1
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
2
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2024:S2090-1232(24)00157-7. [PMID: 38631430 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Liang R, Ye ZW, Qin Z, Xie Y, Yang X, Sun H, Du Q, Luo P, Tang K, Hu B, Cao J, Wong XHL, Ling GS, Chu H, Shen J, Yin F, Jin DY, Chan JFW, Yuen KY, Yuan S. PMI-controlled mannose metabolism and glycosylation determines tissue tolerance and virus fitness. Nat Commun 2024; 15:2144. [PMID: 38459021 PMCID: PMC10923791 DOI: 10.1038/s41467-024-46415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.
Collapse
Affiliation(s)
- Ronghui Liang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaomeng Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haoran Sun
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Peng Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bodan Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xavier Hoi-Leong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Guang-Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Joshi CS, Salazar AM, Wang C, Ligon MM, Chappidi RR, Fashemi BE, Felder PA, Mora A, Grimm SL, Coarfa C, Mysorekar IU. D-Mannose reduces cellular senescence and NLRP3/GasderminD/IL-1β-driven pyroptotic uroepithelial cell shedding in the murine bladder. Dev Cell 2024; 59:33-47.e5. [PMID: 38101412 PMCID: PMC10872954 DOI: 10.1016/j.devcel.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1β-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.
Collapse
Affiliation(s)
- Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rayvanth R Chappidi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A Felder
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Mora
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandra L Grimm
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Pandey N, Mandal M, Samanta D, Mukherjee G, Dutta G. A nanobody based ultrasensitive electrochemical biosensor for the detection of soluble CTLA-4 -A candidate biomarker for cancer development and progression. Biosens Bioelectron 2023; 242:115733. [PMID: 37820555 DOI: 10.1016/j.bios.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 μg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.
Collapse
Affiliation(s)
- Nidhi Pandey
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bio Science, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
6
|
Vlasova VV, Shmagel KV. T Lymphocyte Metabolic Features and Techniques to Modulate Them. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1857-1873. [PMID: 38105204 DOI: 10.1134/s0006297923110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/27/2023] [Indexed: 12/19/2023]
Abstract
T cells demonstrate high degree of complexity and broad range of functions, which distinguish them from other immune cells. Throughout their lifetime, T lymphocytes experience several functional states: quiescence, activation, proliferation, differentiation, performance of effector and regulatory functions, memory formation, and apoptosis. Metabolism supports all functions of T cells, providing lymphocytes with energy, biosynthetic substrates, and signaling molecules. Therefore, T cells usually restructure their metabolism as they transition from one functional state to another. Strong association between the metabolism and T cell functions implies that the immune response can be controlled by manipulating metabolic processes within T lymphocytes. This review aims to highlight the main metabolic adaptations necessary for the T cell function, as well as the recent progress in techniques to modulate metabolic features of lymphocytes.
Collapse
Affiliation(s)
- Violetta V Vlasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia.
| | - Konstantin V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| |
Collapse
|
7
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
8
|
Lin H, Li X, Zhao J, Wang L, Liu Y, Gao C. D-mannose reduces adipogenesis by inhibiting the PI3K/AKT signaling pathway. Histol Histopathol 2023; 38:1283-1294. [PMID: 37246829 DOI: 10.14670/hh-18-631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PURPOSE To explore the effects and potential mechanisms of D-mannose on adipogenic differentiation of two kinds of representative mesenchymal stem cells (MSCs). METHODS We cultured two kinds of representative MSCs, human adipose tissue-derived stromal cells (hADSCs) as well as human bone marrow mesenchymal stem cells (hBMSCs), with adipogenic-induced medium containing D-mannose or D-fructose as the control. Oil red O staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB) were used to detect whether D-mannose had effects on adipogenic differentiation of MSCs. RNA sequencing (RNA-seq) transcriptomic analysis was further used to explore the potential mechanisms of D-mannose on adipogenic differentiation of MSCs. After that, qRT-PCR and WB were used to verify the results of RNA-seq. Last, we removed bilateral ovaries of female rats to establish an estrogen deficiency obesity model, and gave D-mannose intragastric administration. One month later, the femurs of rats were sliced for oil red O staining, and the inhibitory effect of D-mannose on lipid formation in vivo was studied. RESULTS Oil red O staining, qRT-PCR and WB in vitro demonstrated that D-mannose inhibited the adipogenic differentiation of both hADSCs and hBMSCs. Oil red O staining of femur sections proved that D-mannose was able to reduce in vivo adipogenesis. The results of RNA-seq transcriptomic analysis revealed that the adipogenesis-inhibition effects of D-mannose were performed by antagonizing the PI3K/AKT signaling pathway. Besides, qRT-PCR and WB further verified the results of RNA-seq. CONCLUSION Our study indicated that D-mannose was able to reduce adipogenic differentiation of both hADSCs and hBMSCs by antagonizing the PI3K/AKT signaling pathway. D-mannose is expected to be a safe and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Haozhi Lin
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Xin Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Jiping Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Lei Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Yizhen Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Cui Gao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China.
| |
Collapse
|
9
|
Wu Y, Zhao M, Gong N, Zhang F, Chen W, Liu Y. Immunometabolomics provides a new perspective for studying systemic lupus erythematosus. Int Immunopharmacol 2023; 118:109946. [PMID: 36931174 DOI: 10.1016/j.intimp.2023.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by clinical heterogeneity, unpredictable progression, and flare ups. Due to the heterogeneous nature of lupus, it has been challenging to identify sensitive and specific biomarkers for its diagnosis and monitoring. Despite the fact that the mechanism of SLE remains unknown, impressive progress has been made over the last decade towards understanding how different immune cells contribute to its pathogenesis. Research suggests that cellular metabolic programs could affect the immune response by regulating the activation, proliferation, and differentiation of innate and adaptive immune cells. Many studies have shown that the dysregulation of the immune system is associated with changes to metabolite profiles. The study of metabolite profiling may provide a means for mechanism exploration and novel biomarker discovery for disease diagnostic, classification, and monitoring. Here we review the latest advancements in understanding the role of immunometabolism in SLE, as well as the systemic metabolite profiling of this disease along with possible clinical application.
Collapse
Affiliation(s)
- Yuxian Wu
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Mengpei Zhao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Na Gong
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Yaoyang Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Lester DK, Burton C, Gardner A, Innamarato P, Kodumudi K, Liu Q, Adhikari E, Ming Q, Williamson DB, Frederick DT, Sharova T, White MG, Markowitz J, Cao B, Nguyen J, Johnson J, Beatty M, Mockabee-Macias A, Mercurio M, Watson G, Chen PL, McCarthy S, MoranSegura C, Messina J, Thomas KL, Darville L, Izumi V, Koomen JM, Pilon-Thomas SA, Ruffell B, Luca VC, Haltiwanger RS, Wang X, Wargo JA, Boland GM, Lau EK. Fucosylation of HLA-DRB1 regulates CD4 + T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy. NATURE CANCER 2023; 4:222-239. [PMID: 36690875 PMCID: PMC9970875 DOI: 10.1038/s43018-022-00506-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of L-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4+ T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that L-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma.
Collapse
Affiliation(s)
- Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alycia Gardner
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Patrick Innamarato
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Krithika Kodumudi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianqian Ming
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Daniel B Williamson
- Complex Carbohydrate Research Center, the University of Georgia, Athens, GA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael G White
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph Markowitz
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew Beatty
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew Mercurio
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gregory Watson
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Susan McCarthy
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos MoranSegura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jane Messina
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kerry L Thomas
- Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lancia Darville
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari A Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Vincent C Luca
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, the University of Georgia, Athens, GA, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric K Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
11
|
Dhanalakshmi M, Sruthi D, Jinuraj KR, Das K, Dave S, Andal NM, Das J. Mannose: a potential saccharide candidate in disease management. Med Chem Res 2023; 32:391-408. [PMID: 36694836 PMCID: PMC9852811 DOI: 10.1007/s00044-023-03015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
There are a plethora of antibiotic resistance cases and humans are marching towards another big survival test of evolution along with drastic climate change and infectious diseases. Ever since the first antibiotic [penicillin], and the myriad of vaccines, we were privileged to escape many infectious disease threats. The survival technique of pathogens seems rapidly changing and sometimes mimicking our own systems in such a perfect manner that we are left unarmed against them. Apart from searching for natural alternatives, repurposing existing drugs more effectively is becoming a familiar approach to new therapeutic opportunities. The ingenious use of revolutionary artificial intelligence-enabled drug discovery techniques is coping with the speed of such alterations. D-Mannose is a great hope as a nutraceutical in drug discovery, against CDG, diabetes, obesity, lung disease, and autoimmune diseases and recent findings of anti-tumor activity make it interesting along with its role in drug delivery enhancing techniques. A very unique work done in the present investigation is the collection of data from the ChEMBL database and presenting the targetable proteins on pathogens as well as on humans. It shows Mannose has 50 targets and the majority of them are on human beings. The structure and conformation of certain monosaccharides have a decisive role in receptor pathogen interactions and here we attempt to review the multifaceted roles of Mannose sugar, its targets associated with different diseases, as a natural molecule having many success stories as a drug and future hope for disease management. Graphical abstract
Collapse
Affiliation(s)
- M. Dhanalakshmi
- Research and Development Centre, Bharathiar University, Coimbatore, 641046 Tamil Nadu India
| | - D. Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012 India
| | - K. R. Jinuraj
- OSPF-NIAS Drug Discovery Lab, NIAS, IISc Campus, Bengaluru, 560012 India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-3, Odisha India
| | - Sushma Dave
- Department of Applied Sciences, JIET, Jodhpur, Rajasthan India
| | - N. Muthulakshmi Andal
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, 641004 Tamil Nadu India
| | - Jayashankar Das
- Valnizen Healthcare, Vile Parle West, Mumbai, 400056 Maharashtra India
| |
Collapse
|
12
|
Jamshaid H, Din FU, Malik M, Mukhtiar M, Choi HG, Ur-Rehman T, Khan GM. A cutback in Imiquimod cutaneous toxicity; comparative cutaneous toxicity analysis of Imiquimod nanotransethosomal gel with 5% marketed cream on the BALB/c mice. Sci Rep 2022; 12:14244. [PMID: 35987944 PMCID: PMC9392762 DOI: 10.1038/s41598-022-18671-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Herein, Imiquimod (IMQ) was incorporated in nanotransethosomes (nTES) to develop the IMQ-nTES nano-drug delivery system. IMQ-nTES was optimized using 23 factorial design. The optimized formulation was expressed with a particle size of 192.4 ± 1.60 nm, Poly-dispersibility of 0.115 ± 0.008, and IMQ percent entrapment efficiency of 91.05 ± 3.22%. Smooth and round morphology of IMQ-nTES vesicles was confirmed by TEM micrographs. Moreover, FTIR results have shown drug-excipient compatibility. The IMQ-nTES was laden inside the low molecular weight chitosan gel, which exhibited easy application, spreadability and no irritation to the applied skin. The release pattern has clearly exhibited improved dissolution properties of IMQ with the provision of the sustain release pattern. Higher IMQ content was deposited in deeper epidermis and dermis with IMQ-nTES gel, in contrast to ALDARA. In vivo, comparative toxicity study on BALB/c mice has shown significantly reduced (p < 0.001) psoriatic area severity index (PASI) score and less increment in ear thickness. Epidermal hyperplasia was an obvious finding with ALDARA which was, providentially, minimal in IMQ-nTES gel-treated skin. FTIR analysis of skin tissue has shown an enhancement of lipid and protein content in the ALDARA group, however, in the IMQ-nTES group no such change was observed. With ALDARA application, CD4+ T-cells and constitutive NF-κβ expression were significantly elevated, in comparison to the IMQ-nTES gel treated group. Moreover, the adequate expression of IFN-γ and cytotoxic CD8+ T-cells were suggesting the preserved IMQ efficacy with IMQ-nTES gel. Quantification of cutaneous as well as systemic inflammatory markers has also suggested the reduced psoriatic potential of IMQ-nTES gel. In essence, IMQ-nTES gel can be a suitable alternative to ALDARA owing to its better safety profile.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Pharmacy, Ibadat International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Maimoona Malik
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Mukhtiar
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, Rawalakot, AJK, Pakistan
| | - Han Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
| | - Tofeeq Ur-Rehman
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
13
|
Chiu K, Zhang F, Sutcliffe S, Mysorekar IU, Lowder JL. Recurrent Urinary Tract Infection Incidence Rates Decrease in Women With Cystitis Cystica After Treatment With d-Mannose: A Cohort Study. Female Pelvic Med Reconstr Surg 2022; 28:e62-e65. [PMID: 35272335 PMCID: PMC8928039 DOI: 10.1097/spv.0000000000001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES d-Mannose is a promising nonantibiotic prophylaxis for recurrent urinary tract infection (rUTI). Recurrent UTI is common in postmenopausal women and may be especially prevalent in those with cystitis cystica (CC) lesions found on cystoscopy. Our objectives were to determine whether CC lesions are associated with a higher UTI incidence rate and whether d-mannose reduces this rate in women with CC. METHODS This is a retrospective cohort study of patients with rUTI who underwent cystoscopy at our institution (from which CC status was identified) and who were treated with d-mannose as a single agent for UTI prophylaxis. Participants were required to have at least 1 year of follow-up for UTIs both before and after d-mannose initiation to allow for a pre-post comparison. RESULTS Twenty-seven patients were included in the analysis (13 with CC, 14 without CC). Most patients (88.9%) were postmenopausal. Patients with CC had a higher UTI incidence rate than patients without CC (4.69 vs 2.93 UTIs/year before starting d-mannose prophylaxis, P = 0.021). After initiating d-mannose prophylaxis, the UTI incidence rate decreased significantly in patients with CC (rate decrease = 2.23 UTIs/year, P = 0.0028). This decrease was similar in magnitude to that observed in patients without CC (rate decrease = 1.64 UTIs/year, P = 0.0007; P interaction = 0.58). CONCLUSIONS Patients with rUTI with CC had more frequent UTI episodes than patients without CC. Patients in both groups had fewer UTI episodes after beginning d-mannose prophylaxis. These findings add to the body of literature supporting d-mannose for the prevention of rUTI in women, including those with CC.
Collapse
Affiliation(s)
- Kimberley Chiu
- From the Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology
| | - Fan Zhang
- Division of Clinical Research, Department of Obstetrics and Gynecology
| | - Siobhan Sutcliffe
- Division of Public Health Sciences, Department of Surgery, Washington University in St Louis, St Louis, MO
| | - Indira U Mysorekar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jerry L Lowder
- From the Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology
| |
Collapse
|
14
|
Li M, Cheng H, Tian D, Yang L, Du X, Pan Y, Zhang D, Mei X. D-Mannose Suppresses γδ T Cells and Alleviates Murine Psoriasis. Front Immunol 2022; 13:840755. [PMID: 35296088 PMCID: PMC8918796 DOI: 10.3389/fimmu.2022.840755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is a chronic skin disorder associated with multiple sequelae, such as psoriatic arthritis and cardiovascular diseases. Increasing evidence has shown that γδ T cells, as sources of IL-17A, play critical roles in psoriatic inflammations. However, there still lack effective ways to manipulate these pathogenic γδ T cells, which are less well studied than αβ T cells. The present study aims to characterize the phenotype of γδ T cells and evaluate the impact of D-mannose (a C-2 epimer of glucose) on γδ T cell-mediated psoriasis. We found that skin-draining LN γδ T cells underwent robust proliferation and acquired an IL-17-producing phenotype during psoriasis. The transcriptomic profiles of these psoriatic γδ T cells had elevated glycolytic signatures. Importantly, D-mannose treatment suppressed the γδ T cell reaction and successfully alleviated the local and systematic inflammation induced by imiquimod. The decreased AKT/mTOR/HIF-1α signaling and glycolytic ability may contribute to the suppression of γδ T cells achieved by D-mannose. Our study increased understanding of γδ T cells in psoriasis and promoted D-mannose utilization as a potential clinical application for autoimmune diseases driven by γδ T cells.
Collapse
Affiliation(s)
- Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haiyan Cheng
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Tian
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lu Yang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
| | - Xiaonan Du
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
| | - Yuhualei Pan
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
| | - Dong Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xueling Mei, ; Dong Zhang,
| | - Xueling Mei
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xueling Mei, ; Dong Zhang,
| |
Collapse
|
15
|
Zhou X, Zheng Y, Sun W, Zhang Z, Liu J, Yang W, Yuan W, Yi Y, Wang J, Liu J. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif 2021; 54:e13134. [PMID: 34561933 PMCID: PMC8560605 DOI: 10.1111/cpr.13134] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Chondrocyte ferroptosis contributes to osteoarthritis (OA) progression, and D-mannose shows therapeutic value in many inflammatory conditions. Here, we investigated whether D-mannose interferes in chondrocyte ferroptotic cell death during osteoarthritic cartilage degeneration. MATERIALS AND METHODS In vivo anterior cruciate ligament transection (ACLT)-induced OA mouse model and an in vitro study of chondrocytes in an OA microenvironment induced by interleukin-1β (IL-1β) exposure were employed. Combined with Epas1 gene gain- and loss-of-function, histology, immunofluorescence, quantitative RT-PCR, Western blot, cell viability and flow cytometry experiments were performed to evaluate the chondroprotective effects of D-mannose in OA progression and the role of hypoxia-inducible factor 2 alpha (HIF-2 α) in D-mannose-induced ferroptosis resistance of chondrocytes. RESULTS D-mannose exerted a chondroprotective effect by attenuating the sensitivity of chondrocytes to ferroptosis and alleviated OA progression. HIF-2α was identified as a central mediator in D-mannose-induced ferroptosis resistance of chondrocytes. Furthermore, overexpression of HIF-2α in chondrocytes by Ad-Epas1 intra-articular injection abolished the chondroprotective effect of D-mannose during OA progression and eliminated the role of D-mannose as a ferroptosis suppressor. CONCLUSIONS D-mannose alleviates osteoarthritis progression by suppressing HIF-2α-mediated chondrocyte sensitivity to ferroptosis, indicating D-mannose to be a potential therapeutic strategy for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wentian Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wenke Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin Liu
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Zhang W, Cheng H, Gui Y, Zhan Q, Li S, Qiao W, Tong A. Mannose Treatment: A Promising Novel Strategy to Suppress Inflammation. Front Immunol 2021; 12:756920. [PMID: 34646279 PMCID: PMC8502929 DOI: 10.3389/fimmu.2021.756920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
High glucose and fructose intake have been proven to display pro-inflammatory roles during the progression of inflammatory diseases. However, mannose has been shown to be a special type of hexose that has immune regulatory functions. In this review, we trace the discovery process of the regulatory functions of mannose and summarize some past and recent studies showing the therapeutic functions of mannose in inflammatory diseases. We conclude that treatment with mannose can suppress inflammation by inducing regulatory T cells, suppressing effector T cells and inflammatory macrophages, and increasing anti-inflammatory gut microbiome. By summarizing all the important findings, we highlight that mannose treatment is a safe and promising novel strategy to suppress inflammatory diseases, including autoimmune disease and allergic disease.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Gui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qipeng Zhan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Si Li
- Discovery Project Unit, HitGen Inc. Tianfu International Bio-Town, Chengdu, China
| | - Wenliang Qiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Blockade of TGF-βR improves the efficacy of doxorubicin by modulating the tumor cell motility and affecting the immune cells in a melanoma model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2309-2322. [PMID: 34499199 DOI: 10.1007/s00210-021-02134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
TGF-β contributes to drug resistance and the invasiveness of tumor cells and weakens the anti-tumor immune responses. The present study aimed at examining the efficacy of the combination of SB431542, as a specific inhibitor of TGF-βR, and doxorubicin in controlling the melanoma tumor in mice. The impact of the combination of the doxorubicin and SB431542 on the cell growth, apoptosis, migration, and invasiveness of B16-F10 cells was examined. Besides, the B16-F10 tumor was induced in C57BL/6 mice, and the effects of the mentioned treatment on the tumor volume, survival, and the exhaustion state of T cells were evaluated. Although the combination of doxorubicin and SB431542 did not exhibit synergism in the inhibition of cell growth and apoptosis induction, it efficiently prohibited the migration and the epithelial to mesenchymal transition of B16-F10 cells, and the combination of doxorubicin and SB431542 caused an increase in mRNA levels of E-cadherin and, on the other hand, led to a decline in the expression of Vimentin. Tumor volume and the survival of tumor-bearing mice were efficiently controlled by the combination therapy. This treatment also eventuated in a decrease in the percentage of PD-L1+, TCD4+, and TCD8+ cells as indicators of exhausted T cells within the spleens of tumor-bearing mice. Blockade of TGF-βR also propelled the RAW 264.7 cells towards an anti-tumor M1 macrophage phenotype. The inhibition of TGF-βR demonstrated a potential to increase the efficacy of doxorubicin chemotherapy by the means of affecting cellular motility and restoring the anti-tumor immune responses.
Collapse
|