1
|
Hou Y, Wang Y, Pan M, An D, Zhong M, Zhang Q. Sperm metabolomic profiles of varicocele-associated asthenozoospermia. J Pharm Biomed Anal 2025; 263:116908. [PMID: 40267573 DOI: 10.1016/j.jpba.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Varicocele is a leading cause of male infertility, with asthenozoospermia being a common phenotype. The metabolic basis of varicocele-induced asthenozoospermia remains poorly understood, necessitating a comprehensive metabolic profiling study. This GC-MS-based metabolomic study investigated sperm metabolic profiles across three cohorts: healthy controls (HC, n = 30), varicocele patients with normal motility (VC, n = 30), and varicocele-associated asthenozoospermia cases (VA, n = 30). Multivariate analyses (Principal Component Analysis, Partial Least Squares Discriminant Analysis, and Orthogonal Partial Least Squares Discriminant Analysis) of 85 identified endogenous metabolites revealed progressive metabolic dysregulation: 25 differential metabolites (including cysteine, leucine, glycine) distinguished VC from HC, while 29 additional perturbations (valine, threonine, alanine) characterized VA cases. These findings systematically delineate varicocele-related metabolic disturbances, providing mechanistic insights into sperm motility impairment and potential therapeutic targets for male infertility management.
Collapse
Affiliation(s)
- Yuyang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengyue Pan
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Di An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
2
|
Li M, Bai Y, Zhang J, Wang H, Li J, Wang W. Sperm metabolomics identifies freezability markers in Duroc, Landrace, and Large White boars. Theriogenology 2025; 240:117395. [PMID: 40112454 DOI: 10.1016/j.theriogenology.2025.117395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/14/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Cryopreservation of boar semen is widely applied in the conservation of genetic resources and animal breeding to enhance the utilization efficiency of superior boars. However, accurately identifying individuals with good freezing tolerance in boar sperm remains challenging. In this study, based on the differences in sperm motility before and after cryopreservation from 328 boars, we selected six boars each from the Duroc, Landrace, and Large White breeds, and categorized them into poor freezability ejaculates (PFE) and good freezability ejaculates (GFE) groups for sperm metabolomic analysis. A total of 1288 metabolites were identified using both positive and negative ion modes. There were 148 differentially expressed metabolites between the GFE and PFE groups, which were enriched in pathways such as alanine, aspartate and glutamate metabolism; arginine biosynthesis; D-amino acid metabolism; histidine metabolism; beta-alanine metabolism; citrate cycle (TCA cycle); pantothenate and CoA biosynthesis; and pyruvate metabolism. Further analysis, including ROC curve evaluation, identified seven potential biomarkers for sperm cryopreservation. Argininosuccinic acid, asparagine, L-aspartate, fumarate, D-ornithine, DL-serine and histidine were tightly interconnected in a series of amino acids metabolism. In conclusion, our findings imply that differences in certain amino acid biosynthetic pathways contribute to the variations in freezing tolerance of boar sperm.
Collapse
Affiliation(s)
- Meicheng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yifan Bai
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiajun Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Wenjun Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
3
|
Sindi RA, Abdelnour SA, El-Haroun E, Alfattah MA, Saber YHA, Sheiha AM. Does Lagenaria siceraria seed oil-enriched extender regulate sperm quality, oxidant/antioxidant markers, and sperm mitochondrial enzymes in chilled diluted rabbit semen? BMC Vet Res 2025; 21:345. [PMID: 40375070 PMCID: PMC12080003 DOI: 10.1186/s12917-025-04782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025] Open
Abstract
This study investigated the cryoprotective effects of Lagenaria siceraria seed oil (BG) on rabbit sperm quality during a 72-hour period of chilled storage at 4 °C. While a prevalent method for preserving rabbit semen, cryopreservation can elicit cold shock and other stressors, resulting in a decline in sperm quality. Thereafter, the researchers hypothesized that BG, potentially due to its antioxidant properties, could mitigate these detrimental effects. For the experiment, semen samples were diluted in extender and assigned to treatment groups receiving BG at concentrations of 0 (BG0), 100 (BG100), 200 (BG200), or 400 (BG400) µL/mL, followed by storage at 4 °C. Sperm quality parameters (motility, viability, membrane integrity, and morphology) were assessed at 24-, 48-, and 72-hour time points of storage. Results indicated a quadratic improvement in sperm motility, viability, and membrane integrity with the addition of 100 or 200 µL/mL of BG across all time points (P < 0.01). A quadratic relationship was observed between BG supplementation levels and the concentrations of GPx and SOD, indicating a dose-dependent increase. BG treatment at all concentrations led to elevated total antioxidant capacity (TAC) compared to the control, with peak TAC values at 200 and 400 µL/mL BG. Conversely, nitric oxide (NO) levels significantly decreased (P < 0.001) with increasing BG dosage. BG treatment significantly decreased malondialdehyde, H₂O₂, and protein carbonyl levels compared to the control (P < 0.01). Additionally, succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) activities were significantly and quadratically improved at BG concentrations of 200 and 400 µL/mL relative to the 100 µL/mL concentration. In conclusion, supplementing rabbit semen extenders with BG significantly enhanced sperm quality during 72-hour chilled storage by attenuating oxidative stress, bolstering antioxidant capacity, and promoting mitochondrial enzyme activity. These findings suggest that BG is a promising additive for improving the preservation of chilled rabbit semen, potentially benefiting artificial insemination and rabbit breeding programs.
Collapse
Affiliation(s)
- Ramya Ahmad Sindi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ehab El-Haroun
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Saudi Arabia
| | - Yasser H A Saber
- Department of Animal Reproduction and A.I, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa M Sheiha
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
4
|
Cao R, Zhang M, Chen Y, Hou G, Liu Q, Zhang J, Zhang Y. The special adaptation to hypoxia facilitated the expansion of the Asian house rat (Rattus tanezumi) into Tibet but not other Rattus species. Integr Zool 2025; 20:568-585. [PMID: 38724481 DOI: 10.1111/1749-4877.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Rattus species are thought to live only at altitudes less than 2500 m, but the Asian house rat (R. tanezumi) (RT) has recently expanded to altitudes greater than 3500 m in China. Other Rattus species, especially brown rats (R. norvegicus) (RN), still reach only low altitudes on the Tibetan Plateau. Comparative genomics revealed the positive selection of hypoxia-inducible transcription factors 1 and 2 (HIFs) in RT, with the rapid evolution of HIF pathway genes in RT and Mus musculus (MM) but not RN or R. rattus. Population genomics revealed that genes associated with energy metabolism and oxygen transport were positively selected in RT compared with the other four Rattus species, and two specific substitutions (arginine 31 serine and leucine 33 methionine) were identified in the hemoglobin subunit beta (HBB) in RT. The above results suggested that RT possesses unique genetic adaptations to hypoxia, which was further confirmed by behavioral experiments on RT and RN. Normobaric hypoxia significantly reduced locomotion in RN but not in RT. Moreover, through intraspecific transcriptome analysis, the expression of Hbb and genes related to angiogenesis, oxygen transport, and glycolysis was upregulated, and the expression of genes associated with immunological functions in the liver, lungs, and/or sperm was downregulated in RT compared to those in RN. Interspecific transcriptome analysis further revealed that HIF-1α plays a role in modulating the hypoxic adaptation of RT rather than RN. Our work provides genomic, behavioral, and physiological insights into why RT, but not other Rattus species, could invade the Tibetan Plateau.
Collapse
Affiliation(s)
- Ruidong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang L, Wu Y, Zhao ZB, Jia T. Small-scale heterogeneity of soil properties in farmland affected fava beans growth through rhizosphere differential metabolites and microorganisms. ENVIRONMENTAL MICROBIOME 2025; 20:45. [PMID: 40312727 PMCID: PMC12044778 DOI: 10.1186/s40793-025-00706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/13/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Soil heterogeneity has been acknowledged to influence plant growth, with the small-scale soil heterogeneity always being overlooked in practice. It remains unclear how rhizosphere soil biotics and abiotics respond to soil heterogeneity and how rhizosphere interactions influence crop growth. RESULTS In this study, we planted fava beans in a farmland around an e-waste dismantling site, and a distinct boundary (row spacing is 30 cm) was observed in the field during the flowering stage, which divided fava beans phenotypes into two distinct groups (Big vs Little) based on the differences in biomass and height. Soil total concentrations of As, B, Co, Cr, Cu, Pb, Sr, Zn, Ni, Cd and soil pH significantly differed in the rhizosphere of fava beans in the two adjacent rows, which were located on either side of the boundary, with a row-spacing of 30 cm. Random Forest analysis demonstrated that these differentiated soil properties (soil pH, total As, B, Cd, Co, Cr, Cu, Mo, Ni and Zn) substantially influenced fava beans growth (height and biomass). Metagenomic sequencing showed that microbial taxa were significantly enriched their abundance in rhizosphere soils between the two groups of fava beans, with eukaryotic taxa being more sensitively affected. A total of 20 metabolites including coniferyl alcohol, jasmonic acid, resveratrol, and L-aspartic acid, etc. were significantly correlated with fava beans growth. These metabolites were significantly enriched in 15 metabolic pathways (nucleotide metabolism, pyrimidine metabolism, purine metabolism, biosynthesis of plant secondary metabolites, lysine biosynthesis, etc.). Furthermore, 11 microbial genera involved in these metabolic pathways, and these genera were differentially enriched between the two groups and significantly correlated with fava beans growth. CONCLUSIONS Overall, the integrated analysis of multi-omics revealed that soil properties heterogeneity at small-scale altered the rhizosphere differential microorganisms and metabolites, which functionally influenced fava beans growth and tolerance to environmental stress. Notably, even soil heterogeneity at such a small spatial scale can cause significant differences in plant growth, and the comprehensive explorations utilizing multi-omics techniques provide novel insights to the field management, which is crucial for the survival and sustainable development of humanity.
Collapse
Affiliation(s)
- Linbin Wang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, China
| | - Yufeng Wu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, China
| | - Zhi-Bo Zhao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China.
- Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, China.
| | - Tingsheng Jia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
6
|
Shrestha A, Gaustad AH, Øiaas JB, Kommisrud E, van Son M, Nordborg A, Alm-Kristiansen AH. A metabolomic study uncovering key amino acids and amines in Duroc boar semen as biomarkers of sexual maturity. Anim Reprod Sci 2025; 275:107800. [PMID: 40007344 DOI: 10.1016/j.anireprosci.2025.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Metabolomic analysis of boar semen associated with sexual maturation is essential for improving fertility management and breeding, with amino acids and amines playing key roles in the reproductive process. This study aimed to explore changes in amino acids and amines in boar spermatozoa and seminal plasma during puberty to sexual maturity and identify potential biomarkers of sexual maturity. Semen was collected from the same 15 Duroc boars over time at approximately 7 months (Age 1), 8.5 months (Age 2), and 10 months (Age 3). Liquid chromatography-mass spectrometry was used to analyse amino acids and amines in spermatozoa and seminal plasma separately. Multivariate analysis (PLS-DA) revealed pronounced age-dependent changes in amino acids and amines in spermatozoa between Age 1 and Age 3, and more subtle shifts in seminal plasma. Univariate analysis (Repeated measure ANOVA/Friedman) revealed that glutamate and taurine had significant pairwise differences in seminal plasma (P < 0.05). In sperm, 15 amino acids (glutamate, alanine, aspartate, choline, taurine, histidine, methionine, tryptophan, leucine, cystine, tyrosine, arginine, lysine, valine and glycine) exhibited significant pairwise differences (P < 0.05). VIP scoring (>1.5) prioritised glutamate, alanine, aspartate, and choline as key contributors to the variations and pathway analysis implicated alanine, aspartate and glutamate metabolism, and histidine metabolism linked to sexual maturity. Our study highlights metabolic changes during sexual maturation, identifying potential biomarkers for assessing reproductive maturity. These findings are initial steps toward optimising younger boars' usage in breeding, enhancing genetic gain, and reducing costs associated with their non-productive days at AI centres.
Collapse
Affiliation(s)
- Asmita Shrestha
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, University of Inland Norway, Hamar, Norway
| | | | - Janne Beate Øiaas
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Elisabeth Kommisrud
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, University of Inland Norway, Hamar, Norway
| | | | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Anne Hege Alm-Kristiansen
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, University of Inland Norway, Hamar, Norway.
| |
Collapse
|
7
|
Kusari F, Backova L, Panek D, Benda A, Trachtulec Z. Label-free metabolic fingerprinting of motile mammalian spermatozoa with subcellular resolution. BMC Biol 2025; 23:85. [PMID: 40128804 PMCID: PMC11934609 DOI: 10.1186/s12915-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Sperm metabolic pathways that generate energy for motility are compartmentalized within the flagellum. Dysfunctions in metabolic compartments, namely mitochondrial respiration and glycolysis, can compromise motility and male fertility. Studying these compartments is thus required for fertility treatment. However, it is very challenging to capture images of metabolic compartments in motile spermatozoa because the fast beating of the flagellum introduces motion blur. Therefore, most approaches immobilize spermatozoa prior to imaging. RESULTS Our findings indicate that immobilizing sperm alters their metabolic profile, highlighting the necessity for measuring metabolism in spermatozoa during movement. We achieved this by encapsulating mouse epididymis in a hydrogel followed by two-photon fluorescence lifetime imaging microscopy for imaging motile sperm in situ. The autofluorescence of endogenous metabolites-FAD, NADH, and NADPH-enabled us to visualize sperm metabolic compartments without staining. We trained machine learning for automated image segmentation and generated metabolic fingerprints using object-based phasor analysis. We show that metabolic fingerprints of spermatozoa and the mitochondrial compartment (1) can distinguish individual males by genetic background, age, or fecundity status, (2) correlate with fertility, and (3) change with age likely due to increased oxidative metabolism. CONCLUSIONS Our approach eliminates the need for sperm immobilization and labeling and captures the native state of sperm metabolism. This technique could be adapted for metabolism-based sperm selection for assisted reproduction.
Collapse
Affiliation(s)
- Fitore Kusari
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
- Present address: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Lenka Backova
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
- Present addresses: Instituto Biofisika CSIC, UPV/EHU, Leioa, Spain
- Department of Computer Science and Artificial Intelligence, University of Basque Country UPV/EHU, San Sebastián, Spain
| | - Dalibor Panek
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ales Benda
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Giaretta E, Damato A, Zennaro L, Bonfatti V, Mislei B, Vigolo V, Falomo ME, Bertuzzo F, Gabai G, Bucci D. Metabolome and oxidative stress markers in the seminal plasma of Holstein bulls and their relationship with the characteristics of fresh and frozen/thawed sperm. Theriogenology 2025; 235:262-274. [PMID: 39889331 DOI: 10.1016/j.theriogenology.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
Seminal plasma composition has important role in sperm functionality and its freezability. The objective of this study was to test the hypothesis that seminal plasma (SP) oxidative status and metabolome are associated with fresh semen characteristics and freezability of bull sperm. To accomplish this objective, oxidative status markers and metabolome of SP of ejaculates obtained from 20 Holstein bulls (3 for each bull) were analyzed using spectrophotometry and nuclear magnetic resonance (1H NMR). The ejaculates were classified into higher motility fresh semen (HMF) and lower motility fresh semen (LMF), according to total motility (TM) and progressive motility (PM) values of fresh semen. Then the ejaculates was cryopreserved and assigned to higher motility thawed group (HMT) or lower motility thawed group (LMT) according to TM and PM at 0 h post-thawing. Multivariate analyses were performed to identify the association between the functional characteristics of fresh and thawed semen and the SP parameters, in terms of the oxidative status and the metabolomic composition. According to our results, the advanced oxidative protein products (AOPP) and thiol concentrations in SP are significantly related to some physiological characteristics of the thawed sperm, such as higher viability, TM, PM and LIN and lower mitochondrial and cytoplasmic superoxide production in viable thawed cells. In contrast, a higher amount of C in the SP was negatively related to TM and PM of thawed semen and was associated with higher mitochondrial and cytoplasmic superoxide production. In addition, partial least squares-discriminant analysis (PLS-DA) performed on the 1H NMR spectra indicated a discrete separation between HMF and LMF groups, and good discrimination between HMT and LMT groups. Higher levels of formic acid, lactate, glycerol and phosphocholine, were found in the SP of the HMF group than in the LMF group. On the other hand, alanine, phenylalanine, and tyrosine were higher in the SP of the LMF group than in the HMF group. GABA, glutamate, histidine and glycerol were found in higher concentrations in the HMT group than in the LMT group, while fructose decreased in the HMT group. Our results showed that the oxidative and metabolomic status of SP is related to the physiological properties of semen and its freezability and open new fields in research of SP biomarkers of bull semen preservation and fertility.
Collapse
Affiliation(s)
- E Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy.
| | - A Damato
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - L Zennaro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - V Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy
| | - B Mislei
- INFA-AUB, University of Bologna, Via Gandolfi 16, Cadriano, BO, Italy
| | - V Vigolo
- Department for Small Animals and Horses, Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Vienna, Austria
| | - M E Falomo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - F Bertuzzo
- Intermizoo S.p.A, Via Dossetto 1, 30021, Caorle, VE, Italy
| | - G Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy
| | - D Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Dell'Emilia, BO, Italy
| |
Collapse
|
9
|
Song M, Jia B, Dai D, Xu X, Cao J, Guo J, Wang L, Zhong T, Zhan S, Li L, Zhang H. Effect of chitosan on buck semen quality and semen plasma metabolites during low-temperature storage. Front Vet Sci 2025; 12:1544234. [PMID: 40151569 PMCID: PMC11949143 DOI: 10.3389/fvets.2025.1544234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background Optimizing buck semen preservation techniques can significantly advance the goat industry. This study aimed to investigate the effects of chitosan on sperm quality and seminal plasma metabolite profiles in bucks during low-temperature storage at 4°C. Results The results showed that when 0.2 mg/mL chitosan was added to semen dilution, sperm viability and antioxidant capacity were highest and significantly higher than the control group (p < 0.05). Sperm viability decreased progressively with increasing storage time at 4°C. However, on day 5, sperm viability was significantly higher in all groups where chitosan was added to the semen dilutions than in the control group (p < 0.05). A total of 23 classes of metabolites were detected in the non-targeted metabolism group of seminal plasma. The metabolite caused by chitosan mainly included fatty acyls, phospholipids, amino acids and organic acids. Most differential metabolites in fatty acyls and glycerophospholipids in chitosan-treated semen were decreased and enriched in the anabolic pathway of unsaturated fatty acids. Additionally, several oligopeptides showed correlations with sperm quality. Conclusion These results suggest that adding 0.2 mg/mL chitosan to semen diluent successfully prolongs the low-temperature preservation of semen mainly by altering the anabolism of lipids and amino acids. This provides theoretical support and practical reference for the applying chitosan in the low-temperature preservation of buck semen.
Collapse
Affiliation(s)
- Meijun Song
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bingke Jia
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Xu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Bodu M, Hitit M, Memili E. Harnessing the value of fertility biomarkers in bull sperm for buck sperm. Anim Reprod Sci 2025; 272:107643. [PMID: 39577268 DOI: 10.1016/j.anireprosci.2024.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Efficient and sustainable reproduction and production of cattle and goats are vitally important for ensuring global food security. There is a need for potent biomarkers to accurately evaluate semen quality and predict male fertility. Although there is a reasonable set of biomarkers identified in bull sperm, there is a significant lack of such information in buck sperm along with a lack of transfer of proven technologies in goat reproductive biotechnology. These gaps are important problems because they are preventing advances in fundamental andrology and applied science of goat production. Both cattle and goats are ruminants, and they share significant similarities in their genetics and physiology although subtle differences do exist. This review harnesses the power of utilizing the knowledge developed in bull sperm to generate information on buck sperm fertility markers. These include genomic, functional genomic, epigenomic fertility markers. Revealing molecular underpinnings of such similarity and diversity using systems biology is expected to advance both fundamental and applied andrology of livestock and endangered species.
Collapse
Affiliation(s)
- Mustafa Bodu
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States; Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye.
| | - Mustafa Hitit
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States.
| | - Erdogan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States.
| |
Collapse
|
11
|
de Andrade AFC, Andrade Torres M, Fukumasu H, Lázaro Rochetti A, Kitamura Martins SMM, de Novais FJ, Ramirez C, Cooper B. Molecular Determinants in Seminal Plasma and Spermatozoa: Nontargeted Metabolomics. Methods Mol Biol 2025; 2897:627-636. [PMID: 40202665 DOI: 10.1007/978-1-0716-4406-5_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The metabolites present in seminal plasma are products of several functions in spermatozoa, such as energy production, motility, protection, pH control, and regulation of metabolic activity, among others. The use of metabolomics tools to search for biomarkers in human and animal andrology has grown in recent years and has proven to be highly efficient. With the present technique, it was possible to identify more than 1286 molecules in seminal plasma and more than 1393 molecules in boars' sperm.
Collapse
Affiliation(s)
- André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Mariana Andrade Torres
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Arina Lázaro Rochetti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Francisco José de Novais
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Christina Ramirez
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Assessing Bovine Male Fertility in a Technological Age. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:297-329. [PMID: 40272592 DOI: 10.1007/978-3-031-70126-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
New and emerging technologies allow for a deeper and more comprehensive understanding of sperm physiology that can be harnessed to improve bull fertility selection. This chapter focuses on (1) the use of conventional and emerging flow cytometry techniques to further enhance functional sperm assessments; (2) new developments in proteomic and metabolomic biomarkers of bull fertility and how they can better inform fertility evaluations; and (3) the use of sperm selection technologies to optimize the fertility outcomes of bulls in artificial insemination service. As our knowledge of sperm physiology continues to expand, technology will allow for a faster translational capacity and continuous development of techniques. The technologies and techniques presented are current tools that can be used to enhance the efficiency, precision and accuracy of bull fertility assessments and better inform herd management.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Zhao W, Gu N, Liu X, Qing N, Sheng J, Lin X, Huang H. D-Mannose-Mediated metabolic pathways sustain the molecular signatures of sperm function and fertilization. J Adv Res 2024:S2090-1232(24)00614-3. [PMID: 39733858 DOI: 10.1016/j.jare.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION Mammalian sperm within a single ejaculate exhibit significant heterogeneity, with only a subset possessing the molecular characteristics required for successful fertilization. Identifying the defining traits of these high-fertility sperm remains an open question. OBJECTIVES To elucidate the molecular markers and mechanisms underlying the fertilization potential of sperm in both mice and humans, with a focus on the role of D-mannose. METHODS Sperm morphology and functionality were analyzed using flow cytometry, biochemical assays, and immunofluorescence. Multi-omics analyses, including proteomics, metabolomics, and lipidomics, were conducted to identify distinct molecular signatures. Pharmacological interventions were employed to validate the role of key pathways, particularly Akt/mTOR signaling. RESULTS Sperm with longer flagella demonstrated enhanced motility, mitochondrial activity, and fertilization potential in both mice and humans. Multi-omics analyses revealed distinct molecular profiles in high-fertility sperm, characterized by specific proteins, lipids, and metabolites. Notably, D-mannose supplementation enhanced sperm motility and fertilization capacity, even in asthenozoospermic sperm, by activating the Akt/mTOR pathway. This effect was not replicated by D-glucose or ATP supplementation. Mechanistically, D-mannose bypassed glycolytic rate-limiting steps, increasing ATP production and promoting mitochondrial and acrosomal integrity. CONCLUSION This study identifies key molecular signatures of fertilization-competent sperm and highlights D-mannose as a novel modulator of sperm quality and function. These findings provide valuable insights into sperm biology and propose innovative therapeutic strategies for treating male infertility and optimizing assisted reproduction technologies.
Collapse
Affiliation(s)
- Wenlong Zhao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 310008, China; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Nihao Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 310008, China
| | - Xueyuan Liu
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Ningxin Qing
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201306, China
| | - Jianzhong Sheng
- The Fourth Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310008, China
| | - Xianhua Lin
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China.
| | - Hefeng Huang
- Women's hospital, Ministry education key laboratory, School of Medicine, Zhejiang University, 310006 China.
| |
Collapse
|
14
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
15
|
Kutchy NA, Morenikeji OB, Memili A, Ugur MR. Deciphering sperm functions using biological networks. Biotechnol Genet Eng Rev 2024; 40:3743-3767. [PMID: 36722689 DOI: 10.1080/02648725.2023.2168912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 02/02/2023]
Abstract
The global human population is exponentially increasing, which requires the production of quality food through efficient reproduction as well as sustainable production of livestock. Lack of knowledge and technology for assessing semen quality and predicting bull fertility is hindering advances in animal science and food animal production and causing millions of dollars of economic losses annually. The intent of this systemic review is to summarize methods from computational biology for analysis of gene, metabolite, and protein networks to identify potential markers that can be applied to improve livestock reproduction, with a focus on bull fertility. We provide examples of available gene, metabolic, and protein networks and computational biology methods to show how the interactions between genes, proteins, and metabolites together drive the complex process of spermatogenesis and regulate fertility in animals. We demonstrate the use of the National Center for Biotechnology Information (NCBI) and Ensembl for finding gene sequences, and then use them to create and understand gene, protein and metabolite networks for sperm associated factors to elucidate global cellular processes in sperm. This study highlights the value of mapping complex biological pathways among livestock and potential for conducting studies on promoting livestock improvement for global food security.
Collapse
Affiliation(s)
- Naseer A Kutchy
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, St. George's, Grenada
- Department of Animal Sciences, School of Environmental and Biological Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, USA
| | - Aylin Memili
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
16
|
Choudhary RK, Kumar B. V. S, Sekhar Mukhopadhyay C, Kashyap N, Sharma V, Singh N, Salajegheh Tazerji S, Kalantari R, Hajipour P, Singh Malik Y. Animal Wellness: The Power of Multiomics and Integrative Strategies: Multiomics in Improving Animal Health. Vet Med Int 2024; 2024:4125118. [PMID: 39484643 PMCID: PMC11527549 DOI: 10.1155/2024/4125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.
Collapse
Affiliation(s)
- Ratan Kumar Choudhary
- Department of Bioinformatics, Animal Stem Cells Laboratory, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sunil Kumar B. V.
- Department of Animal Biotechnology, Proteomics & Metabolomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Chandra Sekhar Mukhopadhyay
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Neeraj Kashyap
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Vishal Sharma
- Department of Animal Biotechnology, Reproductive Biotechnology Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Nisha Singh
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sina Salajegheh Tazerji
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roozbeh Kalantari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouneh Hajipour
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yashpal Singh Malik
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
17
|
Abruzzese GA, Sanchez-Rodriguez A, Roldan ERS. Sperm Metabolism. Mol Reprod Dev 2024; 91:e23772. [PMID: 39407445 DOI: 10.1002/mrd.23772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Bioenergetics plays a crucial role in sperm functions, including motility, capacitation-related protein modifications, oocyte recognition and interaction, all of which are essential for fertilization. Sperm metabolism is recognized as flexible, responding to environmental cues and energetic demands during ejaculation, the journey along the female tract, and until fertilization. Recent studies suggest that sperm metabolic functions are relevant beyond fertilization and may influence zygote and embryo development, impacting paternal-derived effects on offspring development and health. In recent years, sperm metabolic functions and homeostasis have gained increasing interest in male reproduction research. Given the crucial implications of sperm metabolism on fertility-related processes, this field is of interest not only in human male fertility but also in livestock research, semen conservation, and assisted reproductive techniques. Newly developed assessment tools are allowing a better understanding of sperm metabolism under different conditions and identifying species-specific peculiarities. This review aims to discuss the current knowledge of mammalian sperm metabolism, focusing on species-specific features, changes during the sperm journey, and potential contributions to translational research and reproductive biotechnologies. Furthermore, we propose future perspectives on sperm bioenergetics research.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
18
|
Mateo-Otero Y. Integrating metabolomics into reproduction: Sperm metabolism and fertility enhancement in pigs. Anim Reprod Sci 2024; 269:107539. [PMID: 38926002 DOI: 10.1016/j.anireprosci.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The last decades of research have revealed that many other factors besides gamete genomes are able to determine the reproductive outcomes. Indeed, paternal factors have been observed to be capable of modulating multiple crucial features of the reproductive process, such as sperm physiology, the maternal environment and, even, the offspring health. These recent advances have been encompassed with the emergence of OMICS technologies, as they comprehensively characterise the molecular composition of biological systems. The present narrative review aimed to take a closer look at the potential of these technologies in the field of reproductive biology. This literature revision shows that most studies up to date have followed a non-targeted approach to screen mammalian seminal plasma (SP) and sperm metabolite composition through different metabolome platforms. These studies have proposed metabolites of multiple natures as potential in vivo fertility biomarkers. Yet, targeted approaches can be used to answer specific biological question, and their power is exemplified herein. For instance, metabolomic studies have uncovered not only that glycolysis is the main ATP energy source of pig sperm, but also that sperm metabolism can trigger DNA damage, hence compromise embryo development. In conclusion, this review shows the potential of both non-targeted and targeted metabolomics for the discovery of cell pathways that govern the reproductive process. Understanding these systems could help make progress in different areas, including livestock efficient breeding, the improvement of artificial reproductive technologies, and the development of biomarkers for infertility detection.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
19
|
Qian Y, Liu Y, Wang T, Wang S, Chen J, Li F, Zhang M, Hu X, Wang J, Li Y, James A, Hou R, Cai K. Effects of Cryptorchidism on the Semen Quality of Giant Pandas from the Perspective of Seminal Plasma Proteomics. Genes (Basel) 2024; 15:1288. [PMID: 39457412 PMCID: PMC11507308 DOI: 10.3390/genes15101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Giant pandas are an endangered species with low reproductive rates. Cryptorchidism, which can negatively affect reproduction, is also often found in pandas. Seminal plasma plays a crucial role in sperm-environment interactions, and its properties are closely linked to conception potential in both natural and assisted reproduction. The research sought to identify seminal fluid protein content variations between normal and cryptorchid giant pandas. Methods: Using a label-free MS-based method, the semen proteomes of one panda with cryptorchidism and three normal pandas were studied, and the identified proteins were compared and functionally analyzed. Results: Mass spectrometry identified 2059 seminal plasma proteins, with 361 differentially expressed proteins (DEPs). Gene ontology (GO) analysis revealed that these DEPs are mainly involved in the phosphate-containing compound metabolic, hydrolase activity, and kinase activity areas (p ≤ 0.05). The KEGG functional enrichment analysis revealed that the top 20 pathways were notably concentrated in the adipocyte lipolysis and insulin metabolism pathway, with a significance level of p ≤ 0.05. Further analysis through a protein-protein interaction (PPI) network identified nine key proteins that may play crucial roles, including D2GXH8 (hexokinase Fragment), D2HSQ6 (protein tyrosine phosphatase), and G1LHZ6 (Calmodulin 2). Conclusions: We suspect that the high abundance of D2HSQ6 in cryptorchid individuals is associated with metabolic pathways, especially the insulin signal pathway, as a typical proteomic feature related to its pathological features. These findings offer insight into the ex situ breeding conditions of this threatened species.
Collapse
Affiliation(s)
- Yicheng Qian
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Tao Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Shenfei Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Mengshi Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Xianbiao Hu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Ayala James
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| |
Collapse
|
20
|
Zhang Y, Ding N, Cao J, Zhang J, Liu J, Zhang C, Jiang L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J Proteome Res 2024; 23:3764-3779. [PMID: 39067049 PMCID: PMC11385425 DOI: 10.1021/acs.jproteome.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function, little is known about their metabolite compositions and roles in sperm motility. Here, we performed metabolomics and proteomics analysis of boar SPEVs with high or low sperm motility to investigate specific biomarkers affecting sperm motility. In total, 140 proteins and 32 metabolites were obtained through differentially expressed analysis and weighted gene coexpression network analysis (WGCNA). Seven differentially expressed proteins (DEPs) (ADIRF, EPS8L1, PRCP, CD81, PTPRD, CSK, LOC100736569) and six differentially expressed metabolites (DEMs) (adenosine, beclomethasone, 1,2-benzenedicarboxylic acid, urea, 1-methyl-l-histidine, and palmitic acid) were also identified in WGCNA significant modules. Joint pathway analysis revealed that three DEPs (GART, ADCY7, and NTPCR) and two DEMs (urea and adenosine) were involved in purine metabolism. Our results suggested that there was significant correlation between proteins and metabolites, such as IL4I1 and urea (r = 0.86). Furthermore, we detected the expression level of GART, ADCY7, and CDC42 in sperm of two groups, which further verified the experimental results. This study revealed that several proteins and metabolites in SPEVs play important roles in sperm motility. Our results offered new insights into the complex mechanism of sperm motility and identified potential biomarkers for male reproductive diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Ning Ding
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jinkang Cao
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chun Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
21
|
Kameni SL, Dlamini NH, Feugang JM. Exploring the full potential of sperm function with nanotechnology tools. Anim Reprod 2024; 21:e20240033. [PMID: 39176004 PMCID: PMC11340799 DOI: 10.1590/1984-3143-ar2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of combining these biomarkers with nanoparticles to further improve sperm preparation and technology.
Collapse
Affiliation(s)
- Serge Leugoué Kameni
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Notsile Hleliwe Dlamini
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Jean Magloire Feugang
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| |
Collapse
|
22
|
Yan Y, Yu F, Li Q, Feng X, Geng L, Sun L. Metabolic alterations in vitamin D deficient systemic lupus erythematosus patients. Sci Rep 2024; 14:18879. [PMID: 39143130 PMCID: PMC11325032 DOI: 10.1038/s41598-024-67588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Vitamin D deficiency is increasingly common in systemic lupus erythematosus (SLE) patients and is associated with the disease activity and proteinuria. Recently, alterations in metabolism have been recognized as key regulators of SLE pathogenesis. Our objective was to identify differential metabolites in the serum metabolome of SLE with vitamin D deficiency. In this study, serum samples from 31 SLE patients were collected. Levels of 25(OH)D3 were assayed by ELISA. Patients were divided into two groups according to their vitamin D level (20 ng/ml). Untargeted metabolomics were used to study the metabolite profiles in serum by high-performance liquid chromatography-tandem mass spectrometry. Subsequently, we performed metabolomics profiling analysis to identify 52 significantly altered metabolites in vitamin D deficient SLE patients. The area under the curve (AUC) from ROC analyses was calculated to assess the diagnostic potential of each candidate metabolite biomarker. Lipids accounted for 66.67% of the differential metabolites in the serum, highlighted the disruption of lipid metabolism. The 52 differential metabolites were mapped to 27 metabolic pathways, with fat digestion and absorption, as well as lipid metabolism, emerging as the most significant pathways. The AUC of (S)-Oleuropeic acid and 2-Hydroxylinolenic acid during ROC analysis were 0.867 and 0.833, respectively, indicating their promising diagnostic potential. In conclusion, our results revealed vitamin D deficiency alters SLE metabolome, impacting lipid metabolism, and thrown insights into the pathogenesis and diagnosis of SLE.
Collapse
Affiliation(s)
- Yunxia Yan
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Fangyuan Yu
- School of Medicine, Southeast University, Nanjing, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
23
|
Weide T, Mills K, Shofner I, Breitzman MW, Kerns K. Metabolic Shift in Porcine Spermatozoa during Sperm Capacitation-Induced Zinc Flux. Int J Mol Sci 2024; 25:7919. [PMID: 39063161 PMCID: PMC11276750 DOI: 10.3390/ijms25147919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans.
Collapse
Affiliation(s)
- Tyler Weide
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| | - Kayla Mills
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center (BARC), Beltsville, MD 20705, USA;
| | - Ian Shofner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| | - Matthew W. Breitzman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA;
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| |
Collapse
|
24
|
Catalán J, Yánez-Ortiz I, Martínez-Rodero I, Mateo-Otero Y, Nolis P, Yeste M, Miró J. Comparison of the metabolite profile of donkey and horse seminal plasma and its relationship with sperm viability and motility. Res Vet Sci 2023; 165:105046. [PMID: 37883856 DOI: 10.1016/j.rvsc.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Previous research revealed that several seminal plasma (SP) metabolites are related to sperm functionality, fertility, and preservation. While it is understood that variations between species exist, whether the SP metabolome differs between donkeys and horses has not been previously investigated. The aim of this work, therefore, was to characterize and compare donkey and horse SP metabolites using nuclear magnetic resonance (NMR) spectroscopy, and relate them to sperm viability and motility. For this purpose, ejaculates from 18 different donkeys and 18 different horses were collected and separated into two aliquots: one for harvesting the SP by centrifugation and obtaining the metabolic profile through NMR, and the other for evaluating sperm viability and motility. Based on total motility and sperm viability, samples were classified as with good (GQ) or poor (PQ) quality. The metabolomic profile of donkey and horse SP revealed the presence of 28 metabolites, which coincided in the two species. Yet, differences between horses and donkeys were observed in the concentration of 18 of these 28 metabolites, as well as between ejaculates classified as GQ or PQ and in the relationship of metabolites with sperm motility and viability. These findings suggest that sperm from donkeys and horses differ in their metabolism and energetic requirements, and that the concentration of specific SP metabolites may be related to sperm functionality. Further research should shed light on the metabolic needs of donkey and horse sperm, and evaluate how the knowledge collected from the contribution of these metabolites can help improve semen preservation in the two species.
Collapse
Affiliation(s)
- Jaime Catalán
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Iván Yánez-Ortiz
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Iris Martínez-Rodero
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Pau Nolis
- Nuclear Magnetic Resonance Facility, Autonomous University of Barcelona, Bellaterra, ES-08193, Cerdanyola del Vallès, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain.
| | - Jordi Miró
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
25
|
Lettieri G, Marinaro C, Brogna C, Montano L, Lombardi M, Trotta A, Troisi J, Piscopo M. A Metabolomic Analysis to Assess the Responses of the Male Gonads of Mytilus galloprovincialis after Heavy Metal Exposure. Metabolites 2023; 13:1168. [PMID: 38132850 PMCID: PMC10744773 DOI: 10.3390/metabo13121168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, metabolomics has become a valuable new resource in environmental monitoring programs based on the use of bio-indicators such as Mytilus galloprovincialis. The reproductive system is extremely susceptible to the effects of environmental pollutants, and in a previous paper, we showed metabolomic alterations in mussel spermatozoa exposed to metal chlorides of copper, nickel, and cadmium, and the mixture with these metals. In order to obtain a better overview, in the present work, we evaluated the metabolic changes in the male gonad under the same experimental conditions used in the previous work, using a metabolomic approach based on GC-MS analysis. A total of 248 endogenous metabolites were identified in the male gonads of mussels. Statistical analyses of the data, including partial least squares discriminant analysis, enabled the identification of key metabolites through the use of variable importance in projection scores. Furthermore, a metabolite enrichment analysis revealed complex and significant interactions within different metabolic pathways and between different metabolites. Particularly significant were the results on pyruvate metabolism, glycolysis, and gluconeogenesis, and glyoxylate and dicarboxylate metabolism, which highlighted the complex and interconnected nature of these biochemical processes in mussel gonads. Overall, these results add new information to the understanding of how certain pollutants may affect specific physiological functions of mussel gonads.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility S.r.l., 20091 Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84084 Salerno, Italy
| | - Martina Lombardi
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Alessio Trotta
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Jacopo Troisi
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| |
Collapse
|
26
|
Cheredath A, Uppangala S, Jijo A, Lakshmi RV, Gowda GAN, Kalthur G, Adiga SK. Use of sensitivity-enhanced nuclear magnetic resonance spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe in identifying human sperm intracellular metabolites. Reprod Fertil Dev 2023; 35:661-668. [PMID: 37643634 DOI: 10.1071/rd22246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
CONTEXT The clinical value of human sperm metabolites has not been established due to the technical complexity in detecting these metabolites when sperm numbers are low. AIMS To detect endogenous intracellular metabolites in fresh and post-thaw human spermatozoa using 800MHz nuclear magnetic resonance (NMR) spectroscopy equipped with a 1.7-mm cryo-probe. METHODS Processed spermatozoa from 25 normozoospermic ejaculates were subjected to extraction of intracellular metabolites and then profiled by sensitivity-enhanced NMR spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe. In parallel, some of the processed sperm fractions were subjected to freeze-thawing and were then analysed for intracellular metabolites. KEY RESULTS Twenty-three metabolites were profiled from only 1.25million sperm cells. Comparison of the metabolomic signature of pre-freeze and post-thaw sperm cells did not show significant changes in the levels of metabolites. CONCLUSIONS Sensitivity-enhanced NMR spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe is a potential tool for identifying intracellular metabolites when sperm number is low. IMPLICATIONS Use of sensitivity-enhanced NMR spectroscopy opens up the opportunity to test for endogenous metabolites in samples with a limited number of spermatozoa, to understand the patho-physiology of infertility.
Collapse
Affiliation(s)
- Aswathi Cheredath
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Ameya Jijo
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576 104, India
| | - G A Nagana Gowda
- Northwest Metabolomics Research Centre, Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| |
Collapse
|
27
|
Wu Y, Zhang L, Li H, Zhao X, Ding Y, Yao Y, Wang L. Association between Yili goose sperm motility and expression profiles of mRNA and miRNA in testis. BMC Genomics 2023; 24:640. [PMID: 37875805 PMCID: PMC10599010 DOI: 10.1186/s12864-023-09727-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The study was conducted to find out the candidate microRNA (miRNA) and genes that associated with sperm motility of Yili goose through small RNA sequencing of testicular tissue of Yili goose, and provide a theoretical basis for the study of the regulation mechanism of sperm motility of Yili goose gander. RESULTS In this study, five male geese with high sperm motility and five male geese with low sperm motility were slaughtered to obtain their testis tissues for small RNA sequencing, and biological information methods were used for data analysis. The results showed that a total of 1575 known miRNAs and 68 novel miRNAs were identified in the testis tissue of Yili goose, and 71 differentially expressed miRNAs and 660 differentially expressed genes were screened. GO functional analysis showed that miRNAs target genes were mainly involved in the binding, kinase activity, structural constituent of cytoskeleton and intermediate filament cytoskeleton. KEGG functional analysis showed that miRNAs target genes were significantly enriched in arginine and proline metabolism, glycolysis / gluconeogenesis, fructose and mannose metabolism and beta-Alanine metabolism and other pathways. miRNAs-mRNAs interaction network suggests miR-140/miR-140-3p/miR-140-3p-NKAIN3, let-7d-BTG1 and miR-145-5p/miR -145a-5p-CLEC2E may play an important role in testis development and spermatogenesis. CONCLUSIONS The results of this study suggest that the sperm motility of Yili goose may be regulated by different miRNAs, and the target genes are significantly enriched in pathways related to sperm metabolism, indicating that miRNAs affect the sperm motility of Yili goose by regulating the metabolic process of sperm and the expression of related genes. This study can provide a reference for revealing the regulation mechanism of Yili goose sperm motility at the molecular level.
Collapse
Affiliation(s)
- Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Lihua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China.
| | - Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Yawen Ding
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Yingying Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Ling Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| |
Collapse
|
28
|
Shen Q, Wu X, Chen J, He C, Wang Z, Zhou B, Zhang H. Immune Regulation of Seminal Plasma on the Endometrial Microenvironment: Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:14639. [PMID: 37834087 PMCID: PMC10572377 DOI: 10.3390/ijms241914639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Seminal plasma (SP) accounts for more than 90% of semen volume. It induces inflammation, regulates immune tolerance, and facilitates embryonic development and implantation in the female reproductive tract. In the physiological state, SP promotes endometrial decidualization and causes changes in immune cells such as macrophages, natural killer cells, regulatory T cells, and dendritic cells. This leads to the secretion of cytokines and chemokines and also results in the alteration of miRNA profiles and the expression of genes related to endometrial tolerance and angiogenesis. Together, these changes modulate the endometrial immune microenvironment and contribute to implantation and pregnancy. However, in pathological situations, abnormal alterations in SP due to advanced age or poor diet in men can interfere with a woman's immune adaptation to pregnancy, negatively affecting embryo implantation and even the health of the offspring. Uterine pathologies such as endometriosis and endometritis can cause the endometrium to respond negatively to SP, which can further contribute to pathological progress and interfere with conception. The research on the mechanism of SP in the endometrium is conducive to the development of new targets for intervention to improve reproductive outcomes and may also provide new ideas for semen-assisted treatment of clinical infertility.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Xiaoyu Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Zehao Wang
- School of Management, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Boyan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| |
Collapse
|
29
|
Narud B, Khezri A, Zeremichael TT, Eriksen AL, Grevle IS, Nordborg A, Klinkenberg G, Wilson RC, Kommisrud E. Sperm quality parameters, fertilizing potential, metabolites, and DNA methylation in cold-stored and cryopreserved milt from Atlantic salmon ( Salmo salar L.). Front Genet 2023; 14:1199681. [PMID: 37693310 PMCID: PMC10483119 DOI: 10.3389/fgene.2023.1199681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Cold storage and freezing/thawing of milt may affect sperm functionality and the subsequent fertilization ability of milt. This study aimed to investigate sperm quality parameters and fertilization potential of Atlantic salmon milt, stored cold and subsequently cryopreserved, using different storage conditions. The objective was also to assess if analysis of milt metabolites and sperm DNA methylation signatures could be applicable to further elucidate sperm quality and fertilization following preservation. Milt samples were collected from eight mature Atlantic salmon males and stored for 4 days at 2°C and 8°C. Samples were taken on day one of storage at 2°C and on day four of storage at 2°C and 8°C. Storage for 4 days at 8°C is expected to be detrimental to sperm quality, and was included to create contrasts. Correspondingly, aliquots of cold-stored milt were prepared for cryopreservation, resulting in a total of six experimental conditions. Samples from all six experimental conditions were used in fertilization trials and analyzed for sperm viability, motility, ATP content, DNA fragmentation index, and High DNA stainability. In addition, milt samples from four of the males were analyzed for targeted metabolites and DNA methylation signatures by reduced representation bisulfite sequencing. The fertilization trials were performed using sperm:egg ratios of 75 × 103 and 500 × 103, respectively. Storage duration, temperature, and cryopreservation of cold-stored milt influenced several sperm quality parameters, metabolites, and DNA methylation signatures. The total motility, progressive motility, ATP, and velocity parameters were the sperm parameters with the strongest correlation to fertilization rates (p < 0.01). Several metabolites were correlated with fertility rates in both cold-stored and cryopreserved samples (p < 0.05). The fertilizing capacity of cold-stored milt was significantly reduced after 4 days of storage at 8°C, while corresponding cryopreserved milt showed reduced fertilization at both storage temperatures (2°C and 8°C) (p < 0.05). The results indicate that cryopreservation of milt stored for 1 day does not compromise either fertilization ability or DNA methylation signatures.
Collapse
Affiliation(s)
- Birgitte Narud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Teklu T. Zeremichael
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | | | | | - Robert C. Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| |
Collapse
|
30
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Mateo-Otero Y, Madrid-Gambin F, Llavanera M, Gomez-Gomez A, Haro N, Pozo OJ, Yeste M. Sperm physiology and in vitro fertilising ability rely on basal metabolic activity: insights from the pig model. Commun Biol 2023; 6:344. [PMID: 36997604 PMCID: PMC10063579 DOI: 10.1038/s42003-023-04715-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Whether basal metabolic activity in sperm has any influence on their fertilising capacity has not been explored. Using the pig as a model, the present study investigated the relationship of energetic metabolism with sperm quality and function (assessed through computer-assisted sperm analysis and flow cytometry), and fertility (in vitro fertilisation (IVF) outcomes). In semen samples from 16 boars, levels of metabolites related to glycolysis, ketogenesis and Krebs cycle were determined through a targeted metabolomics approach using liquid chromatography-tandem mass spectrometry. High-quality sperm are associated to greater levels of glycolysis-derived metabolites, and oocyte fertilisation and embryo development are conditioned by the sperm metabolic status. Interestingly, glycolysis appears to be the preferred catabolic pathway of the sperm giving rise to greater percentages of embryos at day 6. In conclusion, this study shows that the basal metabolic activity of sperm influences their function, even beyond fertilisation.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain.
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010, Barcelona, Spain.
| |
Collapse
|
32
|
Cao W, Sun W, Chen S, Jia X, Wang J, Lai S. Comprehensive analysis of microRNA and metabolic profiles in bovine seminal plasma of different semen quality. Front Vet Sci 2023; 10:1088148. [PMID: 37056229 PMCID: PMC10086235 DOI: 10.3389/fvets.2023.1088148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundSeminal plasma plays a pivotal role in modulating sperm viability and function. However, the underlying mechanisms have not been fully elucidated.MethodIn this study, the bull semen production records of core breeding farms and bull stations in the past 10 years were analyzed.ResultsWe found that the semen of 5-year-old bulls collected for the first time is of the best quality (p < 0.05). Despite the bull semen collected under the above conditions, low-quality sperm is still obtained from part of bulls due to individual differences. Interestingly, seminal plasma from normal semen is capable of improving low-quality semen motility. To identify the potential key factors in seminal plasma, the differences in miRNA and metabolite profiles between normal and low-quality seminal plasma were analyzed. We found that 59 miRNAs were differently expressed, including 38 up-regulated and 21 down-regulated miRNAs. Three hundred and ninety-one and 327 significantly different metabolites were identified from the positive and negative ion models, respectively. These multiple miRNAs and metabolites collectively contribute to the motility of sperm, subsequently, affect semen quality.DiscussionTogether, these results not only revealed the critical factors of seminal plasma improving sperm quality but also provided potential miRNA- or metabolite-based biomarkers to identify the high semen quality.
Collapse
Affiliation(s)
- Wei Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Wenqiang Sun
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shiyi Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xianbo Jia
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Songjia Lai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Songjia Lai
| |
Collapse
|
33
|
Xu B, Bai X, Zhang J, Li B, Zhang Y, Su R, Wang R, Wang Z, Lv Q, Zhang J, Li J. Metabolomic analysis of seminal plasma to identify goat semen freezability markers. Front Vet Sci 2023; 10:1132373. [PMID: 36968471 PMCID: PMC10036599 DOI: 10.3389/fvets.2023.1132373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Factors affecting sperm freezability in goat seminal plasma were investigated. Based on the total motility of thawed sperm, goats were divided into a high-freezability (HF) group with >60% total motility (n = 8) and a low-freezability (LF) group with <45% total motility (n = 8). Sperm and seminal plasma from the HF and LF groups were separated, HF seminal plasma was mixed with LF spermatozoa, LF seminal plasma was mixed with HF sperm, and the products were subjected to a freeze-thaw procedure. Semen from individual goats exhibited differences in freezability. HF semen had higher sperm motility parameters and plasma membrane and acrosome integrity after thawing; this difference could be related to the composition of seminal plasma. Seminal plasma from the HF and LF groups was evaluated using metabolomic analysis, and multivariate statistical analysis revealed a clear separation of metabolic patterns in the seminal plasma of goats with different freezability classifications. Forty-one differential metabolites were identified using the following screening conditions: variable importance in the projection > 1 and 0.05 < P-value < 0.1. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of central carbon metabolism in cancer, protein digestion and absorption, aminoacyl-tRNA, and other pathways and significant differences in the abundance of seven differential metabolites, including L-glutamine, L-aspartate, L-arginine, phenylpyruvate, benzoic acid, ketoisocaproic acid, and choline between seminal plasma from the HF and LF groups (P-value < 0.05). These significantly differentially-expressed metabolites may be potential biomarkers for sperm freezability. L-glutamine, L-aspartate, and L-arginine may directly affect sperm freezability. Benzoic acid, ketoisocaproic acid, and choline may regulate sperm freezability by participating in anabolic processes involving phenylalanine, leucine, and phosphatidylcholine in sperm.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xue Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Boyuan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Jinlai Animal Husbandry Technology Co., Ltd., Hohhot, China
| |
Collapse
|
34
|
Park YJ, Pang WK, Pang MG. Integration of omics studies indicates that species-dependent molecular mechanisms govern male fertility. J Anim Sci Biotechnol 2023; 14:28. [PMID: 36859388 PMCID: PMC9979430 DOI: 10.1186/s40104-023-00836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/10/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Comparative and comprehensive omics studies have recently been conducted to provide a comprehensive understanding of the biological mechanisms underlying infertility. However, because these huge omics datasets often contain irrelevant information, editing strategies for summarizing and filtering the data are necessary prerequisite steps for identifying biomarkers of male fertility. Here, we attempted to integrate omics data from spermatozoa with normal and below-normal fertility from boars and bulls, including transcriptomic, proteomic, and metabolomic data. Pathway enrichment analysis was conducted and visualized using g:Profiler, Cytoscape, EnrichmentMap, and AutoAnnotation to determine fertility-related biological functions according to species. RESULTS In particular, gamete production and protein biogenesis-associated pathways were enriched in bull spermatozoa with below-normal fertility, whereas mitochondrial-associated metabolic pathways were enriched in boar spermatozoa with normal fertility. These results indicate that below-normal fertility may be determined by aberrant regulation of protein synthesis during spermatogenesis, and the modulation of reactive oxygen species generation to maintain capacitation and the acrosome reaction governs boar sperm fertility. CONCLUSION Overall, this approach demonstrated that distinct molecular pathways drive sperm fertility in mammals in a species-dependent manner. Moreover, we anticipate that searching for species-specific signaling pathways may aid in the discovery of fertility-related biomarkers within large omics datasets.
Collapse
Affiliation(s)
- Yoo-Jin Park
- grid.254224.70000 0001 0789 9563Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546 Republic of Korea
| | - Won-Ki Pang
- grid.254224.70000 0001 0789 9563Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546 Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
35
|
Li Z, Sun J, Li K, Qin J, Sun Y, Zeng J, El-Ashram S, Zhao Y. Metabolomic analysis reveals spermatozoa and seminal plasma differences between Duroc and Liang guang Small-spotted pig. Front Vet Sci 2023; 9:1078928. [PMID: 36686181 PMCID: PMC9853278 DOI: 10.3389/fvets.2022.1078928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The Liang guang Small-spotted pig is a well-known Chinese indigenous pig that is valued for its exceptional meat quality. However, the Liang guang Small-spotted pig has a lower semen storage capacity, shorter storage time and worse semen quality compared to Duroc. Pig sperm used for artificial insemination (AI) loses part of vitality and quality when being stored in commercial solutions. Serious vitality losses and short shelf life of the semen are particularly prominent in Liang guang Small-spotted pig. In this study, the metabolites in seminal plasma and spermatozoa of Duroc and Liang guang Small-spotted pigs were identified using UHPLC-Q-TOF/MS technology. The findings indicated forty distinct metabolites concentrating on energy metabolic substrates and antioxidant capacity in Liang guang Small-spotted pig and Duroc seminal plasma, including D-Fructose, succinate, 2-dehydro-3-deoxy-d-gluconate, alanine betaine, citrate, carnitine, acetylcarnitine and so on. Seventeen different metabolites were explored, with a focus on glycerophospholipid metabolism in Liang guang Small-spotted pig and Duroc spermatozoa, primarily including glycerol 3-phosphate, acetylcarnitine, phosphatidylcholine (PC) 16:0/16:0, palmitoyl sphingomyelin, acetylcholine, choline, glycerophosphocholine, betaine, L-carnitine, creatinine and others. This study reveals the metabolite profile of spermatozoa and seminal plasma among different pig breeds and might be valuable for understanding the mechanisms that lead to sperm storage capacity. Metabolites involved in energy metabolism, antioxidant capacity and glycerophospholipid metabolism might be key to the poor sperm storage capacity in Liang guang Small-spotted pig.
Collapse
Affiliation(s)
- Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jingshuai Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kebiao Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiali Qin
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Yanmei Sun
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co., Ltd., Guangzhou, China
| | | | - Yunxiang Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China,Guangxi Yangxiang Co., Ltd., Guigang, China,*Correspondence: Yunxiang Zhao ✉
| |
Collapse
|
36
|
Yuan C, Zhang K, Wang Z, Ma X, Liu H, Zhao J, Lu W, Wang J. Dietary flaxseed oil and vitamin E improve semen quality via propionic acid metabolism. Front Endocrinol (Lausanne) 2023; 14:1139725. [PMID: 37124753 PMCID: PMC10140321 DOI: 10.3389/fendo.2023.1139725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Flaxseed oil (FO) and vitamin E (VE) both have antioxidant effects on sperm. The present study investigated the effects of dietary supplementation with FO and/or VE on semen quality. Methods 16 fertile Simmental bulls were selected and randomly divided into 4 groups (n = 4): the control group (control diet), FO group (control diet containing 24 g/kg FO), VE group (control diet containing 150 mg/kg VE) and FOVE group (control diet containing 150 mg/kg VE and 24 g/kg FO), and the trial lasted 10 weeks. Results The results showed that the addition of FO independently can increase sperm motion parameters, the levels of catalase (CAT), glutathione peroxidase (GSH-Px), testosterone (T) and estradiol (E2), while reduce oxidative stress in seminal plasma (P < 0.05). Supplement of VE independently can increased the motility, motility parameters, CAT and superoxide dismutase (SOD) levels, and reduce oxidative stress in seminal plasma (P < 0.05). There was an interaction effect of FO × VE on motility and reactive oxygen species (ROS), while GSH-Px and ROS were affected by week × VE 2-way interaction, levels of T and E2 were also affected by the dietary FO × week interaction (P < 0.05). The triple interaction effects of FO, VE and week were significant for malondialdehyde (MDA) (P < 0.05). Compared with the control group, sperm from the FOVE group had a significantly higher in vitro fertilization (IVF) rate, and subsequent embryos had increased developmental ability with reduced ROS levels at the eight-cell stage, then increased adenosine triphosphate (ATP) content and gene expression levels of CAT, CDX2, Nanog, and SOD at the blastocyst stage (P < 0.05). Metabolomic and transcriptomic results indicated that dietary supplementation of FO and VE increased the expression of the metabolite aconitic acid, as well as the expression of ABAT and AHDHA genes. Conclusion With in-silico analysis, it can be concluded that the effects of dietary FO and VE on improving semen quality and embryo development may be related to increased aconitic acid via the ABAT and AHDHA genes involved in the propionic acid metabolism pathway.
Collapse
Affiliation(s)
- Chongshan Yuan
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhe Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyu Liu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| |
Collapse
|
37
|
Yuan C, Wang J, Lu W. Regulation of semen quality by fatty acids in diets, extender, and semen. Front Vet Sci 2023; 10:1119153. [PMID: 37180054 PMCID: PMC10174315 DOI: 10.3389/fvets.2023.1119153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Fatty acids (FAs) are classified into different types according to the degree of hydrocarbon chain saturation, including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), omega-3 polyunsaturated fatty acids (omega-3 PUFAs) and omega-6 polyunsaturated fatty acids (omega-6 PUFAs), which play an important role in maintaining semen quality. This review focuses on the regulation of FAs in semen, diet and extender on semen quality, and expounds its effects on sperm motility, plasma membrane integrity, DNA integrity, hormone content, and antioxidant capacity. It can be concluded that there are species differences in the FAs profile and requirements in sperm, and their ability to regulate semen quality is also affected by the addition methods or dosages. Future research directions should focus on analyzing the FAs profiles of different species or different periods of the same species and exploring suitable addition methods, doses and mechanism of regulating semen quality.
Collapse
Affiliation(s)
- Chongshan Yuan
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Jun Wang,
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Wenfa Lu,
| |
Collapse
|
38
|
Rabaglino M, Le Danvic C, Schibler L, Kupisiewicz K, Perrier J, O'Meara C, Kenny D, Fair S, Lonergan P. Identification of sperm proteins as biomarkers of field fertility in Holstein-Friesian bulls used for artificial insemination. J Dairy Sci 2022; 105:10033-10046. [DOI: 10.3168/jds.2022-22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
39
|
Hitit M, Memili E. Sperm Signatures of Fertility and Freezability. Anim Reprod Sci 2022; 247:107147. [DOI: 10.1016/j.anireprosci.2022.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
40
|
Relationships between Biomarkers of Oxidative Stress in Seminal Plasma and Sperm Motility in Bulls before and after Cryopreservation. Animals (Basel) 2022; 12:ani12192534. [PMID: 36230273 PMCID: PMC9558952 DOI: 10.3390/ani12192534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed at evaluating the relationship between biomarkers of oxidative stress (OS) in seminal plasma and sperm motility in bulls before and after cryopreservation. Three ejaculates per bull were collected from 20 young bulls. Each ejaculate was analyzed for motility before and after cryopreservation (by CASA), and the SP concentration of Advanced Oxidation Protein Products (AOPP), thiols, and carbonyl groups (CT) were examined. Then, based on their motility, the ejaculates were grouped into: high motility fresh (HMF), low motility fresh (LMF), high motility thawed (HMT), and low motility thawed (LMT) groups. Higher AOPP and thiol concentrations on SP were related (p < 0.05) to the higher LIN and BCF and lower ALH of fresh semen. In addition, AOPP and thiols were significantly higher in HMF than LMF. As a confirmation of this, the Receiver Operating Characteristic (ROC) curve analysis showed that AOPP and thiol concentrations in SP were able to discriminate between HMF and LMF ejaculates (Area Under the Curve of 71.67% and 72.04%, respectively). These observations give an alternative perspective on the relationship between sperm motility and the OS parameters of SP, which need further investigations.
Collapse
|
41
|
Wang J, Lin L, Huang J, Zhang J, Duan J, Guo X, Wu S, Sun Z. Impact of PM 2.5 exposure on plasma metabolome in healthy adults during air pollution waves: A randomized, crossover trial. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129180. [PMID: 35739713 DOI: 10.1016/j.jhazmat.2022.129180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Air pollution, especially PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) in China, is severe and related to a variety of diseases while the potential mechanisms have not been clearly clarified yet. This study was conducted using a randomized crossover trial protocol among young and healthy college students. Plasma samples were collected before, during, and post two typical air pollution waves with a washout interval of at least 2 weeks under true and sham air purification treatments, respectively. A total of 144 blood samples from 24 participants were included in the final analysis. Metabolomics analysis for the plasma samples was completed by Ultrahigh Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA) and linear mixed-effect models were used to identify the differentially expressed metabolites and their associations with PM2.5 exposure. MetaboAnalyst 5.0 was further used to conduct pathway enrichment analysis and correlation analysis of differentially expressed metabolites. A total of 40 metabolites were identified to be differentially expressed between the true and sham air purification treatments, and eleven metabolites showed consistent significant changes upon outdoor, indoor, and time-weighted personal PM2.5 exposures. Short-term exposure to PM2.5 may cause disturbances in metabolic pathways such as linoleic acid metabolism, arachidonic acid metabolism, and tryptophan metabolism.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
42
|
Garriga F, Llavanera M, Viñolas-Vergés E, Recuero S, Tamargo C, Delgado-Bermúdez A, Yeste M. Glutathione S-transferase Mu 3 is associated to in vivo fertility, but not sperm quality, in bovine. Animal 2022; 16:100609. [PMID: 35963103 DOI: 10.1016/j.animal.2022.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
In the dairy breeding industry, pregnancy of dairy cows is essential to initiate milk production, so that high fertility rates are required to increase their productivity. In this regard, sperm proteins that are indicative of sperm quality and/or fertility have become an important target of study. Glutathione S-transferase Mu 3 (GSTM3) has been established as a fertility and sperm quality parameter in humans and pigs and, consequently, it might be a potential biomarker in cattle. For this reason, the present work aimed to determine if GSTM3 could predict sperm quality and in vivo fertility in this species. Sperm quality was assessed with flow cytometry and computer-assisted sperm analysis. Immunoblotting and immunofluorescence analysis were performed to determine the presence and localisation pattern of sperm GSTM3. This enzyme was found to be present in bovine sperm and to be localised along the sperm tail and the equatorial segment of the head. No significant associations between sperm GSTM3 and sperm quality parameters were observed, except a negative association with morphologically abnormal sperm having a coiled tail. In addition, and more relevant, higher levels of GSTM3 in sperm were seen in bulls showing lower in vivo fertility rates. In conclusion, our data evidenced the presence of GSTM3 in bovine sperm. Moreover, we suggest that, despite not being associated with sperm quality, GSTM3 might be an in vivo subfertility biomarker in cattle sperm, and that high levels of this protein could be an indicative of defective spermatogenesis and/or epididymal maturation.
Collapse
Affiliation(s)
- Ferran Garriga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Estel Viñolas-Vergés
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), ES-33394 Gijón, Spain
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain.
| |
Collapse
|
43
|
Herrera F, Boryshpolets S, Mraz J, Knowles J, Bondarenko O. Pikeperch (Sander lucioperca) spermatozoa motility and volume regulation under different osmotic and ionic conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:899-910. [PMID: 35697911 DOI: 10.1007/s10695-022-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Pikeperch (Sander lucioperca) is a highly profitable commercial species whose economic value has greatly increased in the last decade. As in other species, the quality of spermatozoa in this species is a principal feature inherent in fertilization success and efficient natural and artificial reproduction. The capacity of fish spermatozoa to be activated and tolerate environmental changes (in osmolality, ion composition, external pH, temperature, etc.) during the motility period contributes to fertilization success. In this study, we investigated the effects of environmental osmolality and ion composition on spermatozoa motility. To determine if the activation mechanism is affected by sperm quality parameters, we measured semen characteristics such as semen volume, spermatozoa concentration, seminal fluid osmolality and ion composition, and spermatozoa lipid composition. An additional parameter of sperm quality reflecting spermatozoa osmoresistance, the swelling rate, was measured by the nephelometry method. We detected that sperm samples with the highest content of palmitic (C16:0) and palmitoleic (C16:1) acids showed the lowest motility activation under the studied conditions, suggesting that these fatty acids are possible markers for the determination of spermatozoa quality in fish. Our results show that pikeperch spermatozoa can be activated under different osmotic conditions and that cell swelling always accompanies motility. However, spermatozoa sustain their volume under hypotonic conditions when motility is not initiated, suggesting that pikeperch spermatozoa activation is mainly controlled by ion composition rather than the osmolarity of the surrounding medium.
Collapse
Affiliation(s)
- Fabio Herrera
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergey Boryshpolets
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jan Mraz
- Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jindriska Knowles
- Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Olga Bondarenko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
44
|
Barbosa JMG, de Mendonça DR, David LC, E Silva TC, Fortuna Lima DA, de Oliveira AE, Lopes WDZ, Fioravanti MCS, da Cunha PHJ, Antoniosi Filho NR. A cerumenolomic approach to bovine trypanosomosis diagnosis. Metabolomics 2022; 18:42. [PMID: 35739279 DOI: 10.1007/s11306-022-01901-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Trypanosomiasis caused by Trypanosoma vivax (T. vivax, subgenus Duttonella) is a burden disease in bovines that induces losses of billions of dollars in livestock activity worldwide. To control the disease, the first step is identifying the infected animals at early stages. However, convention tools for animal infection detection by T. vivax present some challenges, facilitating the spread of the pathogenesis. OBJECTIVES This work aims to develop a new procedure to identify infected bovines by T. vivax using cerumen (earwax) in a volatilomic approach, here named cerumenolomic, which is performed in an easy, quick, accurate, and non-invasive manner. METHODS Seventy-eight earwax samples from Brazilian Curraleiro Pé-Duro calves were collected in a longitudinal study protocol during health and inoculated stages. The samples were analyzed using Headspace/Gas Chromatography-Mass Spectrometry followed by multivariate analysis approaches. RESULTS The cerumen analyses lead to the identification of a broad spectrum of volatile organic metabolites (VOMs), of which 20 VOMs can discriminate between healthy and infected calves (AUC = 0.991, sensitivity = 0.967, specificity = 1.000). Furthermore, 13 VOMs can indicate a pattern of discrimination between the acute and chronic phases of the T. vivax infection in the animals (AUC = 0.989, sensitivity = 0.944, specificity = 1.000). CONCLUSION The cerumen volatile metabolites present alterations in their occurrence during the T.vivax infection, which may lead to identifying the infection in the first weeks of inoculation and discriminating between the acute and chronic phases of the illness. These results may be a breakthrough to avoid the T. vivax outbreak and provide a faster clinical approach to the animal.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Débora Ribeiro de Mendonça
- Escola de Veterinária e Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Lurian C David
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Taynara C E Silva
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Danielly A Fortuna Lima
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Anselmo E de Oliveira
- Laboratory of Theoretical and Computational Chemistry, Instituto de Química, UFG, Goiânia, GO, 74690-970, Brazil
| | - Welber Daniel Zanetti Lopes
- Centro de Parasitologia Veterinária, Escola de Veterinária e Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, Goiás, CEP, 74001-970, Brazil
| | - Maria Clorinda S Fioravanti
- Escola de Veterinária e Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Paulo H Jorge da Cunha
- Escola de Veterinária e Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
45
|
Talluri TR, Kumaresan A, Sinha MK, Paul N, Ebenezer Samuel King JP, Datta TK. Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility. Sci Rep 2022; 12:10692. [PMID: 35739152 PMCID: PMC9226030 DOI: 10.1038/s41598-022-14589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bull fertility is of paramount importance in bovine industry because semen from a single bull is used to breed several thousands of cows; however, so far, no reliable test is available for bull fertility prediction. In the present study, spermatozoa from high- and low-fertility bulls were subjected to high-throughput transcriptomic, proteomic and metabolomic analysis. Using an integrated multi-omics approach the molecular differences between high- and low-fertility bulls were identified. We identified a total of 18,068 transcripts, 5041 proteins and 3704 metabolites in bull spermatozoa, of which the expression of 4766 transcripts, 785 proteins and 33 metabolites were dysregulated between high- and low-fertility bulls. At transcript level, several genes involved in oxidative phosphorylation pathway were found to be downregulated, while at protein level genes involved in metabolic pathways were significantly downregulated in low-fertility bulls. We found that metabolites involved in Taurine and hypotaurine metabolism were significantly downregulated in low-fertility bulls. Integrated multi-omics analysis revealed the interaction of dysregulated transcripts, proteins and metabolites in major metabolic pathways, including Butanoate metabolism, Glycolysis and gluconeogenesis, Methionine and cysteine metabolism, Phosphatidyl inositol phosphate, pyrimidine metabolism and saturated fatty acid beta oxidation. These findings collectively indicate that molecules governing sperm metabolism potentially influence bull fertility.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Nilendu Paul
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
46
|
Zhu C, Jin L, Luo B, Zhou Q, Dong L, Li X, Zhang H, Huang Y, Li C, Zou L, Laghi L. Dominant Components of the Giant Panda Seminal Plasma Metabolome, Characterized by 1H-NMR Spectroscopy. Animals (Basel) 2022; 12:ani12121536. [PMID: 35739871 PMCID: PMC9219455 DOI: 10.3390/ani12121536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary As China’s flagship animal, the giant panda (Ailuropoda melanoleuca) attracts much attention due to its small population and low natural reproductive rate. Therefore, artificial insemination has become the leading practical approach in the captive breeding programs of giant pandas worldwide. Seminal plasma acts as a medium between spermatozoa and the external stimuli, and its characteristics have been directly linked to fertility in both artificial insemination and natural fertilization. The current work, for the first time, attempts to characterize, by proton magnetic resonance spectroscopy (1H-NMR), the metabolome of healthy giant panda seminal plasma. A total of 35 molecules were quantified, with distinct age-related trends highlighted by a multivariate analysis, and the concentrations of 2,3-butanediol were significantly different between individuals younger than 8 years and older than 13 years. In addition, isopropanol’s concentration was significantly linked to estrus stages. Besides, the variations in the metabolome’s profile with storage time were also evaluated. This study may serve as a reference for research wishing to shed light on the biological mechanisms affecting giant panda sperm’s overall quality and may ultimately lead to novel approaches to giant panda artificial insemination. Abstract As an assisted breeding technique, artificial insemination has become the main effective practical approach in the captive breeding programs of giant panda worldwide. The composition of seminal plasma plays an important role in the success of breeding. The present work is the first attempt to characterize, by proton magnetic resonance spectroscopy (1H-NMR), the metabolome of healthy giant panda seminal plasma. A total of 35 molecules were quantified, with the concentration of 2,3-butanediol being significantly different between individuals younger than 8 years and older than 13 years, and other distinct age-related trends were highlighted by a multivariate analysis. Isopropanol’s concentration was significantly linked to estrus stages. Besides, the variations in the metabolome’s profile during storage were also evaluated. This study may serve as a reference for further research wishing to shed light on the biological mechanisms affecting giant panda sperm’s overall quality and may ultimately lead to novel approaches to giant panda artificial insemination.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Bo Luo
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Qiang Zhou
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Li Dong
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Xiaoyan Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
- Correspondence: (C.L.); (L.Z.); Tel.: +86-0835-2318208 (C.L.); +86-028-86290986 (L.Z.)
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (C.L.); (L.Z.); Tel.: +86-0835-2318208 (C.L.); +86-028-86290986 (L.Z.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| |
Collapse
|
47
|
Klein EK, Swegen A, Gunn AJ, Stephen CP, Aitken RJ, Gibb Z. The future of assessing bull fertility: Can the 'omics fields identify usable biomarkers? Biol Reprod 2022; 106:854-864. [PMID: 35136971 PMCID: PMC9113469 DOI: 10.1093/biolre/ioac031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Breeding soundness examinations for bulls rely heavily on the subjective, visual assessment of sperm motility and morphology. Although these criteria have the potential to identify infertile males, they cannot be used to guarantee fertility or provide information about varying degrees of bull fertility. Male factor fertility is complex, and the success of the male gamete is not necessarily realized until well after the spermatozoon enters the oocyte. This paper reviews our existing knowledge of the bull’s contribution from a standpoint of the sperm’s cargo and the impact that this can have on fertilization and the development of the embryo. There has been a plethora of recent research characterizing the many molecular attributes that can affect the functional competence of a spermatozoon. A better understanding of the molecular factors influencing fertilization and embryo development in cattle will lead to the identification of biomarkers for the selection of bulls of superior fertility, which will have major implications for livestock production. To see this improvement in reproductive performance, we believe incorporation of modern technology into breeding soundness examinations will be necessary—although many of the discussed technologies are not ready for large-scale field application. Each of the ‘omics fields discussed in this review have shown promise for the identification of biomarkers of fertility, with certain families of biomarkers appearing to be better suited to different evaluations throughout a bull’s lifetime. Further research is needed for the proposed biomarkers to be of diagnostic or predictive value.
Collapse
Affiliation(s)
- Erin K Klein
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia.,Nuffield Department of Women's and Reproductive Health, University of Oxford, UK
| | - Allan J Gunn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Cyril P Stephen
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.,Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia
| |
Collapse
|
48
|
Dasgupta M, Kumaresan A, Saraf KK, Nag P, Sinha MK, Aslam M. K. M, Karthikkeyan G, Prasad TSK, Modi PK, Datta TK, Ramesha K, Manimaran A, Jeyakumar S. Deep Metabolomic Profiling Reveals Alterations in Fatty Acid Synthesis and Ketone Body Degradations in Spermatozoa and Seminal Plasma of Astheno-Oligozoospermic Bulls. Front Vet Sci 2022; 8:755560. [PMID: 35087889 PMCID: PMC8787163 DOI: 10.3389/fvets.2021.755560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Male fertility is extremely important in dairy animals because semen from a single bull is used to inseminate several thousand females. Asthenozoospermia (reduced sperm motility) and oligozoospermia (reduced sperm concentration) are the two important reasons cited for idiopathic infertility in crossbred bulls; however, the etiology remains elusive. In this study, using a non-targeted liquid chromatography with tandem mass spectrometry-based approach, we carried out a deep metabolomic analysis of spermatozoa and seminal plasma derived from normozoospermic and astheno-oligozoospermic bulls. Using bioinformatics tools, alterations in metabolites and metabolic pathways between normozoospermia and astheno-oligozoospermia were elucidated. A total of 299 and 167 metabolites in spermatozoa and 183 and 147 metabolites in seminal plasma were detected in astheno-oligozoospermic and normozoospermic bulls, respectively. Among the mapped metabolites, 75 sperm metabolites were common to both the groups, whereas 166 and 50 sperm metabolites were unique to astheno-oligozoospermic and normozoospermic bulls, respectively. Similarly, 86 metabolites were common to both the groups, whereas 45 and 37 seminal plasma metabolites were unique to astheno-oligozoospermic and normozoospermic bulls, respectively. Among the differentially expressed metabolites, 62 sperm metabolites and 56 seminal plasma metabolites were significantly dysregulated in astheno-oligozoospermic bulls. In spermatozoa, selenocysteine, deoxyuridine triphosphate, and nitroprusside showed significant enrichment in astheno-oligozoospermic bulls. In seminal plasma, malonic acid, 5-diphosphoinositol pentakisphosphate, D-cysteine, and nicotinamide adenine dinucleotide phosphate were significantly upregulated, whereas tetradecanoyl-CoA was significantly downregulated in the astheno-oligozoospermia. Spermatozoa from astheno-oligozoospermic bulls showed alterations in the metabolism of fatty acid and fatty acid elongation in mitochondria pathways, whereas seminal plasma from astheno-oligozoospermic bulls showed alterations in synthesis and degradation of ketone bodies, pyruvate metabolism, and inositol phosphate metabolism pathways. The present study revealed vital information related to semen metabolomic differences between astheno-oligozoospermic and normospermic crossbred breeding bulls. It is inferred that fatty acid synthesis and ketone body degradations are altered in the spermatozoa and seminal plasma of astheno-oligozoospermic crossbred bulls. These results open up new avenues for further research, and current findings can be applied for the modulation of identified pathways to restore sperm motility and concentration in astheno-oligozoospermic bulls.
Collapse
Affiliation(s)
- Mohua Dasgupta
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Kaustubh Kishor Saraf
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Muhammad Aslam M. K.
- Base Farm, Kerala Veterinary and Animal Sciences University, Kolahalamedu, India
| | - Gayathree Karthikkeyan
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - T. S. Keshava Prasad
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Karnal, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
49
|
Ugur MR, Guerreiro DD, Moura AA, Memili E. Identification of biomarkers for bull fertility using functional genomics. Anim Reprod 2022; 19:e20220004. [PMID: 35573862 PMCID: PMC9083437 DOI: 10.1590/1984-3143-ar2022-0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 09/21/2023] Open
Abstract
Prediction of bull fertility is critical for the sustainability of both dairy and beef cattle production. Even though bulls produce ample amounts of sperm with normal parameters, some bulls may still suffer from subpar fertility. This causes major economic losses in the cattle industry because using artificial insemination, semen from one single bull can be used to inseminate hundreds of thousands of cows. Although there are several traditional methods to estimate bull fertility, such methods are not sufficient to explain and accurately predict the subfertility of individual bulls. Since fertility is a complex trait influenced by a number of factors including genetics, epigenetics, and environment, there is an urgent need for a comprehensive methodological approach to clarify uncertainty in male subfertility. The present review focuses on molecular and functional signatures of bull sperm associated with fertility. Potential roles of functional genomics (proteome, small noncoding RNAs, lipidome, metabolome) on determining male fertility and its potential as a fertility biomarker are discussed. This review provides a better understanding of the molecular signatures of viable and fertile sperm cells and their potential to be used as fertility biomarkers. This information will help uncover the underlying reasons for idiopathic subfertility.
Collapse
Affiliation(s)
| | | | - Arlindo A. Moura
- Universidade Federal do Ceará, Brasil; Universidade Federal do Ceará, Brasil
| | - Erdogan Memili
- Mississippi State University, USA; Prairie View A&M University, USA
| |
Collapse
|
50
|
Moura FH, Macias-Franco A, Pena-Bello CA, Archilia EC, Batalha IM, Silva AEM, Moreira GM, Norris AB, Schütz LF, Fonseca MA. Sperm DNA 5-methyl cytosine and RNA N6-methyladenosine methylation are differently affected during periods of body weight losses and body weight gain of young and mature breeding bulls. J Anim Sci 2021; 100:6460477. [PMID: 34902028 PMCID: PMC8849232 DOI: 10.1093/jas/skab362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aiming to characterize the effects of nutritional status on epigenetic markers, such as DNA 5-methyl cytosine (mC) methylation and RNA N6-methyladenosine (m6A) methylation, of bovine sperm, 12 Angus × Hereford crossbred breeding bulls were submitted to nutritional changes for a period of 180 d: no change in body weight (BW) (phase 1 = 12 d), BW loss (phase 2 = 78 d), and BW gain (phase 3 = 90 d) in a repeated measures design. Animals were fed Beardless wheat (Triticum aestivum) hay and mineral mix. Statistical analyses were performed using SAS 9.4 (SAS Inst., Cary, NC). Higher levels of RNA m6A (P = 0.004) and DNA methylation (P = 0.007) of spermatic cells were observed at phase 2 compared with phase 1. In phase 3, sperm RNA m6A methylation levels continued to be higher (P = 0.004), whereas the DNA of sperm cells was similar (P = 0.426) compared with phase 1. Growing bulls had a tendency (P = 0.109) of higher RNA m6A methylation levels than mature bulls. Phase 2 altered scrotal circumference (P < 0.001), sperm volume (P = 0.007), sperm total motility (P = 0.004), sperm progressive motility (P = 0.004), total sperm count (P = 0.049), normal sperm (P < 0.001), abnormal sperm (P < 0.001), primary sperm defects (P = 0.039), and secondary sperm defects (P < 0.001). In phase 3, bulls had scrotal circumference, sperm volume, sperm motility, sperm progressive motility, total sperm count, normal and abnormal spermatozoa, and primary and secondary spermatozoa defects similar to phase 1 (P > 0.05). Serum concentrations of insulin-like growth factor-1 and leptin decreased during phase 2 (P = 0.010), while no differences (P > 0.05) were detected between phases 3 and 1; growing bulls tended (P = 0.102) to present higher leptin levels than mature bulls. Specific for mature bulls, DNA methylation was positively correlated with leptin concentration (0.569, P = 0.021), whereas for young bulls, DNA methylation was positively correlated with abnormal spermatozoa (0.824, P = 0.006), primary spermatozoa defect (0.711, P = 0.032), and secondary spermatozoa defect (0.661, P = 0.052) and negatively correlated with normal spermatozoa (-0.824, P = 0.006), total sperm count (-0.702, P = 0.035), and sperm concentration (-0.846, P = 0.004). There was no significant correlation (P > 0.05) between RNA m6A and hormones and semen traits. In conclusion, the nutritional status of breeding bulls alters epigenetic markers, such as DNA methylation and RNA m6A methylation, in sperm, and the impact of change seems to be age dependent. These markers may serve as biomarkers of sperm quality and fertility of bulls in the future. Detrimental effects on sperm production and seminal quality are observed at periods and places when and where environmental and nutritional limitations are a year-round reality and may carry hidden players that may influence a lifetime of underperformance.
Collapse
Affiliation(s)
- Felipe H Moura
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Arturo Macias-Franco
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Camilo A Pena-Bello
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Evandro C Archilia
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Isadora M Batalha
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Aghata E M Silva
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Gabriel M Moreira
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Aaron B Norris
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA,Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79430, USA
| | - Luis F Schütz
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Mozart A Fonseca
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA,Corresponding author:
| |
Collapse
|