1
|
Pavliuchenko N, Kuzmina M, Danek P, Spoutil F, Prochazka J, Skopcova T, Pokorna J, Sedlacek R, Alberich-Jorda M, Brdicka T. Genetic background affects neutrophil activity and determines the severity of autoinflammatory osteomyelitis in mice. J Leukoc Biol 2024; 117:qiae168. [PMID: 39120532 DOI: 10.1093/jleuko/qiae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
The knowledge about the contribution of the innate immune system to health and disease is expanding. However, to obtain reliable results, it is critical to select appropriate mouse models for in vivo studies. Data on genetic and phenotypic changes associated with different mouse strains can assist in this task. Such data can also facilitate our understanding of how specific polymorphisms and genetic alterations affect gene function, phenotypes, and disease outcomes. Extensive information is available on genetic changes in all major mouse strains. However, comparatively little is known about their impact on immune response and, in particular, on innate immunity. Here, we analyzed a mouse model of chronic multifocal osteomyelitis, an autoinflammatory disease driven exclusively by the innate immune system, which is caused by an inactivating mutation in the Pstpip2 gene. We investigated how the genetic background of BALB/c, C57BL/6J, and C57BL/6NCrl strains alters the molecular mechanisms controlling disease progression. While all mice developed the disease, symptoms were significantly milder in BALB/c and partially also in C57BL/6J when compared to C57BL/6NCrl. Disease severity correlated with the number of infiltrating neutrophils and monocytes and with the production of chemokines attracting these cells to the site of inflammation. It also correlated with increased expression of genes associated with autoinflammation, rheumatoid arthritis, neutrophil activation, and degranulation, resulting in altered neutrophil activation in vivo. Together, our data demonstrate striking effects of genetic background on multiple parameters of neutrophil function and activity influencing the onset and course of chronic multifocal osteomyelitis.
Collapse
Affiliation(s)
- Nataliia Pavliuchenko
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Maria Kuzmina
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Petr Danek
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Laboratory of Molecular Analysis of Growth Regulation in Animals, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 160 00 Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Meritxell Alberich-Jorda
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
2
|
Mishkin N, Carrasco SE, Palillo M, Momtsios P, Woods C, Henderson KS, Longhini ALF, Otis C, Gardner R, Joseph AM, Sonnenberg GF, Palillo J, Ricart Arbona RJ, Lipman NS. Chlamydia muridarum Causes Persistent Subclinical Infection and Elicits Innate and Adaptive Immune Responses in C57BL/6J, BALB/cJ and J:ARC(S) Mice Following Exposure to Shedding Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603732. [PMID: 39071441 PMCID: PMC11275779 DOI: 10.1101/2024.07.16.603732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Chlamydia muridarum (Cm) has reemerged as a moderately prevalent infectious agent in research mouse colonies. Despite its' experimental use, few studies evaluate Cm's effects on immunocompetent mice following its natural route of infection. A Cm field isolate was administered (orogastric gavage) to 8-week-old female BALB/cJ (C) mice. After confirming shedding (through 95d), these mice were cohoused with naïve C57BL/6J (B6), C, and Swiss (J:ARC[S]) mice (n=28/strain) for 30 days. Cohoused mice (n=3-6 exposed and 1-6 control/strain) were evaluated 7, 14, 21, 63, 120, and 180 days post-cohousing (DPC) via hemograms, serum biochemistry analysis, fecal qPCR, histopathology, and Cm MOMP immunohistochemistry. Immunophenotyping was performed on spleen (B6, C, S; n=6/strain) and intestines (B6; n=6) at 14 and 63 DPC. Serum cytokine concentrations were measured (B6; n=6 exposed and 2 control) at 14 and 63 DPC. All B6 mice were shedding Cm by 3 through 180 DPI. One of 3 C and 1 of 6 S mice began shedding Cm at 3 and 14 DPC, respectively, with the remaining shedding thereafter. Clinical pathology was nonremarkable. Minimal-to-moderate enterotyphlocolitis and gastrointestinal associated lymphoid tissue (GALT) hyperplasia was observed in 15 and 47 of 76 Cm-infected mice, respectively. Cm antigen was frequently detected in GALT-associated surface intestinal epithelial cells. Splenic immunophenotyping revealed increased monocytes and shifts in T cell population subsets in all strains/timepoints. Gastrointestinal immunophenotyping (B6) revealed sustained increases in total inflammatory cells and elevated cytokine production in innate lymphoid cells and effector T cells (large intestine). Elevated concentrations of pro-inflammatory cytokines were detected in the serum (B6). Results demonstrate that while clinical disease was not appreciated, 3 commonly utilized strains of mice are susceptible to chronic enteric Cm infection which may alter various immune responses. Considering the widespread use of mice to model GI disease, institutions should consider excluding Cm from their colonies.
Collapse
Affiliation(s)
- Noah Mishkin
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY
| | - Sebastian E Carrasco
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY
| | - Michael Palillo
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY
| | - Panagiota Momtsios
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA
| | - Cheryl Woods
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA
| | - Kenneth S Henderson
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA
| | - Ana Leda F Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chelsea Otis
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jack Palillo
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rodolfo J Ricart Arbona
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY
| |
Collapse
|
3
|
Neves MM, Guerra RF, de Lima IL, Arrais TS, Guevara-Vega M, Ferreira FB, Rosa RB, Vieira MS, Fonseca BB, Sabino da Silva R, da Silva MV. Perspectives of FTIR as Promising Tool for Pathogen Diagnosis, Sanitary and Welfare Monitoring in Animal Experimentation Models: A Review Based on Pertinent Literature. Microorganisms 2024; 12:833. [PMID: 38674777 PMCID: PMC11052489 DOI: 10.3390/microorganisms12040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is a wide application in the literature of the use of the Fourier Transform Infrared Spectroscopy (FTIR) technique. This basic tool has also proven to be efficient for detecting molecules associated with hosts and pathogens in infections, as well as other molecules present in humans and animals' biological samples. However, there is a crisis in science data reproducibility. This crisis can also be observed in data from experimental animal models (EAMs). When it comes to rodents, a major challenge is to carry out sanitary monitoring, which is currently expensive and requires a large volume of biological samples, generating ethical, legal, and psychological conflicts for professionals and researchers. We carried out a survey of data from the relevant literature on the use of this technique in different diagnostic protocols and combined the data with the aim of presenting the technique as a promising tool for use in EAM. Since FTIR can detect molecules associated with different diseases and has advantages such as the low volume of samples required, low cost, sustainability, and provides diagnostic tests with high specificity and sensitivity, we believe that the technique is highly promising for the sanitary and stress and the detection of molecules of interest of infectious or non-infectious origin.
Collapse
Affiliation(s)
- Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Renan Faria Guerra
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Thomas Santos Arrais
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.G.-V.); (R.S.d.S.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| | - Mylla Spirandelli Vieira
- Faculty of Medicine, Maria Ranulfa Institute, Av. Vasconselos Costa 321, Uberlândia 38400-448, MG, Brazil;
| | | | - Robinson Sabino da Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.G.-V.); (R.S.d.S.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| |
Collapse
|
4
|
Enriquez J, McDaniel Mims B, Stroever S, dos Santos AP, Jones-Hall Y, Furr KL, Grisham MB. Influence of Housing Temperature and Genetic Diversity on Allogeneic T Cell-Induced Tissue Damage in Mice. PATHOPHYSIOLOGY 2023; 30:522-547. [PMID: 37987308 PMCID: PMC10661280 DOI: 10.3390/pathophysiology30040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/22/2023] Open
Abstract
The objective of this study was to determine how housing temperature and genetic diversity affect the onset and severity of allogeneic T cell-induced tissue damage in mice subjected to reduced intensity conditioning (RIC). We found that adoptive transfer of allogeneic CD4+ T cells from inbred donors into sub-lethally irradiated inbred recipients (I→I) housed at standard housing temperatures (ST; 22-24 °C) induced extensive BM and spleen damage in the absence of injury to any other tissue. Although engraftment of T cells in RIC-treated mice housed at their thermo-neutral temperature (TNT; 30-32 °C) also developed similar BM and spleen damage, their survival was markedly and significantly increased when compared to their ST counterparts. In contrast, the adoptive transfer of allogeneic T cells into RIC-treated outbred CD1 recipients failed to induce disease in any tissue at ST or TNT. The lack of tissue damage was not due to defects in donor T cell trafficking to BM or spleen but was associated with the presence of large numbers of B cells and myeloid cells within these tissues that are known to contain immunosuppressive regulatory B cells and myeloid-derived suppressor cells. These data demonstrate, for the first time, that housing temperature affects the survival of RIC-treated I→I mice and that RIC-conditioned outbred mice are resistant to allogeneic T cell-induced BM and spleen damage.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Brianyell McDaniel Mims
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Stroever
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Kim B, Park ES, Lee JS, Suh JG. Outbred Mice with Streptozotocin-Induced Diabetes Show Sex Differences in Glucose Metabolism. Int J Mol Sci 2023; 24:ijms24065210. [PMID: 36982285 PMCID: PMC10049093 DOI: 10.3390/ijms24065210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Outbred mice (ICR) with different genotypes and phenotypes have been reported to be more suitable for scientific testing than inbred mice because they are more similar to humans. To investigate whether the sex and genetic background of the mice are important factors in the development of hyperglycemia, we used ICR mice and divided them into male, female, and ovariectomized female (FOVX) groups and treated them with streptozotocin (STZ) for five consecutive days to induce diabetes. Our results show that fasting blood glucose and hemoglobin A1c (HbA1c) levels were significantly higher in diabetes-induced males (M-DM) and ovariectomized diabetes-induced females (FOVX-DM) than in diabetes-induced females (F-DM) at 3 and 6 weeks after STZ treatment. Furthermore, the M-DM group showed the most severe glucose tolerance, followed by the FOVX-DM and F-DM groups, suggesting that ovariectomy affects glucose tolerance in female mice. The size of pancreatic islets in the M-DM and FOVX-DM groups was significantly different from that of the F-DM group. The M-DM and FOVX-DM groups had pancreatic beta-cell dysfunction 6 weeks after STZ treatment. Urocortin 3 and somatostatin inhibited insulin secretion in the M-DM and FOVX-DM groups. Overall, our results suggest that glucose metabolism in mice is dependent on sex and/or genetic background.
Collapse
Affiliation(s)
- Boyoung Kim
- Institute of Medical Science, College of Medicine, Hallym University, 1, Hallymdaehak-gil, Chuncheon 24252, Republic of Korea;
| | - Eun-Sun Park
- Department of Medical Genetics, College of Medicine, Hallym University, 1, Hallymdaehak-gil, Chuncheon 24252, Republic of Korea; (E.-S.P.); (J.-S.L.)
| | - Jong-Sun Lee
- Department of Medical Genetics, College of Medicine, Hallym University, 1, Hallymdaehak-gil, Chuncheon 24252, Republic of Korea; (E.-S.P.); (J.-S.L.)
| | - Jun-Gyo Suh
- Institute of Medical Science, College of Medicine, Hallym University, 1, Hallymdaehak-gil, Chuncheon 24252, Republic of Korea;
- Department of Medical Genetics, College of Medicine, Hallym University, 1, Hallymdaehak-gil, Chuncheon 24252, Republic of Korea; (E.-S.P.); (J.-S.L.)
- Correspondence: ; Tel.: +82-33-248-2692
| |
Collapse
|
6
|
Souza JS, Farani PSG, Ferreira BIS, Barbosa HS, Menna-Barreto RFS, Moreira OC, Mariante RM. Establishment of a murine model of congenital toxoplasmosis and validation of a qPCR assay to assess the parasite load in maternal and fetal tissues. Front Microbiol 2023; 14:1124378. [PMID: 36922978 PMCID: PMC10009190 DOI: 10.3389/fmicb.2023.1124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects warm-blooded animals and one third of the human population worldwide. Pregnant women who have never been exposed to the parasite constitute an important risk group, as infection during pregnancy often leads to congenital toxoplasmosis, the most severe form of the disease. Current therapy for toxoplasmosis is the same as it was 50 years ago and has little or no effect when vertical transmission occurs. Therefore, it is urgent to develop new strategies to prevent mother-to-fetus transmission. The implementation of experimental animal models of congenital toxoplasmosis that reproduces the transmission rates and clinical signs in humans opens an avenue of possibilities to interfere in the progression of the disease. In addition, knowing the parasite load in maternal and fetal tissues after infection, which may be related to organ abnormalities and disease outcome, is another important step in designing a promising intervention strategy. Therefore, we implemented here a murine model of congenital toxoplasmosis with outbred Swiss Webster mice infected intravenously with tachyzoites of the ME49 strain of T. gondii that mimics the frequency of transmission of the parasite, as well as important clinical signs of human congenital toxoplasmosis, such as macrocephaly, in addition to providing a highly sensitive quantitative real-time PCR assay to assess parasite load in mouse tissues. As the disease is not restricted to humans, also affecting several domestic animals, including companion animals and livestock, they can also benefit from the model presented in this study.
Collapse
Affiliation(s)
- Jéssica S Souza
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Priscila S G Farani
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Department of Biological Science, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Beatriz I S Ferreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Otacilio C Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Salles ÉL, Emami Naeini S, Bhandari B, Khodadadi H, Threlkeld E, Rezaee S, Meeks W, Meeks A, Awe A, El-Marakby A, Yu JC, Wang LP, Baban B. Sexual Dimorphism in the Polarization of Cardiac ILCs through Elabela. Curr Issues Mol Biol 2022; 45:223-232. [PMID: 36661503 PMCID: PMC9856941 DOI: 10.3390/cimb45010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Elabela is a component of the apelinergic system and may exert a cardioprotective role by regulating the innate immune responses. Innate lymphoid cells (ILCs) have a significant role in initiating and progressing immune-inflammatory responses. While ILCs have been intensively investigated during the last decade, little is known about their relationship with the apelinergic system and their cardiac diversity in a gender-based paradigm. In this study, we investigated the polarization of cardiac ILCs by Elabela in males versus females in a mouse model. Using flow cytometry and immunohistochemistry analyses, we showed a potential interplay between Elabela and cardiac ILCs and whether such interactions depend on sexual dimorphism. Our findings showed, for the first time, that Elabela is expressed by cardiac ILCs, and its expression is higher in females' ILC class 3 (ILC3s) compared to males. Females had higher frequencies of ILC1s, and Elabela was able to suppress T-cell activation and the expression of co-stimulatory CD28 in a mixed lymphocyte reaction assay (MLR). In conclusion, our results suggest, for the first time, a protective role for Elabela through its interplay with ILCs and that it can be used as an immunotherapeutic target in the treatment of cardiovascular disorders in a gender-based fashion.
Collapse
Affiliation(s)
- Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)-721-3181
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Edie Threlkeld
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sholeh Rezaee
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Avery Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Aderemi Awe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ahmed El-Marakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jack C. Yu
- Department of Plastic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lei P. Wang
- Medicinal Cannabis of Georgia LLC, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med 2022; 28:1100-1111. [PMID: 36216643 PMCID: PMC9691569 DOI: 10.1016/j.molmed.2022.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Aging leads to a gradual dysregulation of immune functions, one consequence of which is reduced vaccine efficacy. In this review, we discuss several key contributing factors to the age-related decline in vaccine efficacy, such as alterations within the lymph nodes where germinal center (GC) reactions take place, alterations in the B cell compartment, alterations in the T cell compartment, and dysregulation of innate immune pathways. Additionally, we discuss several methods currently used in vaccine development to bolster vaccine efficacy in older adults. This review highlights the multifactorial defects that impair vaccine responses with aging.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane C Deng
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
da Silva-Gomes NL, Ruivo LADS, Moreira C, Meuser-Batista M, da Silva CF, Batista DDGJ, Fragoso S, de Oliveira GM, Soeiro MDNC, Moreira OC. Overexpression of TcNTPDase-1 Gene Increases Infectivity in Mice Infected with Trypanosoma cruzi. Int J Mol Sci 2022; 23:ijms232314661. [PMID: 36498985 PMCID: PMC9736689 DOI: 10.3390/ijms232314661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).
Collapse
Affiliation(s)
- Natália Lins da Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Claudia Moreira
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, EPSJV/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | | | - Stênio Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | | | | | - Otacilio C. Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
10
|
Christen U, Hintermann E. Animal Models for Autoimmune Hepatitis: Are Current Models Good Enough? Front Immunol 2022; 13:898615. [PMID: 35903109 PMCID: PMC9315390 DOI: 10.3389/fimmu.2022.898615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune liver diseases like autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related cholangitis are chronic inflammatory diseases of the liver with an autoimmune background. The therapy of autoimmune hepatitis targets the autoreactive immune system and is largely dependent on the use of glucocorticoids and cytostatic drugs. In contrast, the treatment of cholestatic autoimmune liver diseases is restricted to the use of secondary or semi-synthetic bile acids, like ursodeoxycholic acid or obeticholic acid. Although the management of the disease using such drugs works well for the majority of patients, many individuals do not respond to standard therapy. In addition, chronic treatment with glucocorticoids results in well-known side effects. Further, the use of bile acids is a symptomatic therapy that has no direct immunomodulatory effect. Thus, there is still a lot of room for improvement. The use of animal models has facilitated to elucidate the pathogenesis of autoimmune liver diseases and many potential target structures for immunomodulatory therapies have been identified. In this review, we will focus on autoimmune hepatitis for which the first animal models have been established five decades ago, but still a precise treatment for autoimmune hepatitis, as obtainable for other autoimmune diseases such as rheumatoid arthritis or multiple sclerosis has yet to be introduced. Thus, the question arises if our animal models are too far from the patient reality and thus findings from the models cannot be reliably translated to the patient. Several factors might be involved in this discrepancy. There is first and foremost the genetic background and the inbred status of the animals that is different from human patients. Here the use of humanized animals, such as transgenic mice, might reduce some of the differences. However, there are other factors, such as housing conditions, nutrition, and the microbiome that might also play an important role. This review will predominantly focus on the current status of animal models for autoimmune hepatitis and the possible ways to overcome discrepancies between model and patient.
Collapse
|
11
|
Hamilton A, Rizzo R, Brod S, Ono M, Perretti M, Cooper D, D'Acquisto F. The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain Behav Immun 2022; 102:179-194. [PMID: 35217174 DOI: 10.1016/j.bbi.2022.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.
Collapse
Affiliation(s)
- Alice Hamilton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Rizzo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London SW7 2AZ, England
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London SW15, 4JD, UK.
| |
Collapse
|
12
|
Chesnay A, Paget C, Heuzé-Vourc’h N, Baranek T, Desoubeaux G. Pneumocystis Pneumonia: Pitfalls and Hindrances to Establishing a Reliable Animal Model. J Fungi (Basel) 2022; 8:129. [PMID: 35205883 PMCID: PMC8877242 DOI: 10.3390/jof8020129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Pneumocystis pneumonia is a severe lung infection that occurs primarily in largely immunocompromised patients. Few treatment options exist, and the mortality rate remains substantial. To develop new strategies in the fields of diagnosis and treatment, it appears to be critical to improve the scientific knowledge about the biology of the Pneumocystis agent and the course of the disease. In the absence of in vitro continuous culture system, in vivo animal studies represent a crucial cornerstone for addressing Pneumocystis pneumonia in laboratories. Here, we provide an overview of the animal models of Pneumocystis pneumonia that were reported in the literature over the last 60 years. Overall, this review highlights the great heterogeneity of the variables studied: the choice of the host species and its genetics, the different immunosuppressive regimens to render an animal susceptible, the experimental challenge, and the different validation methods of the model. With this work, the investigator will have the keys to choose pivotal experimental parameters and major technical features that are assumed to likely influence the results according to the question asked. As an example, we propose an animal model to explore the immune response during Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Adélaïde Chesnay
- Service de Parasitologie-Mycologie-Médecine Tropicale, Pôle Biologie Médicale, Hôpital Bretonneau, CHRU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France;
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale U1100, Université de Tours, 10 Bouelvard Tonnellé, 37032 Tours, France; (C.P.); (N.H.-V.); (T.B.)
| | - Christophe Paget
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale U1100, Université de Tours, 10 Bouelvard Tonnellé, 37032 Tours, France; (C.P.); (N.H.-V.); (T.B.)
| | - Nathalie Heuzé-Vourc’h
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale U1100, Université de Tours, 10 Bouelvard Tonnellé, 37032 Tours, France; (C.P.); (N.H.-V.); (T.B.)
| | - Thomas Baranek
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale U1100, Université de Tours, 10 Bouelvard Tonnellé, 37032 Tours, France; (C.P.); (N.H.-V.); (T.B.)
| | - Guillaume Desoubeaux
- Service de Parasitologie-Mycologie-Médecine Tropicale, Pôle Biologie Médicale, Hôpital Bretonneau, CHRU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France;
- Centre d’Etude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale U1100, Université de Tours, 10 Bouelvard Tonnellé, 37032 Tours, France; (C.P.); (N.H.-V.); (T.B.)
| |
Collapse
|