1
|
Huang T, Zhong S, Sun J, Shen D, Zhang X, Zhao Q. Whole transcriptome analysis identifies differentially expressed mRNA, miRNA and lncRNA associated with male sterility in the silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101280. [PMID: 38964195 DOI: 10.1016/j.cbd.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Insect sterility technology is gradually being applied to the control of lepidoptera pests, and the target gene for male sterility is the core of this technology. JMS is a mutant silkworm that exhibits male sterility, and to elucidate its formation mechanism, this study conducted a full transcriptome analysis of the testes of JMS and its wild-type silkworms 48 h after pupation, identifying 205 DElncRNAs, 913 mRNAs, and 92 DEmiRNAs. The KEGG pathway enrichment analysis of the DEmRNAs revealed that they were involved in the biosynthesis of amino acids and ECM-receptor interactions. Combined with ceRNA regulatory network KEGG analysis suggests that pathways from amino acid biosynthesis to hydrolytic processes of protein synthesis may play a crucial role in the formation of JMS mutant variants. Our study deepens our understanding of the regulatory network of male sterility genes in silkworms; it also provides a new perspective for insect sterility technology.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Juan Sun
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Zhao X, Wang X, Xue G, Gao Y, Zhang Y, Li Y, Wang Y, Li J. Regulation of cell-mediated immune responses in dairy bulls via long non-coding RNAs from submandibular lymph nodes, peripheral blood, and the spleen. Genomics 2024; 116:110958. [PMID: 39536956 DOI: 10.1016/j.ygeno.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cell-mediated immune responses (CMIRs) are critical to building a robust immune system and reducing disease susceptibility in cattle. Long non-coding RNAs (lncRNAs) regulate various biological processes. However, to the best of our knowledge, the characterization and functions of lncRNAs and their regulations on the bovine CMIR have not been investigated comprehensively. In this study, experimental bulls were immunized with heat-killed preparation of Candida albicans (HKCA) to induce delayed-type hypersensitivity (DTH). Three bulls were classified as high- CMIR responders and three were low-CMIR responders, based on their classical DTH skin reactions. LncRNAs were identified in the submandibular lymph nodes, peripheral blood, and spleen of high- and low-CMIR animals using strand-specific RNA sequencing. A total of 21,003 putative lncRNAs were identified across tissues, and 420, 468, and 599 lncRNAs were differentially expressed between the two groups in the submandibular lymph node, peripheral blood, and spleen tissues, respectively. Functional analysis of the differentially expressed lncRNA (DElncRNA) target genes showed that a number of immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched, including immune response, cell adhesion, nucleosome, DNA packaging, antigen processing and presentation, and complement and coagulation cascades. Tissue specificity analysis indicated that lncRNA transcripts have stronger tissue specificity than mRNA. Furthermore, an interaction network was constructed based on DElncRNAs and DEGs, and 11, 14, and 11 promising lncRNAs were identified as potential candidate genes influencing immune response regulation in submandibular lymph nodes, peripheral blood, and spleen tissues, respectively. These results provide a foundation for further research into the biological functions of lncRNAs associated with bovine CMIR and identify candidate lncRNA markers for cell-mediated immune responses.
Collapse
Affiliation(s)
- Xiuxin Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guanghui Xue
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Yundong Gao
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Yuanpei Zhang
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yachun Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Silva RG, Amaral PP, Franco GR, Góes-Neto A. Exploring the hidden hot world of long non-coding RNAs in thermophilic fungus using a robust computational pipeline. Sci Rep 2024; 14:19797. [PMID: 39187522 PMCID: PMC11347667 DOI: 10.1038/s41598-024-67975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are versatile RNA molecules recently identified as key regulators of gene expression in response to environmental stress. Our primary focus in this study was to develop a robust computational pipeline for identifying structurally identical lncRNAs across replicates from publicly available bulk RNA-seq datasets. In order to demonstrate the effectiveness of the pipeline, we utilized the transcriptome of the thermophilic fungus Thermothelomyces thermophilus and assessed the expression pattern of lncRNAs in conjunction with Heat Shock Proteins (HSP), a well-known protein family critical for the cell's response to high temperatures. Our findings demonstrate that the identification of structurally identical transcripts among replicates in this thermophilic fungus ensures the reliability and accuracy of RNA studies, contributing to the validity of biological interpretations. Furthermore, the majority of lncRNAs exhibited a distinct expression pattern compared to HSPs. Our study contributes to advancing the understanding of the biological mechanisms comprising lncRNAs in thermophilic fungi.
Collapse
Affiliation(s)
- Roger G Silva
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo P Amaral
- Institute of Education and Research, São Paulo, SP, Brazil
| | - Glória R Franco
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Wei J, Li H, Huang X, Zhao Y, Ouyang L, Wei M, Wang C, Wang J, Lu G. Elucidating the regulatory role of long non-coding RNAs in drought stress response during seed germination in leaf mustard. PeerJ 2024; 12:e17661. [PMID: 38978758 PMCID: PMC11229683 DOI: 10.7717/peerj.17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024] Open
Abstract
Leaf mustard (Brassica juncea L. Czern & Coss), an important vegetable crop, experiences pronounced adversity due to seasonal drought stress, particularly at the seed germination stage. Although there is partial comprehension of drought-responsive genes, the role of long non-coding RNAs (lncRNAs) in adjusting mustard's drought stress response is largely unexplored. In this study, we showed that the drought-tolerant cultivar 'Weiliang' manifested a markedly lower base water potential (-1.073 MPa vs -0.437 MPa) and higher germination percentage (41.2% vs 0%) than the drought-susceptible cultivar 'Shuidong' under drought conditions. High throughput RNA sequencing techniques revealed a significant repertoire of lncRNAs from both cultivars during germination under drought stress, resulting in the identification of 2,087 differentially expressed lncRNAs (DELs) and their correspondingly linked 12,433 target genes. It was noted that 84 genes targeted by DEL exhibited enrichment in the photosynthesis pathway. Gene network construction showed that MSTRG.150397, a regulatory lncRNA, was inferred to potentially modulate key photosynthetic genes (Psb27, PetC, PetH, and PsbW), whilst MSTRG.107159 was indicated as an inhibitory regulator of six drought-responsive PIP genes. Further, weighted gene co-expression network analysis (WGCNA) corroborated the involvement of light intensity and stress response genes targeted by the identified DELs. The precision and regulatory impact of lncRNA were verified through qPCR. This study extends our knowledge of the regulatory mechanisms governing drought stress responses in mustard, which will help strategies to augment drought tolerance in this crop.
Collapse
Affiliation(s)
- Jinxing Wei
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Haibo Li
- Shaoguan University, Shaoguan, China
| | - Xiaoer Huang
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Yongguo Zhao
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Mingken Wei
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Chun Wang
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Junxia Wang
- South China Agricultural University, Guangzhou, China
| | - Guangyuan Lu
- Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
5
|
Wu X, Du X, Pian H, Yu D. Effect of Curcumin on Hepatic mRNA and lncRNA Co-Expression in Heat-Stressed Laying Hens. Int J Mol Sci 2024; 25:5393. [PMID: 38791430 PMCID: PMC11121607 DOI: 10.3390/ijms25105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is an important factor affecting poultry production; birds have a range of inflammatory reactions under high-temperature environments. Curcumin has anti-inflammatory and antioxidant effects. The purpose of this experiment was to investigate the effect of dietary curcumin supplementation on the liver transcriptome of laying hens under heat stress conditions. In the animal experiment, a total of 240 Hy-Line brown hens aged 280 days were divided randomly into four different experimental diets with four replicates, and each replicate consisted of 15 hens during a 42-D experiment. The ambient temperature was adjusted to 34 ± 2 °C for 8 h per day, transiting to a range of 22 °C to 28 °C for the remaining 16 h. In the previous study of our lab, it was found that supplemental 150 mg/kg curcumin can improve production performance, antioxidant enzyme activity, and immune function in laying hens under heat stress. To further investigate the regulatory mechanism of curcumin on heat stress-related genes, in total, six samples of three liver tissues from each of 0 mg/kg and 150 mg/kg curcumin test groups were collected for RNA-seq analysis. In the transcriptome analysis, we reported for the first time that the genes related to heat stress of mRNA, such as HSPA8, HSPH1, HSPA2, and DNAJA4, were co-expressed with lncRNA such as XLOC010450, XLOC037987, XLOC053511, XLOC061207, and XLOC100318, and all of these genes are shown to be down-regulated. These findings provide a scientific basis for the possible benefits of dietary curcumin addition in heat-stressed laying hens.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Xubin Du
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China;
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| |
Collapse
|
6
|
Wang QN, Xiao WQ, Yao Y, Kong XD, Sun Y. Response patterns of lncRNAs of the Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae under 23 pesticide treatments. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:8. [PMID: 37471132 DOI: 10.1093/jisesa/iead059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
The response of Spodoptera frugiperda genes toward insecticides is crucial for guiding insecticide use. The regulation of the S. frugiperda genes via long noncoding RNAs (lncRNAs) under insecticide treatment should be investigated. In this study, 452 differentially expressed lncRNAs were identified by analyzing RNA-sequencing data of S. frugiperda under 23 pesticide treatments. We found 59 and 43 differentially expressed lncRNAs that could regulate detoxification-related cytochrome P450 and UDP-glucuronosyltransferase genes, respectively. Furthermore, the target genes of differentially expressed lncRNAs were enriched in Pfam, including chitin bind 4 and gene ontology terms such as structural constituent of the cuticle, revealing their potential mechanism of action on the growth inhibition of S. frugiperda larvae. Insecticide-specific expression of lncRNAs highlights the properties and commonalities of different insecticide-induced lncRNA regulatory mechanisms. To conclude, the results of this study provide new insights and perspectives on the use of 23 insecticides via lncRNA regulation of mRNAs.
Collapse
Affiliation(s)
- Qing-Nan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wen-Qing Xiao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Yu Yao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Xiang-Dong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Niinuma SA, Lubbad L, Lubbad W, Moin ASM, Butler AE. The Role of Heat Shock Proteins in the Pathogenesis of Polycystic Ovarian Syndrome: A Review of the Literature. Int J Mol Sci 2023; 24:ijms24031838. [PMID: 36768170 PMCID: PMC9915177 DOI: 10.3390/ijms24031838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and post-menopausal women. PCOS is a multifactorial heterogeneous disorder associated with a variety of etiologies, outcomes, and clinical manifestations. However, the pathophysiology of PCOS is still unclear. Heat shock proteins (HSPs) have recently been investigated for their role in the pathogenesis of PCOS. HSPs are a class of proteins that act as molecular chaperones and maintain cellular proteostasis. More recently, their actions beyond that of molecular chaperones have highlighted their pathogenic role in several diseases. In PCOS, different HSP family members show abnormal expression that affects the proliferation and apoptotic rates of ovarian cells as well as immunological processes. HSP dysregulation in the ovaries of PCOS subjects leads to a proliferation/apoptosis imbalance that mechanistically impacts follicle stage development, resulting in polycystic ovaries. Moreover, HSPs may play a role in the pathogenesis of PCOS-associated conditions. Recent studies on HSP activity during therapeutic interventions for PCOS suggest that modulating HSP activity may lead to novel treatment strategies. In this review, we summarize what is currently known regarding the role of HSPs in the pathogenesis of PCOS and their potential role in the treatment of PCOS, and we outline areas for future research.
Collapse
Affiliation(s)
- Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Laila Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Walaa Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
- Correspondence: or ; Tel.: +973-66760313
| |
Collapse
|
8
|
Sammad A, Luo H, Hu L, Zhu H, Wang Y. Transcriptome Reveals Granulosa Cells Coping through Redox, Inflammatory and Metabolic Mechanisms under Acute Heat Stress. Cells 2022; 11:1443. [PMID: 35563749 PMCID: PMC9105522 DOI: 10.3390/cells11091443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Heat stress affects granulosa cells (GCs) and the ovarian follicular microenvironment, causing poor oocyte developmental competence and fertility. This study aimed to investigate the physical responses and global transcriptomic changes in bovine GCs to acute heat stress (43 °C for 2 h) in vitro. Heat-stressed GCs exhibited transient proliferation senescence and resumed proliferation at 48 h post-stress, while post-stress immediate culture-media change had a relatively positive effect on proliferation resumption. Increased accumulation of reactive oxygen species and apoptosis was observed in the heat-stress group. In spite of the upregulation of inflammatory (CYCS, TLR2, TLR4, IL6, etc.), pro-apoptotic (BAD, BAX, TNFSF9, MAP3K7, TNFRSF6B, FADD, TRADD, RIPK3, etc.) and caspase executioner genes (CASP3, CASP8, CASP9), antioxidants and anti-apoptotic genes (HMOX1, NOS2, CAT, SOD, BCL2L1, GPX4, etc.) were also upregulated in heat-stressed GCs. Progesterone and estrogen hormones, along with steroidogenic gene expression, declined significantly, in spite of the upregulation of genes involved in cholesterol synthesis. Out of 12,385 differentially expressed genes (DEGs), 330 significant DEGs (75 upregulated, 225 downregulated) were subjected to KEGG functional pathway annotation, gene ontology enrichment, STRING network analyses and manual querying of DEGs for meaningful molecular mechanisms. High inflammatory response was found to be responsible for oxidative-stress-mediated apoptosis of GCs and nodes towards the involvement of the NF-κB pathway and repression of the Nrf2 pathway. Downregulation of MDM4, TP53, PIDD1, PARP3, MAPK14 and MYC, and upregulation of STK26, STK33, TGFB2, CDKN1A and CDKN2A, at the interface of the MAPK and p53 signaling pathway, can be attributed to transient cellular senescence and apoptosis in GCs. The background working of the AMPK pathway through upregulation of AKT1, AMPK, SIRT1, PYGM, SLC2A4 and SERBP1 genes, and downregulation of PPARGCIA, IGF2, PPARA, SLC27A3, SLC16A3, TSC1/2, KCNJ2, KCNJ16, etc., evidence the repression of cellular transcriptional activity and energetic homeostasis modifications in response to heat stress. This study presents detailed responses of acute-heat-stressed GCs at physical, transcriptional and pathway levels and presents interesting insights into future studies regarding GC adaptation and their interaction with oocytes and the reproductive system at the ovarian level.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Mi S, Tang Y, Dari G, Shi Y, Zhang J, Zhang H, Liu X, Liu Y, Tahir U, Yu Y. Transcriptome sequencing analysis for the identification of stable lncRNAs associated with bovine Staphylococcus aureus mastitis. J Anim Sci Biotechnol 2021; 12:120. [PMID: 34895356 PMCID: PMC8667444 DOI: 10.1186/s40104-021-00639-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Staphylococcus aureus (S. aureus) mastitis is one of the most difficult diseases to treat in lactating dairy cows worldwide. S. aureus with different lineages leads to different host immune responses. Long non-coding RNAs (lncRNAs) are reported to be widely involved in the progress of inflammation. However, no research has identified stable lncRNAs among different S. aureus strain infections. In addition, folic acid (FA) can effectively reduce inflammation, and whether the inflammatory response caused by S. aureus can be reduced by FA remains to be explored. Methods lncRNA transcripts were identified from Holstein mammary gland tissues infected with different concentrations of S. aureus (in vivo) and mammary alveolar cells (Mac-T cells, in vitro) challenged with different S. aureus strains. Differentially expressed (DE) lncRNAs were evaluated, and stable DE lncRNAs were identified in vivo and in vitro. On the basis of the gene sequence conservation and function conservation across species, key lncRNAs with the function of potentially immune regulation were retained for further analysis. The function of FA on inflammation induced by S. aureus challenge was also investigated. Then, the association analysis between these keys lncRNA transcripts and hematological parameters (HPs) was carried out. Lastly, the knockdown and overexpression of the important lncRNA were performed to validate the gene function on the regulation of cell immune response. Results Linear regression analysis showed a significant correlation between the expression levels of lncRNA shared by mammary tissue and Mac-T cells (P < 0.001, R2 = 0.3517). lncRNAs PRANCR and TNK2–AS1 could be regarded as stable markers associated with bovine S. aureus mastitis. Several HPs could be influenced by SNPs around lncRNAs PRANCR and TNK2–AS1. The results of gene function validation showed PRANCR regulates the mRNA expression of SELPLG and ITGB2 within the S. aureus infection pathway and the Mac-T cells apoptosis. In addition, FA regulated the expression change of DE lncRNA involved in toxin metabolism and inflammation to fight against S. aureus infection. Conclusions The remarkable association between SNPs around these two lncRNAs and partial HP indicates the potentially important role of PRANCR and TNK2–AS1 in immune regulation. Stable DE lncRNAs PRANCR and TNK2–AS1 can be regarded as potential targets for the prevention of bovine S. aureus mastitis. FA supplementation can reduce the negative effect of S. aureus challenge by regulating the expression of lncRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00639-2.
Collapse
Affiliation(s)
- Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gerile Dari
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanjun Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Usman Tahir
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|