1
|
Jiménez-Florido P, Aquilino M, Buckley D, Bella JL, Planelló R. Differential gene expression in Chorthippus parallelus (Zetterstedt, 1821) (Orthoptera: Acrididae: Gomphocerinae) induced by Wolbachia infection. INSECT SCIENCE 2024. [PMID: 39614636 DOI: 10.1111/1744-7917.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Distinct lineages of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) form well-known hybrid zones (HZs) both in the Pyrenees and the Alps mountain ranges in South Europe. These HZs represent unique experimental systems to identify "key genes" that maintain genetic boundaries between emerging species. The Iberian endemism C. p. erythropus (Cpe) and the subspecies C. p. parallelus (Cpp), widely distributed throughout the rest of Europe, overlap and form the Pyrenean HZ. Both subspecies differ morphologically, as well as in behavioral, mitochondrial, nuclear, and chromosomal traits, and in the strains of the maternally transmitted bacterial endosymbiont Wolbachia infecting them. This results in either unidirectional and bidirectional cytoplasmic incompatibility between both grasshopper subspecies, pointing out that Wolbachia clearly affects gene expression in the infected individuals. Here we explore how Wolbachia may modify the expression of some major genes involved in relevant pathways in Cpp in the Pyrenean HZ. We have analyzed, through molecular biomarkers, the physiological responses in C. parallelus individuals infected by Wolbachia, with particular attention to the energy metabolism, the immune system response, and the reproduction. qPCR was used to evaluate the expression of selected genes in the gonads of infected and uninfected adults of both sexes, since this tissue constitutes the main target of Wolbachia infection. Transcriptional analyses also showed differential sex-dependent responses in most of the analyzed biomarkers in infected and noninfected individuals. We identified for the first time new sensitive biomarkers that might be involved in the reproductive barrier induced by Wolbachia in the hybrid zone.
Collapse
Affiliation(s)
- Patricia Jiménez-Florido
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - David Buckley
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Planelló
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
2
|
Ruther J, Hoheneder J, Koschany V. Lipogenesis in Nasonia vitripennis: Influence of sugar chemistry, preferential production of triacylglycerides, and comparison of fatty acid biosynthetic capacity with Drosophilamelanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104179. [PMID: 39214243 DOI: 10.1016/j.ibmb.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sugar consumption increases the fecundity and longevity in many species of parasitic wasps (parasitoids) but whether these insects use sugars to synthesize significant amounts of fatty acids and storage fat de novo (lipogenesis) is discussed controversially. It has long been assumed that parasitic wasps lost this ability during evolution, mainly because in several species wasps with ad libitum access to sugar did not increase teneral lipid levels. Recent studies demonstrated that many species are nonetheless capable of synthesizing fatty acids de novo from glucose. It is unclear, however, whether also other sugars are used for fatty acid biosynthesis and whether an increase of sugar concentration to levels occurring in natural sugar sources translates into higher fatty acid production. Furthermore, it has been suggested that fatty acid production in parasitoids is negligible compared to species increasing teneral fat reserves such as Drosophila melanogaster. Here we show by stable isotope labeling experiments that females of Nasonia vitripennis convert D-glucose, D-fructose, sucrose, and α,α-trehalose, major sugars consumed by adult parasitoids in nature, equally well to palmitic, stearic, oleic, and linoleic acid. Lipogenesis from D-galactose occurs as well albeit to a lesser extent. Sugar concentration is crucial for lipogenic activity, and almost 80% of de novo synthesized fatty acids were incorporated into storage fat (triacylglycerides). Comparison of fatty acid biosynthesis within a 48-h feeding period with D. melanogaster revealed that N. vitripennis produced approximately half as many fatty acids per body mass unit. Both species fed equal amounts of the glucose offered. We conclude that lipogenesis is far from negligible in N. vitripennis and plays an important role for the energy balance when teneral lipid reserves deplete.
Collapse
Affiliation(s)
- Joachim Ruther
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Julian Hoheneder
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Vera Koschany
- University of Regensburg, Institute of Zoology, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Ye X, Yang Y, Zhao X, Fang Q, Ye G. The state of parasitoid wasp genomics. Trends Parasitol 2024; 40:914-929. [PMID: 39227194 DOI: 10.1016/j.pt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Parasitoid wasps represent a group of parasitic insects with high species diversity that have played a pivotal role in biological control and evolutionary studies. Over the past 20 years, developments in genomics have greatly enhanced our understanding of the biology of these species. Technological leaps in sequencing have facilitated the improvement of genome quality and quantity, leading to the availability of hundreds of parasitoid wasp genomes. Here, we summarize recent progress in parasitoid wasp genomics, focusing on the evolution of genome size (GS) and the genomic basis of several key traits. We also discuss the contributions of genomics in studying venom evolution and endogenization of viruses. Finally, we advocate for increased sequencing and functional research to better understand parasitoid biology and enhance biological control.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Kryukova NA, Yanshole LV, Zelentsova EA, Tsentalovich YP, Chertkova EA, Alekseev AA, Glupov VV. The venom of Habrobracon hebetor induces alterations in host metabolism. J Exp Biol 2024; 227:jeb247694. [PMID: 39253831 DOI: 10.1242/jeb.247694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
The ability of parasitic wasps to manipulate a host's metabolism is under active investigation. Components of venom play a major role in this process. In the present work, we studied the effect of the venom of the ectoparasitic wasp Habrobracon hebetor on the metabolism of the greater wax moth host (Galleria mellonella). We identified and quantified 45 metabolites in the lymph (cell-free hemolymph) of wax moth larvae on the second day after H. hebetor venom injection, using NMR spectroscopy and liquid chromatography coupled with mass spectrometry. These metabolites included 22 amino acids, nine products of lipid metabolism (sugars, amines and alcohols) and four metabolic intermediates related to nitrogenous bases, nucleotides and nucleosides. An analysis of the larvae metabolome suggested that the venom causes suppression of the tricarboxylic acid cycle, an increase in the number of free amino acids in the lymph, an increase in the concentration of trehalose in the lymph simultaneously with a decrease in the amount of glucose, and destructive processes in the fat body tissue. Thus, this parasitoid venom not only immobilizes the prey but also modulates its metabolism, thereby providing optimal conditions for the development of larvae.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
| | - Lyudmila V Yanshole
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ekaterina A Zelentsova
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Yuri P Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ekaterina A Chertkova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
| | - Alexander A Alekseev
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, Novosibirsk 630090, Russia
| | - Victor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
| |
Collapse
|
5
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
6
|
Dai M, Jiang Z, Li F, Wei J, Li B. A parasitoid regulates 20E synthesis and antibacterial activity of the host for development by inducing host nitric oxide production. INSECT MOLECULAR BIOLOGY 2024; 33:206-217. [PMID: 38180144 DOI: 10.1111/imb.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Parasitoids are important components of the natural enemy guild in the biological control of insect pests. They depend on host resources to complete the development of a specific stage or whole life cycle and thus have evolved towards optimal host exploitation strategies. In the present study, we report a specific survival strategy of a fly parasitoid Exorista sorbillans (Diptera: Tachinidae), which is a potential biological control agent for agricultural pests and a pest in sericulture. We found that the expression levels of nitric oxide synthase (NOS) and nitric oxide (NO) production in host Bombyx mori (Lepidoptera: Bombycidae) were increased after E. sorbillans infection. Reducing NOS expression and NO production with an NOS inhibitor (NG-nitro-L-arginine methyl ester hydrochloride) in infected B. mori significantly impeded the growth of E. sorbillans larvae. Moreover, the biosynthesis of 20-hydroxyecdysone (20E) in infected hosts was elevated with increasing NO production, and inhibiting NOS expression lowered 20E biosynthesis. More importantly, induced NO synthesis was required to eliminate intracellular bacterial pathogens that presumably competed for shared host resources. Inhibiting NOS expression down-regulated the transcription of antimicrobial peptide genes and increased the number of bacteria in parasitized hosts. Collectively, this study revealed a new perspective on the role of NO in host-parasitoid interactions and a novel mechanism for parasitoid regulation of host physiology to support its development.
Collapse
Affiliation(s)
- Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhe Jiang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Forni G, Mantovani B, Mikheyev AS, Luchetti A. Parthenogenetic Stick Insects Exhibit Signatures of Preservation in the Molecular Architecture of Male Reproduction. Genome Biol Evol 2024; 16:evae073. [PMID: 38573594 PMCID: PMC11108686 DOI: 10.1093/gbe/evae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
After the loss of a trait, theory predicts that the molecular machinery underlying its phenotypic expression should decay. Yet, empirical evidence is contrasting. Here, we test the hypotheses that (i) the molecular ground plan of a lost trait could persist due to pleiotropic effects on other traits and (ii) that gene co-expression network architecture could constrain individual gene expression. Our testing ground has been the Bacillus stick insect species complex, which contains close relatives that are either bisexual or parthenogenetic. After the identification of genes expressed in male reproductive tissues in a bisexual species, we investigated their gene co-expression network structure in two parthenogenetic species. We found that gene co-expression within the male gonads was partially preserved in parthenogens. Furthermore, parthenogens did not show relaxed selection on genes upregulated in male gonads in the bisexual species. As these genes were mostly expressed in female gonads, this preservation could be driven by pleiotropic interactions and an ongoing role in female reproduction. Connectivity within the network also played a key role, with highly connected-and more pleiotropic-genes within male gonad also having a gonad-biased expression in parthenogens. Our findings provide novel insight into the mechanisms which could underlie the production of rare males in parthenogenetic lineages; more generally, they provide an example of the cryptic persistence of a lost trait molecular architecture, driven by gene pleiotropy on other traits and within their co-expression network.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Alexander S Mikheyev
- Research School of Biology, Australian National University, 2600 Canberra, ACT, Australia
| | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Sun W, Lange MI, Gadau J, Buellesbach J. Decoding the genetic and chemical basis of sexual attractiveness in parasitic wasps. eLife 2023; 12:e86182. [PMID: 37431891 PMCID: PMC10435230 DOI: 10.7554/elife.86182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023] Open
Abstract
Attracting and securing potential mating partners is of fundamental importance for reproduction. Therefore, signaling sexual attractiveness is expected to be tightly coordinated in communication systems synchronizing senders and receivers. Chemical signaling has permeated through all taxa of life as the earliest and most widespread form of communication and is particularly prevalent in insects. However, it has been notoriously difficult to decipher how exactly information related to sexual signaling is encoded in complex chemical profiles. Similarly, our knowledge of the genetic basis of sexual signaling is very limited and usually restricted to a few case studies with comparably simple pheromonal communication mechanisms. The present study jointly addresses these two knowledge gaps by characterizing two fatty acid synthase genes that most likely evolved by tandem gene duplication and that simultaneously impact sexual attractiveness and complex chemical surface profiles in parasitic wasps. Gene knockdown in female wasps dramatically reduces their sexual attractiveness coinciding with a drastic decrease in male courtship and copulation behavior. Concordantly, we found a striking shift of methyl-branching patterns in the female surface pheromonal compounds, which we subsequently demonstrate to be the main cause for the greatly reduced male mating response. Intriguingly, this suggests a potential coding mechanism for sexual attractiveness mediated by specific methyl-branching patterns in complex cuticular hydrocarbon (CHC) profiles. So far, the genetic underpinnings of methyl-branched CHCs are not well understood despite their high potential for encoding information. Our study sheds light on how biologically relevant information can be encoded in complex chemical profiles and on the genetic basis of sexual attractiveness.
Collapse
Affiliation(s)
- Weizhao Sun
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| | - Michelle Ina Lange
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| | - Jürgen Gadau
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| |
Collapse
|
9
|
Gao X, Zhang K, Zhao L, Zhu X, Wang L, Li D, Ji J, Niu L, Luo J, Cui J. Sublethal toxicity of sulfoxaflor to parasitoid Binodoxys communis Gahan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115169. [PMID: 37379663 DOI: 10.1016/j.ecoenv.2023.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/17/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Integrated pest management is focused on combining biological and chemical controls. There is evidence of a negative impact of neonicotinoids on biological control, however, sulfoxaflor (SFX), a novel insecticide, its impact on parasitoid natural predator remain limited. Binodoxys communis is an important parasitic natural enemy of Aphis gossypii, which may have direct and indirect toxicity from the insecticides and aphids. Understanding the potential threat of SFX to B. communis is therefore essential to integrated pest management and the conservation of parasitoids. Here, the effects of sublethal doses of SFX on B. communis larvae and adults are presented for the first time. Sublethal SFX doses had a significant negative effect on the survival rate, adult life span, duration of development, and rate of parasitism. Moreover, exposure to sublethal SFX doses also had adverse effects on the biological performance of the next generation of B. communis. Based on the transcriptome analysis, the expression of genes involved in fatty acid metabolism, glycerolipid metabolism, glycerophospholipid metabolism, peroxidase, lysosomes, glutathione metabolism, drug metabolism, and CYP450 were significantly shifted by sublethal SFX exposure. These results indicate that sublethal SFX doses might adversely affect the biological performance of B. communis by altering gene expression related to the function of detoxification systems and energy metabolism. In conclusion, considering the beneficial ecological services of provided by parasitoids and the negative effects of sulfoxaflor across a greater usage scale, we emphasize the importance to optimize pesticide applications in IPM packages, in order to ensure the safety and survival of natural pest parasitoids.
Collapse
Affiliation(s)
- Xueke Gao
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Kaixin Zhang
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Likang Zhao
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangzhen Zhu
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyang Li
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jichao Ji
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Niu
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junyu Luo
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Jinjie Cui
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
10
|
Gulinuer A, Xing B, Yang L. Host Transcriptome Analysis of Spodoptera frugiperda Larvae Parasitized by Microplitis manilae. INSECTS 2023; 14:insects14020100. [PMID: 36835669 PMCID: PMC9966743 DOI: 10.3390/insects14020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 05/12/2023]
Abstract
It has been extensively found that parasitoids manipulate host physiology to benefit the survival and development of their offspring. However, the underlying regulatory mechanisms have not received much attention. To reveal the effects of parasitization of the larval solitary endoparasitoid Microplitis manilae (Hymenoptera: Braconidae) on host Spodoptera frugiperda (Lepidoptera: Noctuidae), one of the most destructive agricultural pests in China, deep-sequencing-based transcriptome analysis was conducted to compare the host gene expression levels after 2 h, 24 h, and 48 h parasitization. A total of 1861, 962, and 108 differentially expressed genes (DEGs) were obtained from the S. frugiperda larvae at 2 h, 24 h, and 48 h post-parasitization, respectively, compared with unparasitized controls. The changes in host gene expressions were most likely caused by the injection of wasp parasitic factors, including PDVs, that were injected along with the eggs during oviposition. Based on the functional annotations in GO and KEGG databases, we revealed that most DEGs were implicated in host metabolism and immunity. Further analysis of the common DEGs in three comparisons between the unparasitized and parasitized groups identified four genes, including one unknown and three prophenoloxidase (PPO) genes. Moreover, 46 and 7 common DEGs involved in host metabolism and immunity were identified at two or three time points after parasitization, respectively. Among these, most DEGs showed increased expressions at 2 h post-wasp parasitization while exhibiting significantly decreased expression levels at 24 h post-parasitization, demonstrating the expression regulations of M. manilae parasitization on host metabolism and immune-related genes. Further qPCR verification in 20 randomly selected DEGs confirmed the accuracy and reproducibility of the gene expression profiles generated from RNA-seq. This study reveals the molecular regulatory network about how host insects respond to wasp parasitism, laying a solid foundation for revealing the physiological manipulation of wasp parasitization on host insects, which facilitates the development of biological control practices for parasitoids.
Collapse
Affiliation(s)
- Ahamaijiang Gulinuer
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- School of Tropical Crops, Hainan University, Sanya 572024, China
| | - Binglin Xing
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- School of Tropical Crops, Hainan University, Sanya 572024, China
| | - Lei Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- School of Tropical Crops, Hainan University, Sanya 572024, China
- Correspondence:
| |
Collapse
|
11
|
Visser B, Le Lann C, Hahn DA, Lammers M, Nieberding CM, Alborn HT, Enriquez T, Scheifler M, Harvey JA, Ellers J. Many parasitoids lack adult fat accumulation, despite fatty acid synthesis: A discussion of concepts and considerations for future research. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100055. [PMID: 37124650 PMCID: PMC10139962 DOI: 10.1016/j.cris.2023.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Fat reserves, specifically the accumulation of triacylglycerols, are a major energy source and play a key role for life histories. Fat accumulation is a conserved metabolic pattern across most insects, yet in most parasitoid species adults do not gain fat mass, even when nutrients are readily available and provided ad libitum. This extraordinary physiological phenotype has evolved repeatedly in phylogenetically dispersed parasitoid species. This poses a conundrum because it could lead to significant constraints on energy allocation toward key adult functions such as survival and reproduction. Recent work on the underlying genetic and biochemical mechanisms has spurred a debate on fat accumulation versus fat production, because of incongruent interpretation of results obtained using different methodologies. This debate is in part due to semantics, highlighting the need for a synthetic perspective on fat accumulation that reconciles previous debates and provides new insights and terminology. In this paper, we propose updated, unambiguous terminology for future research in the field, including "fatty acid synthesis" and "lack of adult fat accumulation", and describe the distinct metabolic pathways involved in the complex process of lipogenesis. We then discuss the benefits and drawbacks of the main methods available to measure fatty acid synthesis and adult fat accumulation. Most importantly, gravimetric/colorimetric and isotope tracking methods give complementary information, provided that they are applied with appropriate controls and interpreted correctly. We also compiled a comprehensive list of fat accumulation studies performed during the last 25 years. We present avenues for future research that combine chemistry, ecology, and evolution into an integrative approach, which we think is needed to understand the dynamics of fat accumulation in parasitoids.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Corresponding author.
| | - Cécile Le Lann
- CNRS, ECOBIO (écosystèmes, Biodiversité, Évolution) – UMR, Université de Rennes, 6553, France
| | - Daniel A. Hahn
- Department of Entomology and Nematology, The University of Florida, USA
| | - Mark Lammers
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | - Hans T. Alborn
- United States Department of Agriculture, Chemistry Research Unit, Gainesville, USA
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, the Netherlands
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
12
|
Xue H, Zhao Y, Wang L, Zhu X, Zhang K, Li D, Ji J, Niu L, Cui J, Luo J, Gao X. Regulation of amino acid metabolism in Aphis gossypii parasitized by Binodoxys communis. Front Nutr 2022; 9:1006253. [PMID: 36245483 PMCID: PMC9558109 DOI: 10.3389/fnut.2022.1006253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The vast majority of parasitoids are capable of precise and meticulous regulation of nutrition and metabolism within the host. An important building block of life, amino acids are critical to the development of parasitoids. To date, research on how parasitoids regulate host amino acid metabolism remains limited. In this study, Aphis gossypii and its dominant parasitoid Binodoxys communis were used as a study system to explore how parasitism may change the regulation of amino acids in A. gossypii with UHPLC-MS/MS and RT-qPCR techniques. Here, for the first 8 h of parasitism the abundance of almost all amino acids in cotton aphids increased, and after 16 h most of the amino acids decreased. An amino acid of parasitic syndrome, the content of Tyr increased gradually after being parasitized. The expression of genes related to amino acid metabolism increased significantly in early stages of parasitism and then significantly decreased gradually. At the same time, the abundance of Buchnera, a cotton aphid specific symbiont increased significantly. Our comprehensive analyses reveal impacts of B. communis on the amino acid regulatory network in cotton aphid from three aspects: amino acid metabolism, gene expression, and bacterial symbionts. Therefore, this research provides an important theoretical basis for parasitoid nutritional regulation in host, which is highly significant as it may inform the artificial reproduction of parasitoids and the biological control of insect pests.
Collapse
Affiliation(s)
- Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunyun Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Jinjie Cui,
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Junyu Luo,
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xueke Gao,
| |
Collapse
|
13
|
Forni G, Martelossi J, Valero P, Hennemann FH, Conle O, Luchetti A, Mantovani B. Macroevolutionary Analyses Provide New Evidence of Phasmid Wings Evolution as a Reversible Process. Syst Biol 2022; 71:1471-1486. [PMID: 35689634 DOI: 10.1093/sysbio/syac038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept that complex ancestral traits can never be recovered after their loss is still widely accepted, despite phylogenetic and molecular approaches suggest instances where phenotypes may have been lost throughout the evolutionary history of a clade and subsequently reverted back in derived lineages. One of the first and most notable examples of such a process is wing evolution in phasmids; this polyneopteran order of insects, which comprises stick and leaf insects, has played a central role in initiating a long-standing debate on the topic. In this study, a novel and comprehensive time tree including over 300 Phasmatodea species is used as a framework for investigating wing evolutionary patterns in the clade. Despite accounting for several possible biases and sources of uncertainty, macroevolutionary analyses consistently revealed multiple reversals to winged states taking place after their loss, and reversibility is coupled with higher species diversification rates. Our findings support a loss of or reduction in wings that occurred in the lineage leading to the extant phasmid most recent common ancestor, and brachyptery is inferred to be an unstable state unless co-opted for nonaerodynamic adaptations. We also explored how different assumptions of wing reversals probability could impact their inference: we found that until reversals are assumed to be over 30 times more unlikely than losses, they are consistently inferred despite uncertainty in tree and model parameters. Our findings demonstrate that wing evolution is a reversible and dynamic process in phasmids and contribute to our understanding of complex trait evolution.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | - Jacopo Martelossi
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | | | | | | | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| |
Collapse
|
14
|
Wang J, Song Y, Hwarari DT, Liang XH, Ding JH, Yan MW, Wu FA, Wang J, Sheng S. Fatty acid synthases and desaturases are essential for the biosynthesis of α-linolenic acid and metamorphosis in a major mulberry pest, Glyphodes pyloalis walker (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2022; 78:2629-2642. [PMID: 35362207 DOI: 10.1002/ps.6895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND α-linolenic acid is an essential unsaturated fatty acid in organisms. However, there is a large gap between α-linolenic acid accumulation and its synthesis mechanism in insects. Fatty acid synthases (FASs) and desaturases (Desats) are vital enzymes required for the synthesis of unsaturated fatty acids. RESULTS The pupae of Glyphodes pyloalis (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees, contain the highest level of α-linolenic acid compared to other life-history stages. To further explore the synthesis mechanism of α-linolenic acid in G. pyloalis pupae, we constructed a pupal transcriptome dataset and identified 106 genes related to fatty acid metabolism from it. Among these, two fatty acid synthases (GpylFAS) and five desaturases (GpylDesat) were identified. A qRT-PCR validation revealed that GpylFAS1 and GpylDesat1, 2, 3, 5 were expressed highest at pupal stages. Furthermore, the content of α-linolenic acid decreased significantly after silencing GpylFAS1 and GpylDesat5, respectively. Besides, knocking down GpylFAS1 or GpylDesat5 resulted in more malformed pupae and adults, as well as lower emergence rates. Meanwhile, silencing GpylFAS1 or GpylDesat5 affected the expressions of the other GpylFASs and GpylDesats. CONCLUSION The present results illustrate the pivotal function of FASs and Desats in α-linolenic acid biosynthesis and metamorphosis in insects. Our research also broadens the sources of unsaturated fatty acids, especially for α-linolenic acid from insects, and provides novel insights for the management of mulberry insect pests from the perspective of utilization rather than control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Song
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Delight T Hwarari
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-Hao Liang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Meng-Wen Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| |
Collapse
|
15
|
Multerer MT, Wendler M, Ruther J. The biological significance of lipogenesis in Nasonia vitripennis. Proc Biol Sci 2022; 289:20220208. [PMID: 35414234 PMCID: PMC9006012 DOI: 10.1098/rspb.2022.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parasitic wasps have long been thought to be unable to synthesize fatty acids de novo, but recent 13C-labelling studies have challenged this view. It remained unclear, however, whether the reported biosynthesis rates are of biological relevance. Here, we show in Nasonia vitripennis that ageing females with partly depleted lipid reserves produce biologically relevant amounts of fatty acids de novo. Females with varying oviposition history (0-48 h) prior to feeding 20% 13C-labelled glucose solution showed 13C-incorporation rates of (mean ± SEM) 30 ± 2%, 50 ± 2%, 49 ± 3% and 21 ± 2% in palmitic, stearic, oleic and linoleic acid, respectively. The absolute amounts of fatty acids synthesized de novo across treatments corresponded to 28 ± 3 egg lipid equivalents. Females incorporated de novo synthesized fatty acids into their eggs, and glucose-fed females laid more eggs than water-fed control females. The number of eggs laid prior to glucose feeding did not correlate with the degree of lipogenesis, but the amounts of de novo synthesized fatty acids correlated with constitutive (not synthesized de novo) fatty acids. Hence, glucose feeding has a twofold effect on the fatty acid status of N. vitripennis females by decelerating the catabolism of existing fat reserves and partially replenishing ebbing fat reserves by lipogenesis.
Collapse
Affiliation(s)
- Marie-Theres Multerer
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martina Wendler
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Ruther J, Prager L, Pokorny T. Parasitic wasps do not lack lipogenesis. Proc Biol Sci 2021; 288:20210548. [PMID: 34034524 PMCID: PMC8150038 DOI: 10.1098/rspb.2021.0548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Fatty acids are crucial primary metabolites for virtually all creatures on earth. Most organisms thus do not rely exclusively on a nutritional supply containing fatty acids, but have the ability to synthesize fatty acids and triacylglycerides de novo from carbohydrates in a process called lipogenesis. The ubiquity of lipogenesis has been questioned by a series of studies reporting that many parasitic wasps (parasitoids) do not accumulate lipid mass despite having unlimited access to sugar. This has been interpreted as an evolutionary metabolic trait loss in parasitoids. Here, we demonstrate de novo biosynthesis of fatty acids from 13C-labelled α-d-glucose in 13 species of parasitoids from seven families. We furthermore show in the model organism Nasonia vitripennis that lipogenesis occurs even when lipid reserves are still intact, but relative 13C-incorporation rates increase in females with widely depleted fat reserves. We therefore conclude that the presumed 'lack of lipogenesis' in parasitoids needs to be re-evaluated.
Collapse
Affiliation(s)
- Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lorena Prager
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Holze H, Schrader L, Buellesbach J. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity (Edinb) 2021; 126:219-234. [PMID: 33139902 PMCID: PMC8027674 DOI: 10.1038/s41437-020-00380-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. This will be instrumental in greatly expanding our knowledge of the origins and variation of genes governing the biosynthesis of these crucial phenotypic traits that have greatly impacted insect behavior, physiology, and evolution.
Collapse
Affiliation(s)
- Henrietta Holze
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Jan Buellesbach
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany.
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720-3114, USA.
| |
Collapse
|
18
|
Xue X, Suvorov A, Fujimoto S, Dilman AR, Adams BJ. Genome analysis of Plectus murrayi, a nematode from continental Antarctica. G3-GENES GENOMES GENETICS 2021; 11:6044189. [PMID: 33561244 PMCID: PMC8022722 DOI: 10.1093/g3journal/jkaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
Abstract
Plectus murrayi is one of the most common and locally abundant invertebrates of continental Antarctic ecosystems. Because it is readily cultured on artificial medium in the laboratory and highly tolerant to an extremely harsh environment, P. murrayi is emerging as a model organism for understanding the evolutionary origin and maintenance of adaptive responses to multiple environmental stressors, including freezing and desiccation. The de novo assembled genome of P. murrayi contains 225.741 million base pairs and a total of 14,689 predicted genes. Compared to Caenorhabditis elegans, the architectural components of P. murrayi are characterized by a lower number of protein-coding genes, fewer transposable elements, but more exons, than closely related taxa from less harsh environments. We compared the transcriptomes of lab-reared P. murrayi with wild-caught P. murrayi and found genes involved in growth and cellular processing were up-regulated in lab-cultured P. murrayi, while a few genes associated with cellular metabolism and freeze tolerance were expressed at relatively lower levels. Preliminary comparative genomic and transcriptomic analyses suggest that the observed constraints on P. murrayi genome architecture and functional gene expression, including genome decay and intron retention, may be an adaptive response to persisting in a biotically simplified, yet consistently physically harsh environment.
Collapse
Affiliation(s)
- Xia Xue
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.,Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Anton Suvorov
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Stanley Fujimoto
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Adler R Dilman
- Department of Nematology, University of California, Riverside, CA, USA
| | - Byron J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| |
Collapse
|
19
|
Ye X, Xiong S, Teng Z, Yang Y, Wang J, Yu K, Wu H, Mei Y, Yan Z, Cheng S, Yin C, Wang F, Yao H, Fang Q, Song Q, Werren JH, Ye G, Li F. Amino acid synthesis loss in parasitoid wasps and other hymenopterans. eLife 2020; 9:e59795. [PMID: 33074103 PMCID: PMC7593089 DOI: 10.7554/elife.59795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022] Open
Abstract
Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and specifically can be used to inform the design of parasitoid artificial diets for pest control.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
- Department of Biology, University of RochesterRochesterUnited States
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Sammy Cheng
- Department of Biology, University of RochesterRochesterUnited States
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of MissouriColumbiaUnited States
| | - John H Werren
- Department of Biology, University of RochesterRochesterUnited States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Lipid Dynamics, Identification, and Expression Patterns of Fatty Acid Synthase Genes in an Endoparasitoid, Meteorus pulchricornis (Hymenoptera: Braconidae). Int J Mol Sci 2020; 21:ijms21176228. [PMID: 32872177 PMCID: PMC7503466 DOI: 10.3390/ijms21176228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
In insect parasitoids, fatty acid synthases (FASs) have received less attention and their roles associated with lipogenesis loss are far from clear. Meteorus pulchricornis is a solitary endoparasitoid wasp of many larvae of lepidopteran pests. The lipid content during developmental stages of M. pulchricornis was measured; it was higher in the larval and pupal stages but declined from six-day-old pupae. Lipid accumulation constantly decreased in the adult stage, even after feeding on honey solutions. To investigate the roles of FASs in lipid synthesis in M. pulchricornis, four FAS genes (MpulFAS1~4) were identified from the transcriptome database of M. pulchricornis. All FAS genes included full-length open reading frames and shared 72–79% similarity with the sequences of Microplitis demolitor. qRT-PCR validation showed that all four FASs had the highest expression after the adult wasps were fed on honey diets. MpulFAS1 and MpulFAS2 reached their expression peaks at the adult stage but MpulFAS3 and MpulFAS4 peaked at the larval stage. To further study the function of FASs, dsRNA injection knocked down the expression of four MpulFASs and resulted in a significant decline of lipid content at the adult stage in M. pulchricornis. Results from this study suggest that M. pulchricornis adults cannot accumulate lipid content effectively and FASs may still contribute to lipid synthesis in the adult stage. This broadens the knowledge on the ability of lipid synthesis in parasitoid wasps and provides insight into the roles of FASs in insects with parasitic life-history traits.
Collapse
|
21
|
Water lily ( Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. Proc Natl Acad Sci U S A 2020; 117:8649-8656. [PMID: 32234787 DOI: 10.1073/pnas.1922873117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For more than 225 million y, all seed plants were woody trees, shrubs, or vines. Shortly after the origin of angiosperms ∼140 million y ago (MYA), the Nymphaeales (water lilies) became one of the first lineages to deviate from their ancestral, woody habit by losing the vascular cambium, the meristematic population of cells that produces secondary xylem (wood) and phloem. Many of the genes and gene families that regulate differentiation of secondary tissues also regulate the differentiation of primary xylem and phloem, which are produced by apical meristems and retained in nearly all seed plants. Here, we sequenced and assembled a draft genome of the water lily Nymphaea thermarum, an emerging system for the study of early flowering plant evolution, and compared it to genomes from other cambium-bearing and cambium-less lineages (e.g., monocots and Nelumbo). This revealed lineage-specific patterns of gene loss and divergence. Nymphaea is characterized by a significant contraction of the HD-ZIP III transcription factors, specifically loss of REVOLUTA, which influences cambial activity in other angiosperms. We also found the Nymphaea and monocot copies of cambium-associated CLE signaling peptides display unique substitutions at otherwise highly conserved amino acids. Nelumbo displays no obvious divergence in cambium-associated genes. The divergent genomic signatures of convergent loss of vascular cambium reveals that even pleiotropic genes can exhibit unique divergence patterns in association with independent events of trait loss. Our results shed light on the evolution of herbaceousness-one of the key biological innovations associated with the earliest phases of angiosperm evolution.
Collapse
|
22
|
Ellers J, Visser M, Mariën J, Kraaijeveld K, Lammers M. The Importance of Validating the Demethylating Effect of 5-aza-2'-deoxycytidine in Model Species (A Comment on Cook et al., "DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis"). Am Nat 2019; 194:422-431. [PMID: 31553212 DOI: 10.1086/704247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of DNA demethylating agents has been popular in epigenetic studies. Recently, Cook and colleagues, in a 2015 American Naturalist article, claimed an effect of 5-aza-2'-deoxycytidine (5-aza-dC) on the sex ratio of a parasitoid wasp without verifying its effect on DNA methylation. We repeated the 5-aza-dC feeding treatment to test its effectiveness. We used bisulfite amplicon sequencing of 10 genes that either were heavily methylated, previously showed a response to 5-aza-dC, or were suggested to regulate fatty acid synthesis epigenetically, and we demonstrate that wasps fed 5-aza-dC did not show reduced DNA methylation at these loci. Therefore, the conclusion that demethylation shifts sex ratios upward needs reconsideration.
Collapse
|