1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Caldara M, Bolhuis H, Marmiroli M, Marmiroli N. Biofilm Formation, Modulation, and Transcriptomic Regulation Under Stress Conditions in Halomicronema sp. Int J Mol Sci 2025; 26:673. [PMID: 39859390 PMCID: PMC11765580 DOI: 10.3390/ijms26020673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
In nature, bacteria often form heterogeneous communities enclosed in a complex matrix known as biofilms. This extracellular matrix, produced by the microorganisms themselves, serves as the first barrier between the cells and the environment. It is composed mainly of water, extracellular polymeric substances (EPS), lipids, proteins, and DNA. Cyanobacteria form biofilms and have unique characteristics such as oxygenic photosynthesis, nitrogen fixation, excellent adaptability to various abiotic stress conditions, and the ability to secrete a variety of metabolites and hormones. This work focused on the characterization of the cyanobacterium Halomicronema sp. strain isolated from a brackish environment. This study included microscopic imaging, determination of phenolic content and antioxidant capacity, identification of chemicals interfering with biofilm formation, and transcriptomic analysis by RNA sequencing and real-time PCR. Gene expression analysis was centered on genes related to the production of EPS and biofilm-related transcription factors. This study led to the identification of wza1 and wzt as EPS biomarkers and luxR-05665, along with genes belonging to the TetR/AcrR and LysR families, as potential biomarkers useful for studying and monitoring biofilm formation under different environmental conditions. Moreover, this work revealed that Halomicronema sp. can grow even in the presence of strong abiotic stresses, such as high salt, and has good antioxidant properties.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.M.); (N.M.)
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 33, 43124 Parma, Italy
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ Den Hoorn, Texel, The Netherlands;
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.M.); (N.M.)
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 33, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (M.M.); (N.M.)
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 33, 43124 Parma, Italy
| |
Collapse
|
3
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
4
|
Panagoda NT, Balázsi G, Sampson NS. Mycobacterium tuberculosis Mce3R TetR-like Repressor Forms an Asymmetric Four-Helix Bundle and Binds a Nonpalindrome Sequence†. ACS Chem Biol 2024; 19:2580-2592. [PMID: 39545866 DOI: 10.1021/acschembio.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a major global health concern. TetR family repressors (TFRs) are important for Mtb's adaptation to the human host environment. Our study focuses on one notable Mtb repressor, Mce3R, composed of an unusual double TFR motif. Mce3R-regulated genes encode enzymes implicated in cholesterol metabolism, resistance against reactive oxygen species, and lipid transport activities important for Mtb survival and persistence in the host and for the cellular activity of a 6-azasteroid derivative. Here, we present the structure of Mce3R bound to its DNA operator, unveiling a unique asymmetric assembly previously unreported. We obtained a candidate DNA-binding motif through MEME motif analysis, comparing intergenic regions of mce3R orthologues and identifying nonpalindromic regions conserved between orthologues. Using an electrophoretic mobility shift assay (EMSA), we confirmed that Mce3R binds to a 123-bp sequence that includes the predicted motif. Using scrambled DNA and DNA oligonucleotides of varying lengths with sequences from the upstream region of the yrbE3A (mce3) operon, we elucidated the operator region to be composed of two Mce3R binding sites, each a 25-bp asymmetric sequence separated by 53 bp. Mce3R binds with a higher affinity to the downstream site with a Kd of 2.4 ± 0.7 nM. The cryo-EM structure of Mce3R bound to the 123-bp sequence was refined to a resolution of 2.51 Å. Each Mce3R monomer comprises 21 α-helices (α1-α21) folded into an asymmetric TFR-like structure with a core asymmetric four-helix bundle. This complex has two nonidentical HTH motifs and a single ligand-binding domain. The two nonidentical HTHs from each TFR bind within the high-affinity, nonpalindromic operator motif, with Arg53 and Lys262 inserted into the major groove. Site-directed mutagenesis of Arg53 to alanine abrogated DNA binding, validating the Mce3R/DNA structure obtained. Among 811,645 particles, 63% were Mce3R homodimer bound to two duplex oligonucleotides. Mce3R homodimerizes primarily through α15, and each monomer binds to an identical site in the DNA duplex oligonucleotide.
Collapse
Affiliation(s)
- Navanjalee T Panagoda
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, United States
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-2581, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
5
|
Makumbi JP, Leareng SK, Pierneef RE, Makhalanyane TP. Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. MICROBIAL ECOLOGY 2024; 87:150. [PMID: 39611949 PMCID: PMC11607014 DOI: 10.1007/s00248-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.
Collapse
Affiliation(s)
- John P Makumbi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Samuel K Leareng
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Rian E Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
6
|
Singh P, Kaur J. MSMEG_5850, a global TetR family member supports Mycobacterium smegmatis to survive environmental stress. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01186-9. [PMID: 39017913 DOI: 10.1007/s12223-024-01186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
7
|
Sharts DM, Almanza MT, Banks AV, Castellanos AM, Hernandez CGO, Lopez ML, Rodriguez D, Tong AY, Segeberg MR, Passalacqua LFM, Abdelsayed MM. Robo-Therm, a pipeline to RNA thermometer discovery and validation. RNA (NEW YORK, N.Y.) 2024; 30:760-769. [PMID: 38565243 PMCID: PMC11182007 DOI: 10.1261/rna.079980.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
RNA thermometers are highly structured noncoding RNAs located in the 5'-untranslated regions (UTRs) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermosensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in the 5'-UTR of a gene that codes for σ 70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects B. pectinophilus The other thermometer is in the 5'-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.
Collapse
Affiliation(s)
- Davis M Sharts
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Maria T Almanza
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Andrea V Banks
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Alyssa M Castellanos
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | | | - Monica L Lopez
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Daniela Rodriguez
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Alina Y Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Maximilian R Segeberg
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael M Abdelsayed
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| |
Collapse
|
8
|
Kuang SF, Xiang J, Zeng YY, Peng XX, Li H. Elevated Membrane Potential as a Tetracycline Resistance Mechanism in Escherichia coli. ACS Infect Dis 2024; 10:2196-2211. [PMID: 38836553 DOI: 10.1021/acsinfecdis.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The metabolic environment is responsible for antibiotic resistance, which highlights the way in which the antibiotic resistance mechanism works. Here, GC-MS-based metabolomics with iTRAQ-based proteomics was used to characterize a metabolic state in tetracycline-resistant Escherichia coli K12 (E. coli-RTET) compared with tetracycline-sensitive E. coli K12. The repressed pyruvate cycle against the elevation of the proton motive force (PMF) and ATP constructed the most characteristic feature as a consequence of tetracycline resistance. To understand the role of the elevated PMF in tetracycline resistance, PMF inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and the pH gradient were used to investigate how the elevation influences bacterial viability and intracellular antibiotic concentration. A strong synergy was detected between CCCP and tetracycline to the viability, which was consistent with increasing intracellular drug and decreasing external pH. Furthermore, E. coli-RTET and E. coli-RGEN with high and low PMF concentrations were susceptible to gentamicin and tetracycline, respectively. The elevated PMF in E. coli-RTET was attributed to the activation of other metabolic pathways, except for the pyruvate cycle, including a malate-oxaloacetate-phosphoenolpyruvate-pyruvate-malate cycle. These results not only revealed a PMF-dependent mechanism for tetracycline resistance but also provided a solution to tetracycline-resistant pathogens by aminoglycosides and aminoglycoside-resistant bacteria by tetracyclines.
Collapse
Affiliation(s)
- Su-Fang Kuang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiao Xiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Yue Zeng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
9
|
Filipek J, Chalaskiewicz K, Kosmider A, Nielipinski M, Michalak A, Bednarkiewicz M, Goslawski-Zeligowski M, Prucnal F, Sekula B, Pietrzyk-Brzezinska AJ. Comprehensive structural overview of the C-terminal ligand-binding domains of the TetR family regulators. J Struct Biol 2024; 216:108071. [PMID: 38401830 DOI: 10.1016/j.jsb.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
TetR family regulators (TFRs) represent a large group of one-component bacterial signal transduction systems which recognize environmental signals, like the presence of antibiotics or other bactericidal compounds, and trigger the cell response by regulating the expression of genes that secure bacterial survival in harsh environmental conditions. TFRs act as homodimers, each protomer is composed of a conserved DNA-binding N-terminal domain (NTD) and a variable ligand-binding C-terminal domain (CTD). Currently, there are about 500 structures of TFRs available in the Protein Data Bank and one-fourth of them represent the structures of TFR-ligand complexes. In this review, we summarized information on the ligands interacting with TFRs and based on structural data, we compared the CTDs of the TFR family members, as well as their ligand-binding cavities. Additionally, we divided the whole TFR family, including more than half of a million sequences, into subfamilies according to calculated multiple sequence alignment and phylogenetic tree. We also highlighted structural elements characteristic of some of the subfamilies. The presented comprehensive overview of the TFR CTDs provides good bases and future directions for further studies on TFRs that are not only important targets for battling multidrug resistance but also good candidates for many biotechnological approaches, like TFR-based biosensors.
Collapse
Affiliation(s)
- Jakub Filipek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Katarzyna Chalaskiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Aleksandra Kosmider
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maciej Nielipinski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka Michalak
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maria Bednarkiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Mieszko Goslawski-Zeligowski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Filip Prucnal
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland.
| |
Collapse
|
10
|
Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:501. [PMID: 38927168 PMCID: PMC11200565 DOI: 10.3390/antibiotics13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Marine Novelli
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Université Paris Cité, CNRS, Biochimie des Protéines Membranaires, F-75005 Paris, France
| | | |
Collapse
|
11
|
Singh RP, Sinha A, Deb S, Kumari K. First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium Acinetobacter pittii S-30, isolated from environmental sample. Front Microbiol 2024; 15:1351161. [PMID: 38741743 PMCID: PMC11089254 DOI: 10.3389/fmicb.2024.1351161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
A newly isolated bacterium Acinetobacter pittii S-30 was recovered from waste-contaminated soil in Ranchi, India. The isolated bacterium belongs to the ESKAPE organisms which represent the major nosocomial pathogens that exhibit high antibiotic resistance. Furthermore, average nucleotide identity (ANI) analysis also showed its closest match (>95%) to other A. pittii genomes. The isolate showed metal-resistant behavior and was able to survive up to 5 mM of ZnSO4. Whole genome sequencing and annotations revealed the occurrence of various genes involved in stress protection, motility, and metabolism of aromatic compounds. Moreover, genome annotation identified the gene clusters involved in secondary metabolite production (biosynthetic gene clusters) such as arylpolyene, acinetobactin like NRP-metallophore, betalactone, and hserlactone-NRPS cluster. The metabolic potential of A. pittii S-30 based on cluster of orthologous, and Kyoto Encyclopedia of Genes and Genomes indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux systems etc., which is relatively rare in A. pittii strains. Additionally, the presence of various carbohydrate-active enzymes such as glycoside hydrolases (GHs), glycosyltransferases (GTs), and other genes associated with lignocellulose breakdown suggests that strain S-30 has strong biomass degradation potential. Furthermore, an analysis of genetic diversity and recombination in A. pittii strains was performed to understand the population expansion hypothesis of A. pittii strains. To our knowledge, this is the first report demonstrating the detailed genomic characterization of a heavy metal-resistant bacterium belonging to A. pittii. Therefore, the A. pittii S-30 could be a good candidate for the promotion of plant growth and other biotechnological applications.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
12
|
Rahman Z, McLaws M, Thomas T. Genomic characterization of extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli from urban wastewater in Australia. Microbiologyopen 2024; 13:e1403. [PMID: 38488803 PMCID: PMC10941799 DOI: 10.1002/mbo3.1403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
This study investigates extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli isolates from Sydney's wastewater. These isolates exhibit resistance to critical antibiotics and harbor novel resistance mechanisms. The findings highlight the importance of wastewater-based surveillance in monitoring resistance beyond the clinical setting.
Collapse
Affiliation(s)
- Zillur Rahman
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| | - Mary‐Louise McLaws
- School of Population HealthUNSW SydneySydneyNew South WalesAustralia
- UNSW Global Water InstituteUNSW SydneySydneyNew South WalesAustralia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
13
|
Jeon JS, Cho G, Kim S, Riu M, Song J. Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide. CHEMOSPHERE 2024; 354:141583. [PMID: 38460853 DOI: 10.1016/j.chemosphere.2024.141583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).
Collapse
Affiliation(s)
- Je-Seung Jeon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea; Industrial Crop Utilization Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709, Republic of Korea
| | - Gyeongjun Cho
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Songhwa Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Myoungjoo Riu
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea.
| |
Collapse
|
14
|
Xiao Y, Qin T, He S, Chen Y, Li H, He Q, Wang X, Yang S. Systematic investigation of TetR-family transcriptional regulators and their roles on lignocellulosic inhibitor acetate tolerance in Zymomonas mobilis. Front Bioeng Biotechnol 2024; 12:1385519. [PMID: 38585710 PMCID: PMC10998469 DOI: 10.3389/fbioe.2024.1385519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
TetR-family transcriptional regulators are widely distributed among bacteria and involved in various cellular processes such as multidrug and inhibitor resistance. Zymomonas mobilis is a industrial bacterium for lignocellulosic ethanol production. Although TetR-family regulators and their associated RND-family efflux pumps in Z. mobilis have been identified to be differentially expressed under various inhibitors and stressful conditions, there are no systematic investigation yet. In this study, bioinformatic analyses indicated that there are three TetR-family transcriptional regulators (ZMO0281, ZMO0963, ZMO1547) and two RND-family efflux pumps (ZMO0282-0285, ZMO0964-0966) adjacent to corresponding TetR-family regulators of ZMO0281 and ZMO0963 in Z. mobilis. Genetics studies were then carried out with various mutants of TetR-family regulators constructed, and ZMO0281 was characterized to be related to acetate tolerance. Combining transcriptomics and dual-reporter gene system, this study demonstrated that three TetR-family regulators repressed their adjacent genes specifically. Moreover, TetR-family regulator ZMO0281 might also be involved in other cellular processes in the presence of acetate. In addition, the upregulation of RND-family efflux pumps due to ZMO0281 deletion might lead to an energy imbalance and decreased cell growth in Z. mobilis under acetate stress. The systematic investigation of all three TetR-family regulators and their roles on a major lignocellulosic inhibitor acetate tolerance in Z. mobilis thus not only unravels the molecular mechanisms of TetR-family regulators and their potential cross-talks on regulating RND-family efflux pumps and other genes in Z. mobilis, but also provides guidance on understanding the roles of multiple regulators of same family in Z. mobilis and other microorganisms for efficient lignocellulosic biochemical production.
Collapse
Affiliation(s)
- Yubei Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Tongjia Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
- Chinese Medicine College, Guangdong Yunfu Vocational College of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuche He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Li X, Tian F, Zhang B, Zhang L, Chen X, Lin X, Wang Y, Lin X, Liu Y. Quantitative proteomics analysis reveals an important role of the transcriptional regulator UidR in the bacterial biofilm formation of Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1380747. [PMID: 38585655 PMCID: PMC10995333 DOI: 10.3389/fcimb.2024.1380747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Bacterial biofilm is a well-known characteristic that plays important roles in diverse physiological functions, whereas the current intrinsic regulatory mechanism of its formation is still largely unknown. Methods In the present study, a label-free based quantitative proteomics technology was conducted to compare the differentially expressed proteins (DEPs) between ΔuidR and the wild-type strain in the biofilm state. Results The results showed that the deletion of gene uidR encoding a TetR transcriptional regulator significantly increased the biofilm formation in Aeromonas hydrophila. And there was a total of 220 DEPs, including 120 up-regulated proteins and 100 down-regulated proteins between ΔuidR and the wild-type strain based on the quantitative proteomics. Bioinformatics analysis suggested that uidR may affect bacterial biofilm formation by regulating some related proteins in glyoxylic acid and dicarboxylic acid pathway. The expressions of selected proteins involved in this pathway were further confirmed by q-PCR assay, and the results was in accordance with the quantitative proteomics data. Moreover, the deletion of four genes (AHA_3063, AHA_3062, AHA_4140 and aceB) related to the glyoxylic acid and dicarboxylic acid pathway lead to a significant decrease in the biofilm formation. Discussion Thus, the results indicated that uidR involved in the regulatory of bacterial biofilm formation, and it may provide a potential target for the drug development and a new clue for the prevention of pathogenic A. hydrophila in the future.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Tian
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghui Zhang
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Lishan Zhang
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomeng Chen
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoke Lin
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuqian Wang
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangmin Lin
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanling Liu
- College of Life Sciences, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Li X, Li Z, Wei Y, Chen Z, Xie S. Identification and characterization of the TetR family transcriptional regulator NffT in Rhizobium johnstonii. Appl Environ Microbiol 2024; 90:e0185123. [PMID: 38426790 PMCID: PMC10952539 DOI: 10.1128/aem.01851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-β-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-β-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.
Collapse
Affiliation(s)
- Xiaofang Li
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Yajuan Wei
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Zirui Chen
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Shijie Xie
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
17
|
Ghoshal M, Bechtel TD, Gibbons JG, McLandsborough L. Transcriptomic analysis using RNA sequencing and phenotypic analysis of Salmonella enterica after acid exposure for different time durations using adaptive laboratory evolution. Front Microbiol 2024; 15:1348063. [PMID: 38476938 PMCID: PMC10929716 DOI: 10.3389/fmicb.2024.1348063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
18
|
Kremer M, Schulze S, Eisenbruch N, Nagel F, Vogt R, Berndt L, Dörre B, Palm GJ, Hoppen J, Girbardt B, Albrecht D, Sievers S, Delcea M, Baumann U, Schnetz K, Lammers M. Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism. Nat Commun 2024; 15:1674. [PMID: 38395951 PMCID: PMC10891134 DOI: 10.1038/s41467-024-46039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Nadja Eisenbruch
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Vogt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Leona Berndt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Babett Dörre
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Jens Hoppen
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Britta Girbardt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Michael Lammers
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
19
|
Kumagawa E, Katsumata M, Nishimura H, Watanabe T, Ishii S, Ohta Y. The etherase system of Novosphingobium sp. MBES04 functions as a sensor of lignin fragments through phenylpropanone production to induce specific transcriptional responses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13210. [PMID: 37950419 PMCID: PMC10866074 DOI: 10.1111/1758-2229.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the β-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a β-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.
Collapse
Affiliation(s)
- Eri Kumagawa
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Hiroshi Nishimura
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Takashi Watanabe
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Shun'ichi Ishii
- Institute for Extra‐cutting‐edge Science and Technology Avant‐garde Research (X‐star)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Yukari Ohta
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| |
Collapse
|
20
|
Tang J, Hu Z, Zhang J, Daroch M. Genome-scale identification and comparative analysis of transcription factors in thermophilic cyanobacteria. BMC Genomics 2024; 25:44. [PMID: 38195395 PMCID: PMC10775510 DOI: 10.1186/s12864-024-09969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zhe Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, 610041, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Sharma G, Zee PC, Zea L, Curtis PD. Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight. BMC Genomics 2023; 24:782. [PMID: 38102595 PMCID: PMC10725011 DOI: 10.1186/s12864-023-09799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Peter C Zee
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Luis Zea
- Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA.
| |
Collapse
|
22
|
Costafrolaz J, Panis G, Casu B, Ardissone S, Degeorges L, Pilhofer M, Viollier PH. Adaptive β-lactam resistance from an inducible efflux pump that is post-translationally regulated by the DjlA co-chaperone. PLoS Biol 2023; 21:e3002040. [PMID: 38051727 PMCID: PMC10754441 DOI: 10.1371/journal.pbio.3002040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/28/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
The acquisition of multidrug resistance (MDR) determinants jeopardizes treatment of bacterial infections with antibiotics. The tripartite efflux pump AcrAB-NodT confers adaptive MDR in the polarized α-proteobacterium Caulobacter crescentus via transcriptional induction by first-generation quinolone antibiotics. We discovered that overexpression of AcrAB-NodT by mutation or exogenous inducers confers resistance to cephalosporin and penicillin (β-lactam) antibiotics. Combining 2-step mutagenesis-sequencing (Mut-Seq) and cephalosporin-resistant point mutants, we dissected how TipR uses a common operator of the divergent tipR and acrAB-nodT promoter for adaptive and/or potentiated AcrAB-NodT-directed efflux. Chemical screening identified diverse compounds that interfere with DNA binding by TipR or induce its dependent proteolytic turnover. We found that long-term induction of AcrAB-NodT deforms the envelope and that homeostatic control by TipR includes co-induction of the DnaJ-like co-chaperone DjlA, boosting pump assembly and/or capacity in anticipation of envelope stress. Thus, the adaptive MDR regulatory circuitry reconciles drug efflux with co-chaperone function for trans-envelope assemblies and maintenance.
Collapse
Affiliation(s)
- Jordan Costafrolaz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bastien Casu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Silvia Ardissone
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Laurence Degeorges
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Campolattano N, D'Abrosca G, Russo L, De Siena B, Della Gala M, De Chiara I, Marasco R, Goff A, Waddell SJ, Sacco M, Muscariello L. Insight into the on/off switch that regulates expression of the MSMEG-3762/63 efflux pump in Mycobacterium smegmatis. Sci Rep 2023; 13:20332. [PMID: 37989843 PMCID: PMC10663510 DOI: 10.1038/s41598-023-47695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Nicoletta Campolattano
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianluca D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Milena Della Gala
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Ida De Chiara
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Aaron Goff
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
24
|
Schumacher MA, Lent N, Chen VB, Salinas R. Structures of the DarR transcription regulator reveal unique modes of second messenger and DNA binding. Nat Commun 2023; 14:7239. [PMID: 37945601 PMCID: PMC10636190 DOI: 10.1038/s41467-023-42823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The mycobacterial repressor, DarR, a TetR family regulator (TFR), was the first transcription regulator shown to bind c-di-AMP. However, the molecular basis for this interaction and the mechanism involved in DNA binding by DarR remain unknown. Here we describe DarR-c-di-AMP and DarR-DNA structures and complementary biochemical assays. The DarR-c-di-AMP structure reveals a unique effector binding site for a TFR, located between DarR dimer subunits. Strikingly, we show this motif also binds cAMP. The location of the adenine nucleotide binding site between subunits suggests this interaction may facilitate dimerization and hence DNA binding. Indeed, biochemical assays show cAMP enhances DarR DNA binding. Finally, DarR-DNA structures reveal a distinct TFR DNA-binding mechanism involving two interacting dimers on the DNA. Thus, the combined data unveil a newly described second messenger binding motif and DNA binding mode for this important family of regulators.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Nicholas Lent
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Vincent B Chen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
25
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
26
|
Veigyabati Devi M, Singh AK. Delineation of transcriptional regulators involve in biofilm formation cycle of Mycobacterium abscessus. Gene 2023; 882:147644. [PMID: 37479094 DOI: 10.1016/j.gene.2023.147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Mycobacterium abscessus is an intrinsically and acquired multidrug resistant (MDR) intracellular pathogen with biofilm formation capability and limited option for treatment. Biofilm is the major characteristic that leads to failure and prolong treatment, intensifies treatment cost and increases mortality/morbidity rate. However, the biofilm formation regulations of M. abscessus remain largely unexplored. In this study, we identify the putative/hypothetical transcriptional regulator (TR) of M. abscessus that are involved in biofilm formation. This study includes fifty TRs belonging to thirteen different families viz., AraC, ArsR, AsnC, CarD, CdaR, GntR, IclR, LysR, MarR, PadR, PrrA, TetR and WhiB, including TRs of unknown family. The promoter of these putative TRs were fused individually with GFP and analyzed their expression using CLSM in planktonic phase and early, mid and mature stages of biofilm formation phase, which overall termed as biofilm formation cycle. Further, qRT-PCR was carried out for selected TRs to analyze their differential expressions. This study found thirteen numbers of TR belonging to TetR family, five TRs belonging to MarR family, four TRs of unannotated TR family, two AraC TRs, two LysR, two GntR, two AsnC, one each of ArsR family, CarD family, IclR family, PadR family, PrrA family and WhiB family selected for this study are involved in biofilm formation cycle. Our study characterized the TRs with respect to their role in biofilm formation for the first time in M. abscessus and also found that their biofilm formation is regulated by diverse TR families.
Collapse
Affiliation(s)
- Moirangthem Veigyabati Devi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Kho CJY, Lau MML, Chung HH, Chew IYY, Gan HM. Whole-Genome Sequencing of Pseudomonas koreensis Isolated from Diseased Tor tambroides. Curr Microbiol 2023; 80:255. [PMID: 37356021 DOI: 10.1007/s00284-023-03354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.
Collapse
Affiliation(s)
- Cindy Jia Yung Kho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Melinda Mei Lin Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Hung Hui Chung
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Ivy Yee Yen Chew
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Han Ming Gan
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Malaysia
- Patriot Biotech Sdn. Bhd., 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
28
|
Singh P, Kumar A, Chhabra R, Singh K, Kaur J. MSMEG_5850, a stress-induced TetR protein, involved in global transcription regulation in Mycobacterium smegmatis. Future Microbiol 2023; 18:563-580. [PMID: 37284769 DOI: 10.2217/fmb-2022-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Aim: To decipher the role of MSMEG_5850 in the physiology of mycobacteria. Methods: MSMEG_5850 was knocked out and RNA sequencing was performed. MSMEG_5850 protein was purified from the Escherichia coli pET28a system. Electrophoretic mobility shift assay and size exclusion chromatography were used to determine the binding of MSMEG_5850 to its motif and binding stoichiometry. The effect of nutritional stress was monitored. Results: Transcriptome analysis revealed the differential expression of 148 genes in an MSMEG_5850 knockout strain. MSMEG_5850 had control over 50 genes because those genes had a binding motif upstream of their sequence. The electrophoretic mobility shift assay showed MSMEG_5850 bound to its motif as a monomer. MSMEG_5850 was upregulated under nutritional stress and promoted the survival of mycobacteria. Conclusion: The study confirms the role of MSMEG_5850 in global transcriptional regulation.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
- Current Address: Fellow Scientist, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
29
|
Anderson JR, Lam NB, Jackson JL, Dorenkott SM, Ticer T, Maldosevic E, Velez A, Camden MR, Ellis TN. Progressive Sub-MIC Exposure of Klebsiella pneumoniae 43816 to Cephalothin Induces the Evolution of Beta-Lactam Resistance without Acquisition of Beta-Lactamase Genes. Antibiotics (Basel) 2023; 12:antibiotics12050887. [PMID: 37237790 DOI: 10.3390/antibiotics12050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial exposure to antibiotic concentrations below the minimum inhibitory concentration (MIC) may result in a selection window allowing for the rapid evolution of resistance. These sub-MIC concentrations are commonly found in soils and water supplies in the greater environment. This study aimed to evaluate the adaptive genetic changes in Klebsiella pneumoniae 43816 after prolonged but increasing sub-MIC levels of the common antibiotic cephalothin over a fourteen-day period. Over the course of the experiment, antibiotic concentrations increased from 0.5 μg/mL to 7.5 μg/mL. At the end of this extended exposure, the final adapted bacterial culture exhibited clinical resistance to both cephalothin and tetracycline, altered cellular and colony morphology, and a highly mucoid phenotype. Cephalothin resistance exceeded 125 μg/mL without the acquisition of beta-lactamase genes. Whole genome sequencing identified a series of genetic changes that could be mapped over the fourteen-day exposure period to the onset of antibiotic resistance. Specifically, mutations in the rpoB subunit of RNA Polymerase, the tetR/acrR regulator, and the wcaJ sugar transferase each fix at specific timepoints in the exposure regimen where the MIC susceptibility dramatically increased. These mutations indicate that alterations in the secretion of colanic acid and attachment of colonic acid to LPS may contribute to the resistant phenotype. These data demonstrate that very low sub-MIC concentrations of antibiotics can have dramatic impacts on the bacterial evolution of resistance. Additionally, this study demonstrates that beta-lactam resistance can be achieved through sequential accumulation of specific mutations without the acquisition of a beta-lactamase gene.
Collapse
Affiliation(s)
- Jasmine R Anderson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Nghi B Lam
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Jazmyne L Jackson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Sean M Dorenkott
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Taylor Ticer
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Emir Maldosevic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Amanda Velez
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Megan R Camden
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Terri N Ellis
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
30
|
Chodkowski JL, Shade A. A coevolution experiment between Flavobacterium johnsoniae and Burkholderia thailandensis reveals parallel mutations that reduce antibiotic susceptibility. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36724091 DOI: 10.1099/mic.0.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One interference mechanism of bacterial competition is the production of antibiotics. Bacteria exposed to antibiotics can resist antibiotic inhibition through intrinsic or acquired mechanisms. Here, we performed a coevolution experiment to understand the long-term consequences of antibiotic production and antibiotic susceptibility for two environmental bacterial strains. We grew five independent lines of the antibiotic-producing environmental strain, Burkholderia thailandensis E264, and the antibiotic-inhibited environmental strain, Flavobacterium johnsoniae UW101, together and separately on agar plates for 7.5 months (1.5 month incubations), transferring each line five times to new agar plates. We observed that the F. johnsoniae ancestor could tolerate the B. thailandensis-produced antibiotic through efflux mechanisms, but that the coevolved lines had reduced susceptibility. We then sequenced genomes from the coevolved and monoculture F. johnsoniae lines, and uncovered mutational ramifications for the long-term antibiotic exposure. The coevolved genomes from F. johnsoniae revealed four potential mutational signatures of reduced antibiotic susceptibility that were not observed in the evolved monoculture lines. Two mutations were found in tolC: one corresponding to a 33 bp deletion and the other corresponding to a nonsynonymous mutation. A third mutation was observed as a 1 bp insertion coding for a RagB/SusD nutrient uptake protein. The last mutation was a G83R nonsynonymous mutation in acetyl-coA carboxylayse carboxyltransferase subunit alpha (AccA). Deleting the 33 bp from tolC in the F. johnsoniae ancestor reduced antibiotic susceptibility, but not to the degree observed in coevolved lines. Furthermore, the accA mutation matched a previously described mutation conferring resistance to B. thailandensis-produced thailandamide. Analysis of B. thailandensis transposon mutants for thailandamide production revealed that thailandamide was bioactive against F. johnsoniae, but also suggested that additional B. thailandensis-produced antibiotics were involved in the inhibition of F. johnsoniae. This study reveals how multi-generational interspecies interactions, mediated through chemical exchange, can result in novel interaction-specific mutations, some of which may contribute to reductions in antibiotic susceptibility.
Collapse
Affiliation(s)
- John L Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA.,Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully cedex, France
| |
Collapse
|
31
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
32
|
Abukhalid N, Rojony R, Danelishvili L, Bermudez LE. Metabolic pathways that permit Mycobacterium avium subsp. hominissuis to transition to different environments encountered within the host during infection. Front Cell Infect Microbiol 2023; 13:1092317. [PMID: 37124045 PMCID: PMC10140322 DOI: 10.3389/fcimb.2023.1092317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction M. avium subsp. hominissuis (M. avium) is an intracellular, facultative bacterium known to colonize and infect the human host through ingestion or respiratory inhalation. The majority of pulmonary infections occur in association with pre- existing lung diseases, such as bronchiectasis, cystic fibrosis, or chronic obstructive pulmonary disease. M. avium is also acquired by the gastrointestinal route in immunocompromised individuals such as human immunodeficiency virus HIV-1 patients leading to disseminated disease. A hallmark of M. avium pulmonary infections is the ability of pathogen to form biofilms. In addition, M. avium can reside within granulomas of low oxygen and limited nutrient conditions while establishing a persistent niche through metabolic adaptations. Methods Bacterial metabolic pathways used by M. avium within the host environment, however, are poorly understood. In this study, we analyzed M. avium proteome with a focus on core metabolic pathways expressed in the anaerobic, biofilm and aerobic conditions and that can be used by the pathogen to transition from one environment to another. Results Overall, 3,715 common proteins were identified between all studied conditions and proteins with increased synthesis over the of the level of expression in aerobic condition were selected for analysis of in specific metabolic pathways. The data obtained from the M. avium proteome of biofilm phenotype demonstrates in enrichment of metabolic pathways involved in the fatty acid metabolism and biosynthesis of aromatic amino acid and cofactors. Here, we also highlight the importance of chloroalkene degradation pathway and anaerobic fermentationthat enhance during the transition of M. avium from aerobic to anaerobic condition. It was also found that the production of fumarate and succinate by MAV_0927, a conserved hypothetical protein, is essential for M. avium survival and for withstanding the stress condition in biofilm. In addition, the participation of regulatory genes/proteins such as the TetR family MAV_5151 appear to be necessary for M. avium survival under biofilm and anaerobic conditions. Conclusion Collectively, our data reveal important core metabolic pathways that M. avium utilize under different stress conditions that allow the pathogen to survive in diverse host environments.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rajoana Rojony
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
- *Correspondence: Luiz E. Bermudez,
| |
Collapse
|
33
|
Blair JMA, Siasat P, McNeil HE, Colclough A, Ricci V, Lawler AJ, Abdalaal H, Buckner MMC, Baylay A, Busby SJ, Piddock LJV. EnvR is a potent repressor of acrAB transcription in Salmonella. J Antimicrob Chemother 2022; 78:133-140. [PMID: 36308324 PMCID: PMC9780535 DOI: 10.1093/jac/dkac364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF. METHODS Binding of EnvR protein upstream of acrAB was determined by electrophoretic mobility shift assays and the phenotypic consequence of envR overexpression on antimicrobial susceptibility, biofilm motility and invasion of eukaryotic cells in vitro was measured. Additionally, the global transcriptome of clinical Salmonella isolates overexpressing envR was determined by RNA-Seq. RESULTS EnvR bound to the promoter region upstream of the genes coding for the major efflux pump AcrAB in Salmonella, inhibiting transcription and preventing production of AcrAB protein. The phenotype conferred by overexpression of envR mimicked deletion of acrB as it conferred multidrug susceptibility, decreased motility and decreased invasion into intestinal cells in vitro. Importantly, we demonstrate the clinical relevance of this regulatory mechanism because RNA-Seq revealed that a drug-susceptible clinical isolate of Salmonella had low acrB expression even though expression of its major regulator RamA was very high; this was caused by very high EnvR expression. CONCLUSIONS In summary, we show that EnvR is a potent repressor of acrAB transcription in Salmonella, and can override binding by RamA so preventing MDR to clinically useful drugs. Finding novel tools to increase EnvR expression may form the basis of a new way to prevent or treat MDR infections.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen E McNeil
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Abigail Colclough
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Vito Ricci
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Amelia J Lawler
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Hind Abdalaal
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michelle M C Buckner
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison Baylay
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Stephen J Busby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
34
|
Liu X, Xiong Y, Shi Y, Deng X, Deng Q, Liu Y, Yu Z, Li D, Zheng J, Li P. In vitro activities of licochalcone A against planktonic cells and biofilm of Enterococcus faecalis. Front Microbiol 2022; 13:970901. [PMID: 36338074 PMCID: PMC9634178 DOI: 10.3389/fmicb.2022.970901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2023] Open
Abstract
This study aims to evaluate the in vitro antibacterial and anti-biofilm activities of licochalcone A on Enterococcus faecalis and to investigate the possible target genes of licochalcone A in E. faecalis. This study found that licochalcone A had antibacterial activities against E. faecalis, with the MIC50 and MIC90 were 25 μM. Licochalcone A (at 4 × MIC) indicated a rapid bactericidal effect on E. faecalis planktonic cells, and killed more E. faecalis planktonic cells (at least 3-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 2, 4, and 6 h of the time-killing test. Licochalcone A (at 10 × MIC) significantly reduced the production of E. faecalis persister cells (at least 2-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 24, 48, 72, and 96 h of the time-killing test. Licochalcone A (at 1/4 × MIC) significantly inhibited the biofilm formation of E. faecalis. The RNA levels of biofilm formation-related genes, agg, esp, and srtA, markedly decreased when the E. faecalis isolates were treated with licochalcone A at 1/4 × MIC for 6 h. To explore the possible target genes of licochalcone A in E. faecalis, the licochalcone A non-sensitive E. faecalis clones were selected in vitro by induction of wildtype strains for about 140 days under the pressure of licochalcone A, and mutations in the possible target genes were detected by whole-genome sequencing. This study found that there were 11 nucleotide mutations leading to nonsynonymous mutations of 8 amino acids, and among these amino acid mutations, there were 3 mutations located in transcriptional regulator genes (MarR family transcriptional regulator, TetR family transcriptional regulator, and MerR family transcriptional regulator). In conclusion, this study found that licochalcone A had an antibacterial effect on E. faecalis, and significantly inhibited the biofilm formation of E. faecalis at subinhibitory concentrations.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yansong Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
35
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|
36
|
Djahanschiri B, Di Venanzio G, Distel JS, Breisch J, Dieckmann MA, Goesmann A, Averhoff B, Göttig S, Wilharm G, Feldman MF, Ebersberger I. Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex. PLoS Genet 2022; 18:e1010020. [PMID: 35653398 PMCID: PMC9162365 DOI: 10.1371/journal.pgen.1010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies. The spread of multi- and pan-drug resistant bacterial pathogens is a worldwide threat to human health. Understanding the genetics of host colonization and infection can substantially help in devising novel ways of treatment. Acinetobacter baumannii, a nosocomial pathogen ranked top by the World Health Organization in the list of bacteria for which novel therapeutic approaches are needed, is a prime example. Here, we have carved out the genetic make-up that distinguishes A. baumannii and its pathogenic next relatives from other and mostly apathogenic Acinetobacter species. We found a rich spectrum of pathways and regulatory modules that reveal how the pathogens have modified biofilm formation, iron scavenging, and their carbohydrate metabolism to adapt to their human host. Among these, the capability to metabolize kynurenine is particularly intriguing. Humans produce this substance to contain bacterial invaders and to fine-tune the innate immune response. But A. baumannii and closely related pathogens found a way to feed on kynurenine. This suggests that the pathogens might be able to dysregulate the human immune response. In summary, our study substantially deepens the understanding of how a highly critical pathogen interacts with its host, which substantially eases the identification of novel targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bardya Djahanschiri
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jennifer Breisch
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Beate Averhoff
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | | | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
37
|
Hamde F, Dinka H, Naimuddin M. In silico analysis of promoter regions to identify regulatory elements in TetR family transcriptional regulatory genes of Mycobacterium colombiense CECT 3035. J Genet Eng Biotechnol 2022; 20:53. [PMID: 35357597 PMCID: PMC8971250 DOI: 10.1186/s43141-022-00331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 12/18/2022]
Abstract
Background Mycobacterium colombiense is an acid-fast, non-motile, rod-shaped mycobacterium confirmed to cause respiratory disease and disseminated infection in immune-compromised patients, and lymphadenopathy in immune-competent children. It has virulence mechanisms that allow them to adapt, survive, replicate, and produce diseases in the host. To tackle the diseases caused by M. colombiense, understanding of the regulation mechanisms of its genes is important. This paper, therefore, analyzes transcription start sites, promoter regions, motifs, transcription factors, and CpG islands in TetR family transcriptional regulatory (TFTR) genes of M. colombiense CECT 3035 using neural network promoter prediction, MEME, TOMTOM algorithms, and evolutionary analysis with the help of MEGA-X. Results The analysis of 22 protein coding TFTR genes of M. colombiense CECT 3035 showed that 86.36% and 13.64% of the gene sequences had one and two TSSs, respectively. Using MEME, we identified five motifs (MTF1, MTF2, MTF3, MTF4, and MTF5) and MTF1 was revealed as the common promoter motif for 100% TFTR genes of M. colombiense CECT 3035 which may serve as binding site for transcription factors that shared a minimum homology of 95.45%. MTF1 was compared to the registered prokaryotic motifs and found to match with 15 of them. MTF1 serves as the binding site mainly for AraC, LexA, and Bacterial histone-like protein families. Other protein families such as MATP, RR, σ-70 factor, TetR, LytTR, LuxR, and NAP also appear to be the binding candidates for MTF1. These families are known to have functions in virulence mechanisms, metabolism, quorum sensing, cell division, and antibiotic resistance. Furthermore, it was found that TFTR genes of M. colombiense CECT 3035 have many CpG islands with several fragments in their CpG islands. Molecular evolutionary genetic analysis showed close relationship among the genes. Conclusion We believe these findings will provide a better understanding of the regulation of TFTR genes in M. colombiense CECT 3035 involved in vital processes such as cell division, pathogenesis, and drug resistance and are likely to provide insights for drug development important to tackle the diseases caused by this mycobacterium. We believe this is the first report of in silico analyses of the transcriptional regulation of M. colombiense TFTR genes.
Collapse
Affiliation(s)
- Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Mohammed Naimuddin
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| |
Collapse
|
38
|
敬 美, 卢 淼, 郑 婷, 龚 涛, 李 雨, 周 学. [ frtR Gene Affects Acid Production and Demineralization Ability of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:263-267. [PMID: 35332727 PMCID: PMC10409359 DOI: 10.12182/20220360104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Objective To study the effect of the frtR gene of TetR family on the acid production ability of Streptococcus mutans( S. mutans) and the bacteria's ability to induce tooth demineralization . Methods The growth of two strains of S. mutans UA159, Δ frtR, the frtR gene in-frame deletion strain, and Δ frtR/pDL278- frtR, the complement strain, was examined. The structure of biofilm was observed by laser scanning confocal microscopy (LSCM). The quantitative determination of water-insoluble extracellular polysaccharide (EPS) in the bacterial biofilms was done by anthrone-sulfuric acid method. The acid production capacity of S. mutans was measured by glycolytic pH drop. The demineralization-inducing ability of the strains on bovine teeth was determined by transverse microradiography (TMR). Results The growth curves of the strains showed that frtR did not affect the growth of S. mutans. According to the findings of LSCM observation, frtR did not affect the biofilm formation. According to the findings of the anthrone-sulfuric acid method, frtR did not have any significant impact on the EPS synthesis of S. mutans. The results of the glycolytic pH drop assay showed that the deletion of frtR delayed the rate of acid production by S. mutans when sucrose was the only carbon source. In addition, according to the TMR results, knocking out frtR reduced the depth and amount of demineralization induced by S. mutans on the surface of bovine teeth. Conclusion The deletion of frtR can weaken the acid production ability and the demineralization ability of S. mutans.
Collapse
Affiliation(s)
- 美玲 敬
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淼 卢
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 婷 郑
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 涛 龚
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 雨庆 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Inactivation of Nitrite-Dependent Nitric Oxide Biosynthesis Is Responsible for Overlapped Antibiotic Resistance between Naturally and Artificially Evolved Pseudomonas aeruginosa. mSystems 2021; 6:e0073221. [PMID: 34546070 PMCID: PMC8547483 DOI: 10.1128/msystems.00732-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabolic flexibility of Pseudomonas aeruginosa could lead to new strategies to combat bacterial infection. The present study used gas chromatography-mass spectrometry (GC-MS)-based metabolomics to investigate global metabolism in naturally and artificially evolved strains with cefoperazone-sulbactam (SCF) resistance (AP-RCLIN-EVO and AP-RLAB-EVO, respectively) from the same parent strain (AP-RCLIN). Inactivation of the pyruvate cycle and nitric oxide (NO) biosynthesis was identified as characteristic features of SCF resistance in both evolved strains. Nitrite-dependent NO biosynthesis instead of an arginine-dependent NO pathway is responsible for the reduced NO, which is attributed to lower nitrite and electrons from the oxidation of NADH to NAD+ provided by the pyruvate cycle. Exogenous fumarate, NADH, nitrate, and nitrite promoted the NO level and thereby potentiated SCF-mediated killing. Unexpectedly, fumarate caused the elevation of nitrite, while nitrite/nitrate resulted in the increase of Cyt bc1 complex (providing electrons). These interesting findings indicate that the nitrite-dependent NO biosynthesis and the pyruvate cycle are mutual to promote NO metabolism. In addition, the NO-potentiated sensitivity to SCF was validated by NO donor sodium nitroprusside. These results reveal an endogenous NO-mediated SCF resistance and develop its reversion by metabolites in P. aeruginosa. IMPORTANCE Infections with Pseudomonas aeruginosa have become a real concern among hospital-acquired infections, especially in cystic fibrosis patients and immunocompromised individuals. Control of the pathogen is challenging due to antibiotic resistance. Since bacterial metabolic state impacts sensitivity and resistance to antibiotics, exploring and disclosing bacterial metabolic mechanisms can be used to develop a metabolome-reprogramming approach to elevate bacterial sensitivity to antibiotics. Therefore, GC-MS-based metabolomics is used to explore the similarities and differences of metabolomes between naturally and artificially evolved cefoperazone-sulbactam (SCF)-resistant P. aeruginosa (AP-RCLIN-EVO and AP-RLAB-EVO, respectively) from the same parent strain (AP-RCLIN). It identifies the depressed nitrite-dependent nitric oxide (NO) biosynthesis as the most overlapping characteristic feature between AP-RCLIN-EVO and AP-RLAB-EVO. This is because the pyruvate cycle fluctuates, thereby generating fewer NADH and providing fewer electrons for nitrite-dependent NO biosynthesis than the control. Interestingly, exogenous fumarate, NADH, nitrate, and nitrite as well as NO donor sodium nitroprusside promote NO generation to elevate sensitivity to SCF. These results highlight the way to understand metabolic mechanisms of antibiotic resistance and explore metabolic modulation to combat the bacterial pathogen.
Collapse
|
40
|
Ortiz-Hernández ML, Gama-Martínez Y, Fernández-López M, Castrejón-Godínez ML, Encarnación S, Tovar-Sánchez E, Salazar E, Rodríguez A, Mussali-Galante P. Transcriptomic analysis of Burkholderia cenocepacia CEIB S5-2 during methyl parathion degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42414-42431. [PMID: 33813711 DOI: 10.1007/s11356-021-13647-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Methyl parathion (MP) is a highly toxic organophosphorus pesticide associated with water, soil, and air pollution events. The identification and characterization of microorganisms capable of biodegrading pollutants are an important environmental task for bioremediation of pesticide impacted sites. The strain Burkholderia cenocepacia CEIB S5-2 is a bacterium capable of efficiently hydrolyzing MP and biodegrade p-nitrophenol (PNP), the main MP hydrolysis product. Due to the high PNP toxicity over microbial living forms, the reports on bacterial PNP biodegradation are scarce. According to the genomic data, the MP- and PNP-degrading ability observed in B. cenocepacia CEIB S5-2 is related to the presence of the methyl parathion-degrading gene (mpd) and the gene cluster pnpABA'E1E2FDC, which include the genes implicated in the PNP degradation. In this work, the transcriptomic analysis of the strain in the presence of MP revealed the differential expression of 257 genes, including all genes implicated in the PNP degradation, as well as a set of genes related to the sensing of environmental changes, the response to stress, and the degradation of aromatic compounds, such as translational regulators, membrane transporters, efflux pumps, and oxidative stress response genes. These findings suggest that these genes play an important role in the defense against toxic effects derived from the MP and PNP exposure. Therefore, B. cenocepacia CEIB S5-2 has a great potential for application in pesticide bioremediation approaches due to its biodegradation capabilities and the differential expression of genes for resistance to MP and PNP.
Collapse
Affiliation(s)
- Ma Laura Ortiz-Hernández
- Misión Sustentabilidad México A.C., Priv. Laureles 6, Col. Chamilpa, C.P 62210, Cuernavaca, Morelos, México
| | - Yitzel Gama-Martínez
- Centro de Investigación en Biotecnología, Laboratorio de Investigaciones Ambientales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Maikel Fernández-López
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P 62209, Cuernavaca, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P 62209, Cuernavaca, Morelos, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P 62210, Cuernavaca, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P 62209, Cuernavaca, Morelos, México
| | - Emmanuel Salazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P 62210, Cuernavaca, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Laboratorio de Investigaciones Ambientales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México.
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Laboratorio de Investigaciones Ambientales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México.
| |
Collapse
|
41
|
Chittrakanwong J, Charoenlap N, Vanitshavit V, Sowatad A, Mongkolsuk S, Vattanaviboon P. The role of MfsR, a TetR-type transcriptional regulator, in adaptive protection of Stenotrophomonas maltophilia against benzalkonium chloride via the regulation of mfsQ. FEMS Microbiol Lett 2021; 368:6332283. [PMID: 34329426 DOI: 10.1093/femsle/fnab098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
A gene encoding the TetR-type transcriptional regulator mfsR is located immediately downstream of mfsQ and is transcribed in the same transcriptional unit. mfsQ encodes a major facilitator superfamily (MFS) efflux transporter contributing to the resistance of Stenotrophomonas maltophilia towards disinfectants belonging to quaternary ammonium compounds (QACs), which include benzalkonium chloride (BAC). Phylogenetic analysis revealed that MfsR is closely related to CgmR, a QAC-responsive transcriptional regulator belonging to the TetR family. MfsR regulated the expression of the mfsQR operon in a QAC-inducible manner. The constitutively high transcript level of mfsQ in an mfsR mutant indicated that MfsR functions as a transcriptional repressor of the mfsQR operon. Electrophoretic mobility shift assays showed that purified MfsR specifically bound to the putative promoter region of mfsQR, and in vitro treatments with QACs led to the release of MfsR from binding complexes. DNase I protection assays revealed that the MfsR binding box comprises inverted palindromic sequences located between motifs -35 and -10 of the putative mfsQR promoter. BAC-induced adaptive protection was abolished in the mfsR mutant and was restored in the complemented mutant. Overall, MfsR is a QACs-sensing regulator that controls the expression of mfsQ. In the absence of QACs, MfsR binds to the box located in the mfsQR promoter and represses its transcription. The presence of QACs derepresses MfsR activity, allowing RNA polymerase binding and transcription of mfsQR. This MfsR-MsfQ system enables S. maltophilia to withstand high levels of QACs.
Collapse
Affiliation(s)
- Jurairat Chittrakanwong
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Veerakit Vanitshavit
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Apinya Sowatad
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
42
|
Pietrzyk-Brzezinska AJ, Cociurovscaia A. Structures of the TetR-like transcription regulator RcdA alone and in complexes with ligands. Proteins 2021; 90:33-44. [PMID: 34288132 DOI: 10.1002/prot.26183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/25/2023]
Abstract
RcdA is a helix-turn-helix (HTH) transcriptional regulator belonging to the TetR family. The protein regulates the transcription of curlin subunit gene D, the master regulator of biofilm formation. Moreover, it was predicted that it might be involved in the regulation of up to 27 different genes. However, an effector of RcdA and the environmental conditions which trigger RcdA action remain unknown. Herein, we report the first crystal structures of RcdA in complexes with ligands, trimethylamine N-oxide (TMAO) and tris(hydroxymethyl)aminomethane (Tris), which might serve as RcdA effectors. Based on these structures, the ligand-binding pocket of RcdA was characterized in detail. The conservation of the amino acid residues forming the ligand-binding cavity was analyzed and the comprehensive search for RcdA structural homologs was performed. This analysis indicated that RcdA is structurally similar to multidrug-binding TetR family members, however, its ligand-binding cavity differs significantly from the pockets of its structural homologs. The interaction of RcdA with TMAO and Tris indicates that the protein might be involved in alkaline stress response.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Anna Cociurovscaia
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
43
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
44
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|