprehensive bioinformatics analysis to identify a total of 9414 long noncoding RNAs (lncRNAs) in the seed coats of purple and white hulless barley along a developmental gradient. Transcriptome-wide profiles of lncRNAs documented several properties, including GC content fluctuation, uneven length, a diverse range of exon numbers, and a wide variety of transcript classifications. We found that certain lncRNAs in hulless barley possess detectable sequence conservation with Hordeum vulgare and other monocots. Furthermore, both differentially expressed lncRNAs (DElncRNAs) and PCGs (DEPCGs) were concentrated in the later seed development stages. On the one hand, DElncRNAs could potentially cis-regulate DEPCGs associated with multiple metabolic pathways, including flavonoid and anthocyanin biosynthesis in the late milk and soft dough stages. On the other hand, there was an opportunity for trans-regulated lncRNAs in the color-forming module to affect seed coat color by upregulating PCGs in the anthocyanin pathway. In addition, the interweaving of hulless barley lncRNAs and diverse TFs may function in seed coat coloration. Notably, we depicted a dynamic portrait of the anthocyanin synthesis pathway containing hulless barley lncRNAs. Therefore, this work provides valuable gene resources and more insights into the molecular mechanisms underlying anthocyanin accumulation in hulless barley from the perspective of lncRNAs, which facilitate the development of molecular design breeding in crops.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (K.Z.); (X.X.); (W.L.); (H.Z.)
| | - Xiaozhuo Wu
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (X.W.); (Z.W.); (J.C.); (Y.Z.); (F.Q.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (K.Z.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (K.Z.); (X.X.); (W.L.); (H.Z.)
| | - Zitao Wang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (X.W.); (Z.W.); (J.C.); (Y.Z.); (F.Q.)
| | - Jinyuan Chen
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (X.W.); (Z.W.); (J.C.); (Y.Z.); (F.Q.)
| | - Yanfen Zhang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (X.W.); (Z.W.); (J.C.); (Y.Z.); (F.Q.)
| | - Feng Qiao
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (X.W.); (Z.W.); (J.C.); (Y.Z.); (F.Q.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (K.Z.); (X.X.); (W.L.); (H.Z.)
| | - Fanfan Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (K.Z.); (X.X.); (W.L.); (H.Z.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (K.Z.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
7
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
8
|
Fang S, Cong B, Zhao L, Liu C, Zhang Z, Liu S. Genome-Wide Analysis of Long Non-Coding RNAs Related to UV-B Radiation in the Antarctic Moss Pohlia nutans. Int J Mol Sci 2023; 24:ijms24065757. [PMID: 36982830 PMCID: PMC10051584 DOI: 10.3390/ijms24065757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Antarctic organisms are consistently suffering from multiple environmental pressures, especially the strong UV radiation caused by the loss of the ozone layer. The mosses and lichens dominate the vegetation of the Antarctic continent, which grow and propagate in these harsh environments. However, the molecular mechanisms and related regulatory networks of these Antarctic plants against UV-B radiation are largely unknown. Here, we used an integrated multi-omics approach to study the regulatory mechanism of long non-coding RNAs (lncRNAs) of an Antarctic moss (Pohlia nutans) in response to UV-B radiation. We identified a total of 5729 lncRNA sequences by transcriptome sequencing, including 1459 differentially expressed lncRNAs (DELs). Through functional annotation, we found that the target genes of DELs were significantly enriched in plant-pathogen interaction and the flavonoid synthesis pathway. In addition, a total of 451 metabolites were detected by metabonomic analysis, and 97 differentially change metabolites (DCMs) were found. Flavonoids account for 20% of the total significantly up-regulated metabolites. In addition, the comprehensive transcriptome and metabolome analyses revealed the co-expression pattern of DELs and DCMs of flavonoids. Our results provide insights into the regulatory network of lncRNA under UV-B radiation and the adaptation of Antarctic moss to the polar environments.
Collapse
Affiliation(s)
- Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Chenlin Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| |
Collapse
|
9
|
Soorni A, Karimi M, Al Sharif B, Habibi K. Genome-wide screening and characterization of long noncoding RNAs involved in flowering/bolting of Lactuca sativa. BMC PLANT BIOLOGY 2023; 23:3. [PMID: 36588159 PMCID: PMC9806901 DOI: 10.1186/s12870-022-04031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) is considered the most important vegetable in the leafy vegetable group. However, bolting affects quality, gives it a bitter taste, and as a result makes it inedible. Bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although bolting/flowering responsive genes have been identified in most sensitive and non-sensitive species, non-coding RNA molecules like long non-coding RNAs (lncRNAs) have not been investigated in lettuce. Hence, in this study, potential long non-coding RNAs that regulate flowering /bolting were investigated in two lettuce strains S24 (resistant strain) and S39 (susceptible strain) in different flowering times to better understand the regulation of lettuce bolting mechanism. For this purpose, we used two RNA-seq datasets to discover the lncRNA transcriptome profile during the transition from vegetative to reproductive phase. RESULTS For identifying unannotated transcripts in these datasets, a 7-step pipeline was employed to filter out these transcripts and terminate with 293 novel lncRNAs predicted by PLncPRO and CREMA. These transcripts were then utilized to predict cis and trans flowering-associated targets and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Computational predictions of target gene function showed the involvement of putative flowering-related genes and enrichment of the floral regulators FLC, CO, FT, and SOC1 in both datasets. Finally, 17 and 18 lncRNAs were proposed as competing endogenous target mimics (eTMs) for novel and known lncRNA miRNAs, respectively. CONCLUSION Overall, this study provides new insights into lncRNAs that control the flowering time of plants known for bolting, such as lettuce, and opens new windows for further study.
Collapse
Affiliation(s)
- Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | - Batoul Al Sharif
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khashayar Habibi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
10
|
Wang L, Zou P, Liu F, Liu R, Yan ZY, Chen X. Integrated analysis of lncRNAs, mRNAs, and TFs to identify network modules underlying diterpenoid biosynthesis in Salvia miltiorrhiza. PeerJ 2023; 11:e15332. [PMID: 37187524 PMCID: PMC10178227 DOI: 10.7717/peerj.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides (nt) in length, with minimal or no protein-coding capacity. Increasing evidence indicates that lncRNAs play important roles in the regulation of gene expression including in the biosynthesis of secondary metabolites. Salvia miltiorrhiza Bunge is an important medicinal plant in China. Diterpenoid tanshinones are one of the main active components of S. miltiorrhiza. To better understand the role of lncRNAs in regulating diterpenoid biosynthesis in S. miltiorrhiza, we integrated analysis of lncRNAs, mRNAs, and transcription factors (TFs) to identify network modules underlying diterpenoid biosynthesis based on transcriptomic data. In transcriptomic data, we obtained 6,651 candidate lncRNAs, 46 diterpenoid biosynthetic pathway genes, and 11 TFs involved in diterpenoid biosynthesis. Combining the co-expression and genomic location analysis, we obtained 23 candidate lncRNA-mRNA/TF pairs that were both co-expressed and co-located. To further observe the expression patterns of these 23 candidate gene pairs, we analyzed the time-series expression of S. miltiorrhiza induced by methyl jasmonate (MeJA). The results showed that 19 genes were differentially expressed at least a time-point, and four lncRNAs, two mRNAs, and two TFs formed three lncRNA-mRNA and/or TF network modules. This study revealed the relationship among lncRNAs, mRNAs, and TFs and provided new insight into the regulation of the biosynthetic pathway of S. miltiorrhiza diterpenoids.
Collapse
|
11
|
Zhang Y, Fan F, Zhang Q, Luo Y, Liu Q, Gao J, Liu J, Chen G, Zhang H. Identification and Functional Analysis of Long Non-Coding RNA (lncRNA) in Response to Seed Aging in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:3223. [PMID: 36501265 PMCID: PMC9737669 DOI: 10.3390/plants11233223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Many lncRNAs have been shown to play a vital role in aging processes. However, how lncRNAs regulate seed aging remains unknown. In this study, we performed whole transcriptome strand-specific RNA sequencing of samples from rice embryos, analyzed the differences in expression of rice seed lncRNAs before and after artificial aging treatment (AAT), and systematically screened 6002 rice lncRNAs. During the AAT period, the expression levels of most lncRNAs (454) were downregulated and only four were upregulated among the 458 differentially expressed lncRNAs (DELs). Cis- or trans-regulated target genes of the four upregulated lncRNAs were mainly related to base repair, while 454 downregulated lncRNAs were related to plant-pathogen interaction, plant hormones, energy metabolism, and secondary metabolism. The pathways of DEL target genes were similar with those of differentially expressed mRNAs (DEGs). A competing endogenous RNA (ceRNA) network composed of 34 lncRNAs, 24 microRNAs (miRNA), and 161 mRNAs was obtained. The cDNA sequence of lncRNA LNC_037529 was obtained by rapid amplification of cDNA ends (RACE) cloning with a total length of 1325 bp, a conserved 5' end, and a non-conserved 3' end. Together, our findings indicate that genome-wide selection for lncRNA downregulation was an important mechanism for rice seed aging. LncRNAs can be used as markers of seed aging in rice. These findings provide a future path to decipher the underlying mechanism associated with lncRNAs in seed aging.
Collapse
Affiliation(s)
- Yixin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Fan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qunjie Zhang
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongjian Luo
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinjian Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiadong Gao
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guanghui Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Babaei S, Singh MB, Bhalla PL. Role of long non-coding RNAs in rice reproductive development. FRONTIERS IN PLANT SCIENCE 2022; 13:1040366. [PMID: 36457537 PMCID: PMC9705774 DOI: 10.3389/fpls.2022.1040366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/28/2022] [Indexed: 05/13/2023]
Abstract
Rice is a staple crop, feeding over half of the global population. The future demand of population growth and climate change requires substantial rice improvement. Recent advances in rice genomics have highlighted the vital role of the non-coding part of the genome. The protein-coding regions account for only a tiny portion of the eukaryotic genome, and most of the genomic regions transcribe copious amounts of non-coding RNAs. Of these, the long non-coding RNAs, including linear non-coding RNAs (lncRNAs) and circular non-coding RNAs (circRNAs), have been shown to play critical roles in various developmental processes by regulating the expression of genes and functions of proteins at transcriptional, post-transcriptional and post-translational levels. With the advances in next-generation sequencing technologies, a substantial number of long non-coding RNAs have been found to be expressed in plant reproductive organs in a cell- and tissue-specific manner suggesting their reproductive development-related functions. Accumulating evidence points towards the critical role of these non-coding RNAs in flowering, anther, and pollen development, ovule and seed development and photoperiod and temperature regulation of male fertility. In this mini review, we provide a brief overview of the role of the linear and circular long non-coding RNAs in rice reproductive development and control of fertility and crop yield.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Karimi P, Bakhtiarizadeh MR, Salehi A, Izadnia HR. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken. Sci Rep 2022; 12:2558. [PMID: 35169237 PMCID: PMC8847365 DOI: 10.1038/s41598-022-06528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Feed efficiency is an important economic trait and reduces the production costs per unit of animal product. Up to now, few studies have conducted transcriptome profiling of liver tissue in feed efficiency-divergent chickens (Ross vs native breeds). Also, molecular mechanisms contributing to differences in feed efficiency are not fully understood, especially in terms of long non-coding RNAs (lncRNAs). Hence, transcriptome profiles of liver tissue in commercial and native chicken breeds were analyzed. RNA-Seq data along with bioinformatics approaches were applied and a series of lncRNAs and target genes were identified. Furthermore, protein-protein interaction network construction, co-expression analysis, co-localization analysis of QTLs and functional enrichment analysis were used to functionally annotate the identified lncRNAs. In total, 2,290 lncRNAs were found (including 1,110 annotated, 593 known and 587 novel), of which 53 (including 39 known and 14 novel), were identified as differentially expressed genes between two breeds. The expression profile of lncRNAs was validated by RT-qPCR. The identified novel lncRNAs showed a number of characteristics similar to those of known lncRNAs. Target prediction analysis showed that these lncRNAs have the potential to act in cis or trans mode. Functional enrichment analysis of the predicted target genes revealed that they might affect the differences in feed efficiency of chicken by modulating genes associated with lipid metabolism, carbohydrate metabolism, growth, energy homeostasis and glucose metabolism. Some gene members of significant modules in the constructed co-expression networks were reported as important genes related to feed efficiency. Co-localization analysis of QTLs related to feed efficiency and the identified lncRNAs suggested several candidates to be involved in residual feed intake. The findings of this study provided valuable resources to further clarify the genetic basis of regulation of feed efficiency in chicken from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Parastoo Karimi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Hamid Reza Izadnia
- Animal Science Improvement Research Department, Agricultural and Natural Resources Research and Education Center, Safiabad AREEO, Dezful, Iran
| |
Collapse
|
14
|
Li W, Guo X, Wu W, Yu W, Li S, Luo D, Wang T, Zhu Q, Chen L, Lee D. Construction of a Novel Female Sterility System for Hybrid Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:815401. [PMID: 35185963 PMCID: PMC8850283 DOI: 10.3389/fpls.2021.815401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The main constraints of current hybrid rice technology using male sterility (MS) are the low yield and high labor costs of hybrid rice seed (HRS) production. Therefore, there is an urgent need for innovative new hybrid rice technology. Fortunately, we discovered a unique spontaneous sporophytic female-sterile rice mutant controlled by a single recessive locus in the nucleus. Because female-sterile mutant lines cannot produce any selfed-seeds but their pollen has totally normal functions, female sterility (FS) lines may be considered ideal pollen donors to replace the female-fertile pollen donor parent lines currently used in the HRS production. In this study, a genetically engineered FS-based system was constructed to propagate a pure transgene-free FS line using a bentazon herbicide screening. Additionally, the ability of the FS + MS (FM)-line system, with mixed plantings of FS and MS lines, to produce HRS was tested. The pilot field experiment results showed that HRS of the FM-line system was more efficient compared with the conventional FS to MS strip planting control mode. Thus, this study provides new insights into genetic engineering technology and a promising strategy for the utilization of FS in hybrid rice.
Collapse
Affiliation(s)
- Wei Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Xiaoqiong Guo
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Wenbin Wu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Weilin Yu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Shichuan Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Di Luo
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Tianjie Wang
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Dongsun Lee
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Petrella R, Cucinotta M, Mendes MA, Underwood CJ, Colombo L. The emerging role of small RNAs in ovule development, a kind of magic. PLANT REPRODUCTION 2021; 34:335-351. [PMID: 34142243 PMCID: PMC8566443 DOI: 10.1007/s00497-021-00421-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
In plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings about the function of small RNAs in ovule development, including megasporogenesis and megagametogenesis, both in sexual and apomictic plants. We discuss recent studies on the role of miRNAs, siRNAs and trans-acting RNAs (ta-siRNAs) in early female germline differentiation. The mechanistic complexity and unique regulatory features are reviewed, and possible directions for future research are provided.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
16
|
Kandpal M, Dhaka N, Sharma R. Genome-wide in silico analysis of long intergenic non-coding RNAs from rice peduncles at the heading stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2389-2406. [PMID: 34744373 PMCID: PMC8526681 DOI: 10.1007/s12298-021-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Long intergenic non-coding RNAs (lincRNAs) belong to the category of long non-coding RNAs (lncRNAs), originated from intergenic regions, which do not code for proteins. LincRNAs perform prominent role in regulation of gene expression during plant development and stress response by directly interacting with DNA, RNA, or proteins, or triggering production of small RNA regulatory molecules. Here, we identified 2973 lincRNAs and investigated their expression dynamics during peduncle elongation in two Indian rice cultivars, Pokkali and Swarna, at the time of heading. Differential expression analysis revealed common and cultivar-specific expression patterns, which we utilized to infer the lincRNA candidates with potential involvement in peduncle elongation and panicle exsertion. Their putative targets were identified using in silico prediction methods followed by pathway mapping and literature-survey based functional analysis. Further, to infer the mechanism of action, we identified the lincRNAs which potentially act as miRNA precursors or target mimics. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01059-2.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| |
Collapse
|
17
|
Cheng C, Liu F, Tian N, Mensah RA, Sun X, Liu J, Wu J, Wang B, Li D, Lai Z. Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Sci Rep 2021; 11:16363. [PMID: 34381122 PMCID: PMC8358008 DOI: 10.1038/s41598-021-95832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Fan Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Raphael Anue Mensah
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueli Sun
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiapeng Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junwei Wu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Baruah PM, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:221-236. [PMID: 33706183 DOI: 10.1016/j.plaphy.2021.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding transcripts having length of more than 200 nucleotides lacking protein-coding ability. In the present study, 12807 lncRNAs were identified in Capsicum annuum tissues exposed to abiotic stress conditions viz. heat, cold, osmotic and salinity stress. Expression analysis of lncRNAs in different treatment conditions demonstrates their stress-specific expression. Thirty lncRNAs were found to act as precursors for 10 microRNAs (miRNAs) of C. annuum. Additionally, a total of 1807 lncRNAs were found to interact with 194 miRNAs which targeted 621 mRNAs of C. annuum. Among these, 344 lncRNAs were found to act as target mimics for 621 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that out of those 621 gene sequences, 546 were tagged with GO terms, 105 Enzyme Code (EC) numbers were assigned to 246 genes and 223 genes are found to be involved in 63 biological pathways. In this report, we have highlighted the prospective role of lncRNAs in different abiotic stress conditions by interacting with miRNAs and regulating stress responsive transcription factors (TFs) such as DoF, WRKY, MYB, bZIP and ERF in C. annuum.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India
| | | | | | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|
19
|
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening. Sci Rep 2021; 11:1671. [PMID: 33462344 PMCID: PMC7814023 DOI: 10.1038/s41598-021-81155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
Collapse
|
20
|
Zhao Z, Liu D, Cui Y, Li S, Liang D, Sun D, Wang J, Liu Z. Genome-wide identification and characterization of long non-coding RNAs related to grain yield in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics 2020; 21:853. [PMID: 33261549 PMCID: PMC7709324 DOI: 10.1186/s12864-020-07272-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/23/2020] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been reported to play critical roles in diverse growth and development processes in plants. However, the systematic identification and characterization of lncRNAs in foxtail millet is nearly blank. Results In this study, we performed high-throughput sequencing of young spikelets from four foxtail millet varieties in different yield levels at booting stage. As a result, a total of 12,378 novel lncRNAs were identified, and 70 were commonly significantly differentially expressed in comparisons between high-yield varieties and conventional varieties, suggesting that they involved in yield formation and regulation in foxtail millet. Functional analysis revealed that among the 70 significantly differentially expressed lncRNAs, 67 could transcriptionally modulate target genes in cis and in trans. Moreover, 18 lncRNAs related to grain yield in foxtail millet were predicted to function as miRNA target mimics and regulate gene expression by competing for the interaction between miRNAs and their target mRNAs. Conclusion Our results will provide materials for elucidation of the molecular mechanisms of lncRNAs participate in yield regulation, and will contribute to high yield foxtail millet breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07272-9.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, China.,Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, China.
| | - Jianhe Wang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, China.
| |
Collapse
|
21
|
Pan C, Wang Y, Tao L, Zhang H, Deng Q, Yang Z, Chi Z, Yang Y. Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress. PLoS One 2020; 15:e0238942. [PMID: 32915882 PMCID: PMC7485763 DOI: 10.1371/journal.pone.0238942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, third-generation full-length (FL) transcriptome sequencing was performed of loquat using single-molecule real-time(SMRT) sequencing from the pooled cDNA of embryos of young loquat fruit under different low temperatures (three biological replicates for treatments of 1°C, -1°C, and -3°C, for 12 h or 24 h) and the control group(three biological replicates for treatments of room temperature), Illumina sequencing was used to correct FL transcriptome sequences. A total of 3 PacBio Iso-Seq libraries (1–2 kb, 2–3 kb and 3–6 kb) and 21 Illumina transcriptome libraries were constructed, a total of 13.41 Gb of clean reads were generated, which included 215,636 reads of insert (ROIs) and 121,654 FL, non-chimaric (FLNC) reads. Transcript clustering analysis of the FLNC reads revealed 76,586 consensus isoforms, and a total of 12,520 high-quality transcript sequences corrected with non-FL sequences were used for subsequent analysis. After the redundant reads were removed, 38,435 transcripts were obtained. A total of 27,905 coding DNA sequences (CDSs) were identified, and 407 long non-coding RNAs (lncRNAs) were ultimately predicted. Additionally, 24,832 simple sequence repeats (SSRs) were identified, and a total of 1,295 alternative splicing (AS) events were predicted. Furthermore, 37,993 transcripts were annotated in eight functional databases. This is the first study to perform SMRT sequencing of the FL transcriptome of loquat. The obtained transcriptomic data are conducive for further exploration of the mechanism of loquat freezing injury and thus serve as an important theoretical basis for generating new loquat material and for identifying new ways to improve loquat cold resistance.
Collapse
Affiliation(s)
- Cuiping Pan
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yongqing Wang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail:
| | - Lian Tao
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhiwu Yang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhuoheng Chi
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yunmiao Yang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| |
Collapse
|
22
|
Shi Y, Chen J, Hou X. Similarities and Differences of Photosynthesis Establishment Related mRNAs and Novel lncRNAs in Early Seedlings (Coleoptile/Cotyledon vs. True Leaf) of Rice and Arabidopsis. Front Genet 2020; 11:565006. [PMID: 33093843 PMCID: PMC7506105 DOI: 10.3389/fgene.2020.565006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022] Open
Abstract
Photosynthesis uses sunlight and carbon dioxide to produce biomass that is vital to all life on earth. In seed plants, leaf is the main organ for photosynthesis and production of organic nutrients. The seeds are mobilized to fuel post-germination seedling growth until seedling photosynthesis can be efficiently established. However, the photosynthesis and metabolism in the early growth and development have not been studied systematically and are still largely unknown. In this study, we used two model plants, rice (Oryza sativa L.; monocotyledonous) and Arabidopsis (Arabidopsis thaliana; dicotyledonous) to determine the similarities and differences in photosynthesis in cotyledons and true leaves during the early developmental stages. The photosynthesis-related genes and proteins, and chloroplast functions were determined through RNA-seq, real-time PCR, western blotting and chlorophyll fluorescence analysis. We found that in rice, the photosynthesis established gradually from coleoptile (cpt), incomplete leaf (icl) to first complete leaf (fcl); whereas, in Arabidopsis, photosynthesis well-developed in cotyledon, and the photosynthesis-related genes and proteins expressed comparably in cotyledon (cot), first true leaf (ftl) and second true leaf (stl). Additionally, we attempted to establish an mRNA-lncRNA signature to explore the similarities and differences in photosynthesis establishment between the two species, and found that DEGs, including encoding mRNAs and novel lncRNAs, related to photosynthesis in three stages have considerable differences between rice and Arabidopsis. Further GO and KEGG analysis systematically revealed the similarities and differences of expression styles of photosystem subunits and assembly factors, and starch and sucrose metabolisms between cotyledons and true leaves in the two species. Our results help to elucidate the gene functions of mRNA-lncRNA signatures.
Collapse
Affiliation(s)
- Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jian Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Li M, Cao A, Wang R, Li Z, Li S, Wang J. Genome-wide identification and integrated analysis of lncRNAs in rice backcross introgression lines (BC 2F 12). BMC PLANT BIOLOGY 2020; 20:300. [PMID: 32600330 PMCID: PMC7325253 DOI: 10.1186/s12870-020-02508-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/22/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Distant hybridization is an important way to create interspecific genetic variation and breed new varieties in rice. A lot of backcross introgression lines (BILs) had been constructed for the scientific issues in rice. However, studies on the critical regulatory factor lncRNA in cultivated rice, wild rice and their BIL progenies were poorly reported. RESULTS Here, high-throughput RNA sequencing technology was used to explore the functional characteristics and differences of lncRNAs in O. sativa, O. longistaminata and their three BC2F12 progenies. A total of 1254 lncRNAs were screened out, and the number of differentially expressed lncRNAs between progenies and O. sativa were significantly less than that between progenies and O. longistaminata. Some lncRNAs regulated more than one mRNA, and 89.5% of lncRNAs regulated the expression of target genes through cis-acting. A total of 78 lncRNAs and 271 mRNAs were targeted by 280 miRNAs, and 22 lncRNAs were predicted to be the precursor of 20 microRNAs. Some miRNAs were found to target their own potential precursor lncRNAs. Over 50% of lncRNAs showed parental expression level dominance (ELD) in all three progenies, and most lncRNAs showed ELD-O. sativa rather than ELD-O. longistaminata. Further analysis showed that lncRNAs might regulate the expression of plant hormone-related genes and the adaptability of O. sativa, O. longistaminata and their progenies. CONCLUSIONS Taken together, the above results provided valuable clues for elucidating the functional features and expression differences of lncRNAs between O. sativa, O. longistaminata and their BIL progenies, and expanded our understanding about the biological functions of lncRNAs in rice.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Aqin Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
24
|
Yan X, Ma L, Yang M. Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas. Sci Rep 2020; 10:10395. [PMID: 32587349 PMCID: PMC7316758 DOI: 10.1038/s41598-020-67410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in plant development. However, the information of lncRNAs in Jatropha curcas remains largely unexplored. Thus, an attempt has been made in J. curcas to identify 1,850 lncRNAs based on deep sequencing of developing seeds at three typical stages. About ten percent lncRNAs (196 lncRNAs) were differentially expressed lncRNAs during seed developing process. Together with reverse transcription quantitative real-time PCR, the lncRNA expression analyses revealed the stage-specific expression patterns of some novel lncRNAs in J. curcas. The target genes of lncRNAs were annotated for their roles in various biological processes such as gene expression, metabolism, and cell growth. Besides, 10 lncRNAs were identified as the precursors of microRNAs and 26 lncRNAs were predicted to be the targets of Jatropha miRNAs. A total of 31 key lncRNAs play critical roles in the seed developing process in the context of cell growth and development, lipid metabolism, and seed maturation. Our study provides the first systematic study of lncRNAs in the developing seeds of J. curcas and facilitates the functional research of plant lncRNAs and the regulation of seed development.
Collapse
Affiliation(s)
- Xihuan Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Lanqing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China. .,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - MingFeng Yang
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| |
Collapse
|
25
|
Lu Y, Zhou DX, Zhao Y. Understanding epigenomics based on the rice model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1345-1363. [PMID: 31897514 DOI: 10.1007/s00122-019-03518-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
The purpose of this paper provides a comprehensive overview of the recent researches on rice epigenomics, including DNA methylation, histone modifications, noncoding RNAs, and three-dimensional genomics. The challenges and perspectives for future research in rice are discussed. Rice as a model plant for epigenomic studies has much progressed current understanding of epigenetics in plants. Recent results on rice epigenome profiling and three-dimensional chromatin structure studies reveal specific features and implication in gene regulation during rice plant development and adaptation to environmental changes. Results on rice chromatin regulator functions shed light on mechanisms of establishment, recognition, and resetting of epigenomic information in plants. Cloning of several rice epialleles associated with important agronomic traits highlights importance of epigenomic variation in rice plant growth, fitness, and yield. In this review, we summarize and analyze recent advances in rice epigenomics and discuss challenges and directions for future research in the field.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University Paris-Saclay, 91405, Orsay, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Wu L, Liu S, Qi H, Cai H, Xu M. Research Progress on Plant Long Non-Coding RNA. PLANTS 2020; 9:plants9040408. [PMID: 32218186 PMCID: PMC7237992 DOI: 10.3390/plants9040408] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Non-coding RNAs (ncRNAs) that were once considered “dark matter” or “transcriptional noise” in genomes are research hotspots in the field of epigenetics. The most well-known microRNAs (miRNAs) are a class of short non-coding, small molecular weight RNAs with lengths of 20–24 nucleotides that are highly conserved throughout evolution. Through complementary pairing with the bases of target sites, target gene transcripts are cleaved and degraded, or translation is inhibited, thus regulating the growth and development of organisms. Unlike miRNAs, which have been studied thoroughly, long non-coding RNAs (lncRNAs) are a group of poorly conserved RNA molecules with a sequence length of more than 200 nucleotides and no protein encoding capability; they interact with large molecules, such as DNA, RNA, and proteins, and regulate protein modification, chromatin remodeling, protein functional activity, and RNA metabolism in vivo through cis- or trans-activation at the transcriptional, post-transcriptional, and epigenetic levels. Research on plant lncRNAs is just beginning and has gradually emerged in the field of plant molecular biology. Currently, some studies have revealed that lncRNAs are extensively involved in plant growth and development and stress response processes by mediating the transmission and expression of genetic information. This paper systematically introduces lncRNA and its regulatory mechanisms, reviews the current status and progress of lncRNA research in plants, summarizes the main techniques and strategies of lncRNA research in recent years, and discusses existing problems and prospects, in order to provide ideas for further exploration and verification of the specific evolution of plant lncRNAs and their biological functions.
Collapse
Affiliation(s)
- Ling Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
| | - Heng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
- Correspondence: ; Tel.: +86-15094307586
| |
Collapse
|
27
|
Yu F, Tan Z, Fang T, Tang K, Liang K, Qiu F. A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize. Genes (Basel) 2020; 11:genes11030267. [PMID: 32121334 PMCID: PMC7140884 DOI: 10.3390/genes11030267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Waterlogging stress (WS) in a dynamic environment seriously limits plant growth, development, and yield. The regulatory mechanism underlying WS conditions at an early stage in maize seedlings is largely unknown. In the present study, the primary root tips of B73 seedlings were sampled before (0 h) and after (2 h, 4 h, 6 h, 8 h, 10 h, and 12 h) WS and then subjected to transcriptome sequencing, resulting in the identification of differentially expressed protein-coding genes (DEpcGs) and long non-coding RNAs (DElncRs) in response to WS. These DEpcGs were classified into nine clusters, which were significantly enriched in several metabolic pathways, such as glycolysis and methionine metabolism. Several transcription factor families, including AP2-EREBP, bZIP, NAC, bHLH, and MYB, were also significantly enriched. In total, 6099 lncRNAs were identified, of which 3190 were DElncRs. A co-expression analysis revealed lncRNAs to be involved in 11 transcription modules, 10 of which were significantly associated with WS. The DEpcGs in the four modules were enriched in the hypoxia response pathways, including phenylpropanoid biosynthesis, MAPK signaling, and carotenoid biosynthesis, in which 137 DElncRs were also co-expressed. Most of the co-expressed DElncRs were co-localized with previously identified quantitative trait loci associated with waterlogging tolerance. A quantitative reverse transcription-polymerase chain reaction analysis of DEpcG and DElncR expression among the 32 maize genotypes after 4 h of WS verified significant expression correlations between them as well as significant correlation with the phenotype of waterlogging tolerance. Moreover, the high proportion of hypoxia response elements in the promoter region increased the reliability of the DElncRs identified in this study. These results provide a comprehensive transcriptome in response to WS at an early stage of maize seedlings and expand our understanding of the regulatory network involved in hypoxia in plants.
Collapse
Affiliation(s)
- Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Z.T.); (T.F.); (K.T.); (K.L.)
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Z.T.); (T.F.); (K.T.); (K.L.)
| | - Tian Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Z.T.); (T.F.); (K.T.); (K.L.)
| | - Kaiyuan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Z.T.); (T.F.); (K.T.); (K.L.)
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Z.T.); (T.F.); (K.T.); (K.L.)
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Z.T.); (T.F.); (K.T.); (K.L.)
- Correspondence: ; Tel.: +86-027-872-86870; Fax: +86-027-872-80016
| |
Collapse
|
28
|
Genome-Wide Identification of lncRNAs During Rice Seed Development. Genes (Basel) 2020; 11:genes11030243. [PMID: 32110990 PMCID: PMC7140839 DOI: 10.3390/genes11030243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rice seed is a pivotal reproductive organ that directly determines yield and quality. Long non-coding RNAs (lncRNAs) have been recognized as key regulators in plant development, but the roles of lncRNAs in rice seed development remain unclear. In this study, we performed a paired-end RNA sequencing in samples of rice pistils and seeds at three and seven days after pollination (DAP) respectively. A total of 540 lncRNAs were obtained, among which 482 lncRNAs had significantly different expression patterns during seed development. Results from semi-qPCR conducted on 15 randomly selected differentially expressed lncRNAs suggested high reliability of the transcriptomic data. RNA interference of TCONS_00023703, which is predominantly transcribed in developing seeds, significantly reduced grain length and thousand-grain weight. These results expanded the dataset of lncRNA in rice and enhanced our understanding of the biological functions of lncRNAs in rice seed development.
Collapse
|
29
|
Abstract
ncRNAs are involved in numerous biological processes by regulating gene expression and cell stability. Studies have shown that ncRNAs also contribute to spermatogenesis. Leydig cells (LCs) and Sertoli cells (SCs) are somatic cells of the testis that support spermatogenesis and are vital to male fertility. In this review, we summarized the findings from studies on ncRNAs in SCs and LCs. In SCs, ncRNAs play key roles in phagocytosis, immunoprotection and development of SCs. In LCs, ncRNAs are involved in steroidogenesis, in particular production of testosterone as well as development of LCs. Here, we discuss the possible target genes and functions of ncRNAs in both types of cells. These ncRNAs regulate the expression of target genes or mRNA coding sequence regions, resulting in a chain reaction that influences cell function. In addition, microRNAs, lncRNAs, piRNA-like RNAs (pilRNAs) and natural antisense transcripts (NATs) are discussed in this review. In summary, we suggest that these ncRNAs might act in coordination to control spermatogenesis and maintain the environmental homeostasis of the testis.
Collapse
|
30
|
Narnoliya LK, Kaushal G, Singh SP. Long noncoding RNAs and miRNAs regulating terpene and tartaric acid biosynthesis in rose-scented geranium. FEBS Lett 2019; 593:2235-2249. [PMID: 31210363 DOI: 10.1002/1873-3468.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to explore the noncoding RNAs, which have emerged as key regulatory molecules in biological processes, in rose-scented geranium. We analyzed RNA-seq data revealing 26 784 long noncoding RNAs (lncRNAs) and 871 miRNAs in rose-scented geranium. A total of 466 lncRNAs were annotated using different plant lncRNA public databases. Furthermore, 372 lncRNAs and 99 miRNAs were detected that target terpene and tartarate biosynthetic pathways. An interactome, comprising of lncRNAs, miRNAs, and mRNAs, was constructed that represents a noncoding RNA regulatory network of the target mRNAs. Real-time quantitative PCR expression validation was done for selected lncRNAs involved in the regulation of terpene and tartaric acid pathways. This study provides the first insights into the regulatory functioning of noncoding RNAs in rose-scented geranium.
Collapse
Affiliation(s)
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Mohali, India
| |
Collapse
|