1
|
Chen S, Nie H, Huo Z, Yan X. TCONS_00025035-miR-101-UROS is potentially involved in the regulation of heme synthesis pathway and influences mantle melanin deposition by targeting porphyrin in Manila clam (Ruditapes philippinarum). Int J Biol Macromol 2024; 282:136913. [PMID: 39461636 DOI: 10.1016/j.ijbiomac.2024.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Shell color is an important economic trait and one of the target traits in breeding and production. Non-coding RNA (ncRNA) refers to RNA molecules transcribed from the genome and do not encoding proteins, which can regulate the expression of target genes after transcription and participate in the regulation of many important traits, such as the formation of shell color and body color. In this study, we detected the porphyrins in the shells of three Manila clams with different shell colors, explored the expression pattern and function of Uroporphyrinogen III synthetase (UROS) in the shell color pigmentation of Ruditapes philippinarum, and found that it might be involved in the synthesis of porphyrins and potentially in the synthesis of melanin. The results showed that the expression levels of heme synthesis-related genes such as UROS, Uroporphyrinogen decarboxylase (UROD), Ferrochelatase (FECH), Hephaestin (HEPH), and pigment synthesis-related genes (Peroxidasin PXDN) in the positive group were significantly reduced compared with the control group after injection of UROS dsRNA, indicating that UROS plays a crucial role in the porphyrin synthesis pathway. Additionally, transmission electron microscopy and melanin extraction experiments also proved that it might participate in the synthesis of melanin. We further explored and verified the relationship between TCONS_00025035-miR-101-UROS and identified the changes in the expression level of UROS through RNA interference and injection of miR-101 antagomir, respectively. Our results imply that miR-101 antagonists affect the expression of UROS. Furthermore, dual-luciferase reporter gene experiments confirmed the relationship between TCON_00025035, miR-101, and UROS. The regulatory relationship between TCONS_00025035 and miR-101 is negative, and the regulatory relationship between miR-101 and UROS is also negative. In summary, we verified the function of UROS through RNA interference, qPCR, in situ hybridization, and melanin content detection. We speculated that there was a negative relationship between miR-101 and UROS, and there was also a negative relationship between TCONS_00025035 and miR-101. TCONS_00025035 might regulate UROS through the regulation of miR-101, and UROS might also regulate other pigmentation-related genes and affect the formation of pigments, thereby influencing porphyrin and melanin formation in Manila clam.
Collapse
Affiliation(s)
- Sitong Chen
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
2
|
Jiang K, Xu C, Yu H, Kong L, Liu S, Li Q. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:364-379. [PMID: 38483671 DOI: 10.1007/s10126-024-10302-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
3
|
Chen S, Nie H, Huo Z, Yan X. Comprehensive analysis of differentially expressed mRNA, lncRNA and miRNA, and their ceRNA networks in the regulation of shell color in the Manila clam (Ruditapes philippinarum). Int J Biol Macromol 2024; 256:128404. [PMID: 38016607 DOI: 10.1016/j.ijbiomac.2023.128404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The regulatory mechanism of ceRNA network plays an important role in molecular function and biological processes, however, the molecular mechanism in the shell color of Ruditapes philippinarum has not yet been reported. In this study, we performed transcriptome sequencing on the mantle of R. philippinarum with different shell colors, and screened for mRNA, miRNA, and lncRNA. A total of 61 mRNAs, 3725 lncRNAs and 90 miRNAs were obtained from all the shell color comparison groups (all mRNAs, lncRNAs and miRNAs P < 0.05), and 7 mRNAs, 8 lncRNAs, and 4 miRNAs of the porphyrin pathway and melanin pathway were screened for competitive endogenous RNA (ceRNA) network construction. The results indicate that the ceRNA network composed of mRNA and lncRNA, centered around efu-miR-101, mle-bantam-3p, egr-miR-9-5p, and sma-miR-75p, may play a crucial regulatory role in shell color formation. This study reveals for the first time the mechanism of ceRNA regulatory networks in the shell color of R. philippinarum and providing important reference data for molecular breeding of shell color in R. philippinarum.
Collapse
Affiliation(s)
- Sitong Chen
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
4
|
Yang W, Cui J, Chen Y, Wang C, Yin Y, Zhang W, Liu S, Sun C, Li H, Duan Y, Song F, Cai W, Hines HM, Tian L. Genetic Modification of a Hox Locus Drives Mimetic Color Pattern Variation in a Highly Polymorphic Bumble Bee. Mol Biol Evol 2023; 40:msad261. [PMID: 38039153 PMCID: PMC10724181 DOI: 10.1093/molbev/msad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.
Collapse
Affiliation(s)
- Wanhu Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jixiang Cui
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuxin Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuanzhi Yin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Wang Y, Mao J, Fan Z, Hang Y, Tang A, Tian Y, Wang X, Hao Z, Han B, Ding J, Chang Y. Transcriptome analysis reveals core lncRNA-mRNA networks regulating melanization and biomineralization in Patinopecten yessoensis shell-infested by Polydora. BMC Genomics 2023; 24:723. [PMID: 38031026 PMCID: PMC10687851 DOI: 10.1186/s12864-023-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Patinopecten yessoensis, a large and old molluscan group, has been one of the most important aquaculture shellfish in Asian countries because of its high economic value. However, the aquaculture of the species has recently been seriously affected by the frequent outbreaks of Polydora disease, causing great economic losses. Long non-coding RNAs (lncRNAs) exhibit exhibit crucial effects on diverse biological processes, but still remain poorly studied in scallops, limiting our understanding of the molecular regulatory mechanism of P. yessoensis in response to Polydora infestation. RESULTS In this study, a high-throughput transcriptome analysis was conducted in the mantles of healthy and Polydora-infected P. yessoensis by RNA sequencing. A total of 19,133 lncRNAs with 2,203 known and 16,930 novel were identified. The genomic characterizations of lncRNAs showed shorter sequence and open reading frame (ORF) length, fewer number of exons and lower expression levels in comparison with mRNAs. There were separately 2280 and 1636 differentially expressed mRNAs and lncRNAs (DEGs and DELs) detected in diseased individuals. The target genes of DELs were determined by both co-location and co-expression analyses. Functional enrichment analysis revealed that DEGs involved in melanization and biomineralization were significantly upregulated; further, obviously increased melanin granules were observed in epithelial cells of the edge mantle in diseased scallops by histological and TEM study, indicating the crucial role of melanizaiton and biomineralization in P. yessoensis to resist against Polydora infestation. Moreover, many key genes, such as Tyrs, Frizzled, Wnts, calmodulins, Pifs, perlucin, laccase, shell matrix protein, mucins and chitins, were targeted by DELs. Finally, a core lncRNA-mRNA interactive network involved in melanization and biomineralization was constructed and validated by qRT-PCR. CONCLUSIONS This work provides valuable resources for studies of lncRNAs in scallops, and adds a new insight into the molecular regulatory mechanisms of P. yessoensis defending against Polydora infestation, which will contribute to Polydora disease control and breeding of disease-resistant varieties in molluscs.
Collapse
Affiliation(s)
- Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Zhiyue Fan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yunna Hang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - AnQi Tang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
6
|
Wang S, Li M, Jiang Y, Sun C, Wu G, Yang C, Liu W, Pan Y. Transcriptome analysis reveals immune regulation in the spleen of koi carp (Cyprinus carpio Koi) during Aeromonas hydrophila infection. Mol Immunol 2023; 162:11-20. [PMID: 37633251 DOI: 10.1016/j.molimm.2023.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
A. hydrophila (Aeromonas hydrophila) is one of the most hazardous pathogenic microorganisms threatening the aquaculture industry and exhibits zoonotic-like characteristics. This study was designed to investigate the differential gene expression and pathway enrichment in the spleen of koi carp (Cyprinus carpio koi) upon A. hydrophila infection. The Illumina NovaSeq 6000 sequencing platform was used to identify 252 DEGs (differentially expressed genes), including 112 upregulated genes and 140 downregulated genes, in the spleens of koi carp challenged with A. hydrophila compared to those in the spleens of koi carp treated with PBS (phosphate-buffered saline). DEGs were shown to be involved in 133 pathways by KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Numerous immunological disease-related pathways, such as the immune defense network for IgA production, Staphylococcus aureus infection, and antigen processing and presentation, were enriched in the DEGs. In addition, the expression levels of 10 randomly screened DEGs, including the inflammatory factor nlrp3 (NOD-like receptor family pyrin domain containing 3), cytokine il-8 (interleukin-8), c2 (complement c2), c3 (complement c3), and the lipid mediator cox1 (cyclooxygenase-1), were compared by qPCR. The results showed that six genes, including il-8, cox1, and nlrp3, were upregulated according to both RNA-seq and qPCR validation, while four, including c2 and c3, showed downregulated expression. This result verified a strong correlation between the RNA-seq and qPCR datasets at the expression level. Moreover, this study provided splenic transcriptome data for koi carp during A. hydrophila infection and provided theoretical support for future drug development.
Collapse
Affiliation(s)
- Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Mei Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China.
| | - Yu Jiang
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Chang Sun
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Chengyong Yang
- Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Wenli Liu
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Yufang Pan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Valette T, Leitwein M, Lascaux JM, Desmarais E, Berrebi P, Guinand B. Redundancy analysis, genome-wide association studies and the pigmentation of brown trout (Salmo trutta L.). JOURNAL OF FISH BIOLOGY 2023; 102:96-118. [PMID: 36218076 DOI: 10.1111/jfb.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The association of molecular variants with phenotypic variation is a main issue in biology, often tackled with genome-wide association studies (GWAS). GWAS are challenging, with increasing, but still limited, use in evolutionary biology. We used redundancy analysis (RDA) as a complimentary ordination approach to single- and multitrait GWAS to explore the molecular basis of pigmentation variation in brown trout (Salmo trutta) belonging to wild populations impacted by hatchery fish. Based on 75,684 single nucleotide polymorphic (SNP) markers, RDA, single- and multitrait GWAS allowed the extraction of 337 independent colour patterning loci (CPLs) associated with trout pigmentation traits, such as the number of red and black spots on flanks. Collectively, these CPLs (i) mapped onto 35 out of 40 brown trout linkage groups indicating a polygenic genomic architecture of pigmentation, (ii) were found to be associated with 218 candidate genes, including 197 genes formerly mentioned in the literature associated to skin pigmentation, skin patterning, differentiation or structure notably in a close relative, the rainbow trout (Onchorhynchus mykiss), and (iii) related to functions relevant to pigmentation variation (e.g., calcium- and ion-binding, cell adhesion). Annotated CPLs include genes with well-known pigmentation effects (e.g., PMEL, SLC45A2, SOX10), but also markers associated with genes formerly found expressed in rainbow or brown trout skins. RDA was also shown to be useful to investigate management issues, especially the dynamics of trout pigmentation submitted to several generations of hatchery introgression.
Collapse
|
9
|
Li R, Sun Y, Cui R, Zhang X. Comprehensive Transcriptome Analysis of Different Skin Colors to Evaluate Genes Related to the Production of Pigment in Celestial Goldfish. BIOLOGY 2022; 12:biology12010007. [PMID: 36671700 PMCID: PMC9854719 DOI: 10.3390/biology12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Skin color is an important phenotypic feature of vertebrate fitness under natural conditions. Celestial goldfish, a common goldfish breed in China, mainly shows three kinds of skin colors including white, yellow and brown. However, the molecular genetic basis of this phenotype is still unclear. In this study, high-throughput sequencing was carried out on the back skin tissues of celestial goldfish with different skin colors. About 58.46 Gb of original data were generated, filtered and blasted, and 74,297 mRNAs were obtained according to the reference transcriptome. A total of 4653 differentially expressed genes were screened out among the brown, yellow and white groups, and the expression of melanogenesis related genes in brown goldfish was significantly higher than the other two groups. There are 19 common differentially expressed genes among three groups, of which eight genes are related to pigment production, including tyrp1a, slc2a11b, mlana, gch2, loc113060382, loc113079820, loc113068772 and loc113059134. RT-qPCR verified that the expression patterns of randomly selected differentially expressed transcripts were highly consistent with those obtained by RNA sequencing. GO and KEGG annotation revealed that these differentially expressed genes were mostly enriched in pathways of the production of pigment, including melanogenesis, tyrosine metabolism, Wnt signaling pathway, MAPK signaling pathway etc. These results indicated that the external characteristics of goldfish are consistent with the analysis results at transcriptome level. The results of this study will lay a foundation for further study on the expression characteristics and gene network analysis of pigment related genes.
Collapse
Affiliation(s)
| | | | - Ran Cui
- Correspondence: (R.C.); (X.Z.)
| | | |
Collapse
|
10
|
Zhang P, Cao Y, Fu Y, Zhu H, Xu S, Zhang Y, Li W, Sun G, Jiang R, Han R, Li H, Li G, Tian Y, Liu X, Kang X, Li D. Revealing the Regulatory Mechanism of lncRNA-LMEP on Melanin Deposition Based on High-Throughput Sequencing in Xichuan Chicken Skin. Genes (Basel) 2022; 13:2143. [PMID: 36421818 PMCID: PMC9690664 DOI: 10.3390/genes13112143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 08/27/2023] Open
Abstract
The therapeutic, medicinal, and nourishing properties of black-bone chickens are highly regarded by consumers in China. However, some birds may have yellow skin (YS) or light skin rather than black skin (BS), which causes economic losses every year. Long noncoding RNAs (lncRNAs) are widely present in living organisms, and they perform various biological functions. Many genes associated with BS pigmentation have been discovered, but the lncRNAs involved and their detailed mechanisms have remained untested. We detected 56 differentially expressed lncRNAs from the RNA-seq of dorsal skin (BS versus YS) and found that TCONS_00054154 plays a vital role in melanogenesis by the combined analysis of lncRNAs and mRNAs. We found that the full length of the TCONS_00054154 sequence was 3093 bp by RACE PCR, and we named it LMEP. Moreover, a subcellular localization analysis identified that LMEP is mainly present in the cytoplasm. After the overexpression and the interference with LMEP, the tyrosinase content significantly increased and decreased, respectively (p < 0.05). In summary, we identified the important lncRNAs of chicken skin pigmentation and initially determined the effect of LMEP on melanin deposition.
Collapse
Affiliation(s)
- Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanfang Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yawei Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Huiyuan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuohui Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
11
|
Identification, characterization and differential expression analysis of a pteridine synthesis related gene, Ccptps, in koi carp (Cyprinus carpio L.). Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110814. [DOI: 10.1016/j.cbpb.2022.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
12
|
Comparative transcriptome analysis reveals immunoregulation mechanism of lncRNA-mRNA in gill and skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. BMC Genomics 2022; 23:206. [PMID: 35287569 PMCID: PMC8922914 DOI: 10.1186/s12864-022-08431-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Cryptocaryonosis caused by Cryptocaryon irritans is one of the major diseases of large yellow croaker (Larimichthys crocea), which lead to massive economic losses annually to the aquaculture industry of L. crocea. Although there have been some studies on the pathogenesis for cryptocaryonosis, little is known about the innate defense mechanism of different immune organs of large yellow croaker. Results In order to analyze the roles of long non-coding RNAs and genes specifically expressed between immune organs during the infection of C. irritans, in this study, by comparing transcriptome data from different tissues of L. crocea, we identified tissue-specific transcripts in the gills and skin, including 507 DE lncRNAs and 1592 DEGs identified in the gills, and 110 DE lncRNAs and 1160 DEGs identified in the skin. Furthermore, we constructed transcriptome co-expression profiles of L. crocea gill and skin, including 7,503 long noncoding RNAs (lncRNAs) and 23,172 protein-coding genes. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the DEGs and the target genes of the DE lncRNAs in the gill were specifically enriched in several pathways related to immune such as HIF-1 signaling pathway. The target genes of DE lncRNAs and DEGs in the skin are specifically enriched in the complement and coagulation cascade pathways. Protein–protein interaction (PPI) network analysis identified 3 hub genes including NFKBIA, TNFAIP3 and CEBPB, and 5 important DE lncRNAs including MSTRG.24134.4, MSTRG.3038.5, MSTRG.27019.3, MSTRG.26559.1, and MSTRG.10983.1. The expression patterns of 6 randomly selected differentially expressed immune-related genes were validated using the quantitative real-time PCR method. Conclusions In short, our study is helpful to explore the potential interplay between lncRNAs and protein coding genes in different tissues of L. crocea post C. irritans and the molecular mechanism of pathogenesis for cryptocaryonosis. Highlights Skin and gills are important sources of pro-inflammatory molecules,
and their gene expression patterns are tissue-specific after C. irritans infection. 15 DEGs and 5 DE
lncRNAs were identified as hub regulatory elements after C. irritans infection The HIF-1 signaling
pathway and the complement and coagulation cascade pathway may be key
tissue-specific regulatory pathways in gills and skin, respectively.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08431-w.
Collapse
|
13
|
Li Y, Hu Y, Cheng P, Chen S. Identification of Potential Blind-Side Hypermelanosis-Related lncRNA–miRNA–mRNA Regulatory Network in a Flatfish Species, Chinese Tongue Sole (Cynoglossus semilaevis). Front Genet 2022; 12:817117. [PMID: 35186018 PMCID: PMC8850641 DOI: 10.3389/fgene.2021.817117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Blind-side hypermelanosis has emerged as a major concern in commercial rearing environments of the flatfish aquaculture industry. To date, the underlying molecular mechanisms are not well understood. To fill this gap, in this study, whole transcriptomic sequencing and analyses were performed using normal skins and hypermelanic skins of the blind side of Chinese tongue sole (Cynoglossus semilaevis). Differentially expressed long non-coding RNAs (DElncRNAs), miRNAs (DEmiRNAs), and differentially expressed genes as well as their competing endogenous RNA (ceRNA) networks were identified. A total of 34 DElncRNAs, 226 DEmiRNAs, and 610 DEGs were identified. Finally, lncRNA–miRNA–mRNA regulatory networks (involving 29 DElncRNAs, 106 DEmiRNAs, and 162 DEGs) associated with blind-side hypermelanosis were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 162 DEGs in ceRNA networks identified DEGs (e.g., oca2, mc1r, and ihhb) in pigmentation-related biological processes and DEGs (e.g., ca4, glul, and fut9) in nitrogen metabolism, glycosphingolipid biosynthesis, and folate biosynthesis pathways, as well as their corresponding DElncRNAs and DEmiRNAs to potentially play key regulatory roles in blind-side hypermelanosis. In conclusion, this is the first study on the ceRNA regulatory network associated with blind-side hypermelanosis in flatfish. These new findings expand the spectrum of non-coding regulatory mechanisms underpinning blind-side hypermelanosis, which facilitates the further exploration of molecular regulatory mechanisms of malpigmentation in flatfish.
Collapse
Affiliation(s)
- Yangzhen Li
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yangzhen Li,
| | - Yuanri Hu
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Cheng
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Songlin Chen
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
García-Pérez I, Molsosa-Solanas A, Perelló-Amorós M, Sarropoulou E, Blasco J, Gutiérrez J, Garcia de la serrana D. The Emerging Role of Long Non-Coding RNAs in Development and Function of Gilthead Sea Bream ( Sparus aurata) Fast Skeletal Muscle. Cells 2022; 11:428. [PMID: 35159240 PMCID: PMC8834446 DOI: 10.3390/cells11030428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an emerging group of ncRNAs that can modulate gene expression at the transcriptional or translational levels. In the present work, previously published transcriptomic data were used to identify lncRNAs expressed in gilthead sea bream skeletal muscle, and their transcription levels were studied under different physiological conditions. Two hundred and ninety lncRNAs were identified and, based on transcriptomic differences between juveniles and adults, a total of seven lncRNAs showed potential to be important for muscle development. Our data suggest that the downregulation of most of the studied lncRNAs might be linked to increased myoblast proliferation, while their upregulation might be necessary for differentiation. However, with these data, as it is not possible to propose a formal mechanism to explain their effect, bioinformatic analysis suggests two possible mechanisms. First, the lncRNAs may act as sponges of myoblast proliferation inducers microRNAs (miRNAs) such as miR-206, miR-208, and miR-133 (binding energy MEF < -25.0 kcal). Secondly, lncRNA20194 had a strong predicted interaction towards the myod1 mRNA (ndG = -0.17) that, based on the positive correlation between the two genes, might promote its function. Our study represents the first characterization of lncRNAs in gilthead sea bream fast skeletal muscle and provides evidence regarding their involvement in muscle development.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Anna Molsosa-Solanas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Crete, Greece;
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| |
Collapse
|
15
|
Hou X, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Genome-Wide Expression Profiling of mRNAs, lncRNAs and circRNAs in Skeletal Muscle of Two Different Pig Breeds. Animals (Basel) 2021; 11:ani11113169. [PMID: 34827901 PMCID: PMC8614396 DOI: 10.3390/ani11113169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Variation exists in muscle-related traits, such as muscle growth and meat quality, between obese and lean pigs. In this study, the transcriptome profiles of skeletal muscle between Beijing Blackand Yorkshire pigs were characterized to explore the molecular mechanism underlying skeletal muscle-relatedtraits. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that differentially expressed mRNAs, lncRNAs, and circRNAs involved in skeletal muscle development and fatty acid metabolism played a key role in the determination of muscle-related traits between different pig breeds. These results provide candidate genes responsible for muscle phenotypic variation and are valuable for pig breeding. Abstract RNA-Seq technology is widely used to analyze global changes in the transcriptome and investigate the influence on relevant phenotypic traits. Beijing Black pigs show differences in growth rate and meat quality compared to western pig breeds. However, the molecular mechanisms responsible for such phenotypic differences remain unknown. In this study, longissimus dorsi muscles from Beijing Black and Yorkshire pigs were used to construct RNA libraries and perform RNA-seq. Significantly different expressions were observed in 1051 mRNAs, 322 lncRNAs, and 82 circRNAs. GO and KEGG pathway annotation showed that differentially expressed mRNAs participated in skeletal muscle development and fatty acid metabolism, which determined the muscle-related traits. To explore the regulatory role of lncRNAs, the cis and trans-target genes were predicted and these lncRNAswere involved in the biological processes related to skeletal muscle development and fatty acid metabolismvia their target genes. CircRNAs play a ceRNA role by binding to miRNAs. Therefore, the potential miRNAs of differentially expressed circRNAs were predicted and interaction networks among circRNAs, miRNAs, and key regulatory mRNAs were constructed to illustrate the function of circRNAs underlying skeletal muscle development and fatty acid metabolism. This study provides new clues for elucidating muscle phenotypic variation in pigs.
Collapse
|
16
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
17
|
Shi X, Wu J, Lang X, Wang C, Bai Y, Riley DG, Liu L, Ma X. Comparative transcriptome and histological analyses provide insights into the skin pigmentation in Minxian black fur sheep (Ovis aries). PeerJ 2021; 9:e11122. [PMID: 33986980 PMCID: PMC8086576 DOI: 10.7717/peerj.11122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Minxian black fur (MBF) sheep are found in the northwestern parts of China. These sheep have developed several special traits. Skin color is a phenotype subject to strong natural selection and diverse skin colors are likely a consequence of differences in gene regulation. Methods Skin structure, color differences, and gene expression (determined by RNA sequencing) were evaluated the Minxian black fur and Small-tail Han sheep (n = 3 each group), which are both native Chinese sheep breeds. Results Small-tail Han sheep have a thicker skin and dermis than the Minxian black fur sheep (P < 0.01); however, the quantity of melanin granules is greater (P < 0.01) in Minxian black fur sheep with a more extensive distribution in skin tissue and hair follicles. One hundred thirty-three differentially expressed genes were significantly associated with 37 ontological terms and two critical KEGG pathways for pigmentation (“tyrosine metabolism” and “melanogenesis” pathways). Important genes from those pathways with known involvement in pigmentation included OCA2 melanosomal transmembrane protein (OCA2), dopachrome tautomerase (DCT), tyrosinase (TYR) and tyrosinase related protein (TYRP1), melanocortin 1 receptor (MC1R), and premelanosome protein (PMEL). The results from our histological and transcriptome analyses will form a foundation for additional investigation into the genetic basis and regulation of pigmentation in these sheep breeds.
Collapse
Affiliation(s)
- Xiaolei Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xia Lang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Cailian Wang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.,Key Laboratory for Sheep, Goat, and Cattle Germplasm and Straw Feed in Gansu Province, Lanzhou, Gansu Province, China
| | - Yan Bai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - David Greg Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Lishan Liu
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaoming Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
18
|
Chen Y, Wan S, Li Q, Dong X, Diao J, Liao Q, Wang GY, Gao ZX. Genome-Wide Integrated Analysis Revealed Functions of lncRNA-miRNA-mRNA Interaction in Growth of Intermuscular Bones in Megalobrama amblycephala. Front Cell Dev Biol 2021; 8:603815. [PMID: 33614620 PMCID: PMC7891300 DOI: 10.3389/fcell.2020.603815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Intermuscular bone (IB) occurs in the myosepta of teleosts. Its existence has an adverse influence on the edible and economic value of fish, especially for aquaculture species belonging to Cypriniformes. The growth mechanism of IBs is quite lacking. In this study, we firstly used single molecular real-time sequencing (SMRT) technology to improve the draft genome annotation and full characterization of the transcriptome for one typical aquaculture species, blunt snout bream (Megalobrama amblycephala). The long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression profiles in two IB growth stages (1 and 3 years old) were compared through transcriptome and degradome analyses. A total of 126 miRNAs, 403 mRNAs, and 353 lncRNAs were found to be differentially expressed between the two stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the significantly upregulated map2k6 and cytc in the MAPK/p53 signaling pathway and the significantly downregulated lama3 and thbs4b in the extracellular matrix (ECM)–receptor pathway may play a key regulatory role in IB growth. Bioinformatics analysis subsequently revealed 14 competing endogenous RNA (ceRNA) pairs related to the growth of IBs, consisting of 10 lncRNAs, 7 miRNAs, and 10 mRNAs. Of these, dre-miR-24b-3p and dre-miR-193b-3p are core regulatory factors interacting with four lncRNAs and three mRNAs, the interaction mechanism of which was also revealed by subsequent experiments at the cellular level. In conclusion, our data showed that IBs had higher activity of cell apoptosis and lower mineralization activity in IB_III compared to IB_I via interaction of MAPK/p53 and ECM–receptor signaling pathways. The downregulated zip1 interacted with miR-24a-3p and lnc017705, decreased osteoblast differentiation and Ca2+ deposition in the IB_III stage. Our identified functional mRNAs, lncRNAs, and miRNAs provide a data basis for in-depth elucidation of the growth mechanism of teleost IB.
Collapse
Affiliation(s)
- Yulong Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shiming Wan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan Xianfeng Aquaculture Technology Co. Ltd, Wuhan, China
| | - Xiaoru Dong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jinghan Diao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qing Liao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Gui-Ying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan Xianfeng Aquaculture Technology Co. Ltd, Wuhan, China
| | - Ze-Xia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, China
| |
Collapse
|
19
|
Gan W, Chung-Davidson YW, Chen Z, Song S, Cui W, He W, Zhang Q, Li W, Li M, Ren J. Global tissue transcriptomic analysis to improve genome annotation and unravel skin pigmentation in goldfish. Sci Rep 2021; 11:1815. [PMID: 33469041 PMCID: PMC7815744 DOI: 10.1038/s41598-020-80168-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Goldfish is an ornamental fish with diverse phenotypes. However, the limited genomic resources of goldfish hamper our understanding of the genetic basis for its phenotypic diversity. To provide enriched genomic resources and infer possible mechanisms underlying skin pigmentation, we performed a large-scale transcriptomic sequencing on 13 adult goldfish tissues, larvae at one- and three-days post hatch, and skin tissues with four different color pigmentation. A total of 25.52 Gb and 149.80 Gb clean data were obtained using the PacBio and Illumina platforms, respectively. Onto the goldfish reference genome, we mapped 137,674 non-redundant transcripts, of which 5.54% was known isoforms and 78.53% was novel isoforms of the reference genes, and the remaining 21,926 isoforms are novel isoforms of additional new genes. Both skin-specific and color-specific transcriptomic analyses showed that several significantly enriched genes were known to be involved in melanogenesis, tyrosine metabolism, PPAR signaling pathway, folate biosynthesis metabolism and so on. Thirteen differentially expressed genes across different color skins were associated with melanogenesis and pteridine synthesis including mitf, ednrb, mc1r, tyr, mlph and gch1, and xanthophore differentiation such as pax7, slc2a11 and slc2a15. These transcriptomic data revealed pathways involved in goldfish pigmentation and improved the gene annotation of the reference genome.
Collapse
Affiliation(s)
- Wu Gan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Zelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shiying Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenyao Cui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
20
|
Integrated analysis of lncRNAs and mRNAs reveals key trans-target genes associated with ETEC-F4ac adhesion phenotype in porcine small intestine epithelial cells. BMC Genomics 2020; 21:780. [PMID: 33172394 PMCID: PMC7653856 DOI: 10.1186/s12864-020-07192-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation at the transcriptional and post-transcriptional levels. LncRNAs are belonging to a large class of transcripts with ≥200 nt in length which do not code for proteins, have been widely investigated in various physiological and pathological contexts by high-throughput sequencing techniques and bioinformatics analysis. However, little is known about the regulatory mechanisms by which lncRNAs regulate genes that are associated with Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotype in small intestine epithelial cells of Large White piglets. To address this, we used RNA sequencing to profile lncRNAs and mRNAs of small intestine epithelial cells in Large White piglets differing in their ETEC-F4 adhesion phenotypes and ITGB5 genotypes. Eight male piglets were used in this study and were divided into two groups on the basis of their adhesion phenotype and ITGB5 genotypes, a candidate gene for F4ac receptor. Non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS In total, 78 differentially expressed lncRNAs (DE-lncRNA) and 223 differentially expressed mRNAs (log2 |FC| > 1, P < 0.05) were identified in the comparison of non-adhesive vs. adhesive small intestine epithelial cells. Furthermore, cis- and trans-regulatory target genes of DE-lncRNAs were identified, then interaction networks of lncRNAs and their cis- and trans-target differentially expressed genes (DEGs) were constructed separately. A total of 194 cis-targets were involved in the lncRNAs-cis genes interaction network and 61 trans-targets, were involved in lncRNA-trans gene interaction network that we constructed. We determined that cis-target genes were involved in alcoholism, systemic lupus erythematosus, viral carcinogenesis and malaria. Whereas trans-target DEGs were engaged in three important pathways related to the ETEC-F4 adhesion phenotype namely cGMP-PKG signaling pathway, focal adhesion, and adherens junction. The trans-target DEGs which directly involved in these pathways are KCNMB1 in cGMP-PKG signaling pathway, GRB2 in focal adhesion pathway and ACTN4 in focal adhesion and adherens junction pathways. CONCLUSION The findings of the current study provides an insight into biological functions and epigenetic regulatory mechanism of lncRNAs on porcine small intestine epithelial cells adhesion to ETEC-F4-ac and piglets' diarrhea susceptibility/resistance.
Collapse
|
21
|
Association between brown eye colour in rs12913832:GG individuals and SNPs in TYR, TYRP1, and SLC24A4. PLoS One 2020; 15:e0239131. [PMID: 32915910 PMCID: PMC7485777 DOI: 10.1371/journal.pone.0239131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
The genotype of a single SNP, rs12913832, is the primary predictor of blue and brown eye colours. The genotypes rs12913832:AA and rs12913832:GA are most often observed in individuals with brown eye colours, whereas rs12913832:GG is most often observed in individuals with blue eye colours. However, approximately 3% of Europeans with the rs12913832:GG genotype have brown eye colours. The purpose of the study presented here was to identify variants that explain brown eye colour formation in individuals with the rs12913832:GG genotype. Genes and regulatory regions surrounding SLC24A4, TYRP1, SLC24A5, IRF4, TYR, and SLC45A2, as well as the upstream region of OCA2 within the HERC2 gene were sequenced in a study comprising 40 individuals with the rs12913832:GG genotype. Of these, 24 individuals were considered to have blue eye colours and 16 individuals were considered to have brown eye colours. We identified 211 variants within the SLC24A4, TYRP1, IRF4, and TYR target regions associated with eye colour. Based on in silico analyses of predicted variant effects we recognized four variants, TYRP1 rs35866166:C, TYRP1 rs62538956:C, SLC24A4 rs1289469:C, and TYR rs1126809:G, to be the most promising candidates for explanation of brown eye colour in individuals with the rs12913832:GG genotype. Of the 16 individuals with brown eye colours, 14 individuals had four alleles, whereas the alleles were rare in the blue eyed individuals. rs35866166, rs62538956, and rs1289469 were for the first time found to be associated with pigmentary traits, whilst rs1126809 was previously found to be associated with pigmentary variation. To improve prediction of eye colours we suggest that future eye colour prediction models should include rs35866166, rs62538956, rs1289469, and rs1126809.
Collapse
|
22
|
Targeting steroid receptor RNA activator (SRA), a long non-coding RNA, enhances melanogenesis through activation of TRP1 and inhibition of p38 phosphorylation. PLoS One 2020; 15:e0237577. [PMID: 32790741 PMCID: PMC7425936 DOI: 10.1371/journal.pone.0237577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormal skin melanin homeostasis results in refractory pigmentary diseases. Melanogenesis is influenced by gene regulation, ultraviolet radiation, and host epigenetic responses. Steroid receptor RNA activator (SRA), a long noncoding RNA, is known to regulate steroidogenesis and tumorigenesis. However, how SRA contributes to melanogenesis remains unknown. Using RNA interference against SRA in B16 and A375 melanoma cells, we observed increased pigmentation and increased expression of TRP1 and TRP2 at transcriptional and translational levels only in B16 cells. The constitutive phosphorylation of p38 in B16-shCtrl cells was inhibited in cells with knocked down SRAi. Moreover, the melanin content of control B16 cells was increased by SB202190, a p38 inhibitor. Furthermore, reduced p38 phosphorylation, enhanced TRP1 expression, and hypermelanosis were observed in A375 cells with RNA interference. These results indicate that SRA-p38-TRP1 axis has a regulatory role in melanin homeostasis and that SRA might be a potential therapeutic target for treating pigmentary diseases.
Collapse
|
23
|
Quan J, Kang Y, Luo Z, Zhao G, Ma F, Li L, Liu Z. Identification and characterization of long noncoding RNAs provide insight into the regulation of gene expression in response to heat stress in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100707. [PMID: 32693384 DOI: 10.1016/j.cbd.2020.100707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
Rainbow trout are typical cold-water fish species. However, with the intensification of global warming, high temperatures have severely restricted the development of aquaculture during the summer. Understanding the molecular regulatory mechanisms of rainbow trout responses to heat stress will be beneficial for alleviating heat stress-related damage. In this study, we performed RNA-seq of liver tissues from rainbow trout under heat stress (24 °C) and control conditions (18 °C) to identify lncRNAs and target genes by strand-specific library. Changes in nonspecific immune parameters revealed that a strong stress response occurred in rainbow trout at 24 °C. More than 658 million filtered reads and 5916 lncRNAs were identified from six libraries. A total of 927 novel lncRNAs were identified, and 428 differentially expressed lncRNAs were screened with stringent thresholds. The RNA-seq results were verified by RT-qPCR. In addition, a regulatory network of lncRNA-mRNA functional interactions was constructed, and the potential antisense, cis and trans targets of lncRNAs were predicted. GO and KEGG enrichment analyses showed that many target genes involved in maintenance of homeostasis or adaptation to stress and stimuli were highly induced under heat stress. Several regulatory pathways were also found to be involved in heat stress, including the thyroid hormone signaling pathway, the PI3K-Akt signaling pathway, and the estrogen signaling pathway, among others. These results broaden our understanding of lncRNAs associated with heat stress and provide new insights into the lncRNA mediated regulation of the rainbow trout heat stress response.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhicheng Luo
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Fang Ma
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China; College of Bioengineering and Technology, Tianshui Normal University, Tianshui 741000, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
24
|
Dong Z, Luo M, Wang L, Yin H, Zhu W, Fu J. MicroRNA-206 Regulation of Skin Pigmentation in Koi Carp ( Cyprinus carpio L.). Front Genet 2020; 11:47. [PMID: 32117457 PMCID: PMC7029398 DOI: 10.3389/fgene.2020.00047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNA molecules that act as crucial roles in plenty of biological processes. However, the molecular and cellular mechanisms of miRNAs to regulate skin color differentiation and pigmentation in fish have not been fully understood. Herein, we revealed that miR-206, a skin-enriched miRNA, regulates melanocortin 1 receptor (Mc1r, a key regulator of melanogenesis) expression by binding to its 3'-untranslated (UTR) region through bioinformatics and luciferase reporter assay in koi carp (Cyprinus carpio L.). The analysis of spatial and temporal expression patterns suggested that miR-206 is a potential regulator in the skin pigmentation process. Then, we silenced it in vivo with an antagomir method. The result showed a substantial increase of Mc1r mRNA expression and protein level, and also its downstream genes: tyrosinase (Tyr) and dopachrome tautomerase (Dct) that encoding key enzymes involved in melanin synthesis. Moreover, we constructed the miRNA-206 sponge lentivirus vector to transfect koi carp melanocytes in vitro, further checked the functions of melanocytes using Cck-8 and Transwell assays. As a result, inhibition of miR-206 significantly up-regulated Mc1r mRNA expression and protein level and accelerated the melanocyte proliferation and migration ability compared with the scrambled-sequence negative control group (miR-NC). Overall, these findings provide the evidence that miR-206 plays a regulatory role in the skin color pigmentation through targeting the Mc1r gene and would facilitate understanding the molecular regulatory mechanisms underlying miRNA-mediated skin color pigmentation in koi carp.
Collapse
Affiliation(s)
- Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China.,Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| |
Collapse
|