1
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Powell-Romero F, Wells K, Clark NJ. Asymmetric Biotic Interactions Cannot Be Inferred Without Accounting for Priority Effects. Ecol Lett 2024; 27:e14509. [PMID: 39354898 DOI: 10.1111/ele.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
Understanding biotic interactions is a crucial goal in community ecology and species distribution modelling, and large strides have been made towards improving multivariate computational methods with the aim of quantifying biotic interactions and improving predictions of species occurrence. Yet, while considerable attention has been given to computational approaches and the interpretation of these quantitative tools, the importance of sampling design to reveal these biotic interactions has received little consideration. This study explores the influential role of priority effects, that is, the order of habitat colonisation, in shaping our ability to detect biotic interactions. Using a simple set of simulations, we demonstrate that commonly used cross-sectional co-occurrence data alone cannot be used to make reliable inferences on asymmetric biotic interactions, even if they perform well in predicting the occurrence of species. We then show how sampling designs that consider priority effects can recover the asymmetric effects that are lost when priority effects are ignored. Based on these findings, we urge for caution when drawing inferences on biotic interactions from cross-sectional binary co-occurrence data, and provide guidance on sampling designs that may provide the necessary data to tackle this longstanding challenge.
Collapse
Affiliation(s)
| | - Konstans Wells
- Department of Biosciences, Swansea University, Swansea, Wales, UK
| | - Nicholas J Clark
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
3
|
Bourgeois JS, You SS, Clendenen LH, Shrestha M, Petnicki-Ocwieja T, Telford SR, Hu LT. Comparative reservoir competence of Peromyscus leucopus, C57BL/6J, and C3H/HeN for Borrelia burgdorferi B31. Appl Environ Microbiol 2024; 90:e0082224. [PMID: 38899883 PMCID: PMC11267898 DOI: 10.1128/aem.00822-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Stephanie S. You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Luke H. Clendenen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Muskan Shrestha
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Sam R. Telford
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Jones KR, Belden LK, Hughey MC. Priority effects alter microbiome composition and increase abundance of probiotic taxa in treefrog tadpoles. Appl Environ Microbiol 2024; 90:e0061924. [PMID: 38757977 PMCID: PMC11218634 DOI: 10.1128/aem.00619-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Host-associated microbial communities, like other ecological communities, may be impacted by the colonization order of taxa through priority effects. Developing embryos and their associated microbiomes are subject to stochasticity during colonization by bacteria. For amphibian embryos, often developing externally in bacteria-rich environments, this stochasticity may be particularly impactful. For example, the amphibian microbiome can mitigate lethal outcomes from disease for their hosts; however, this may depend on microbiome composition. Here, we examined the assembly of the bacterial community in spring peeper (Pseudacris crucifer) embryos and tadpoles. First, we reared embryos from identified mating pairs in either lab or field environments to examine the relative impact of environment and parentage on embryo and tadpole bacterial communities. Second, we experimentally inoculated embryos to determine if priority effects (i) could be used to increase the relative abundance of Janthinobacterium lividum, an amphibian-associated bacteria capable of preventing fungal infection, and (ii) would lead to observed differences in the relative abundances of two closely related bacteria from the genus Pseudomonas. Using 16S rRNA gene amplicon sequencing, we observed differences in community composition based on rearing location and parentage in embryos and tadpoles. In the inoculation experiment, we found that priority inoculation could increase the relative abundance of J. lividum, but did not find that either Pseudomonas isolate was able to prevent colonization by the other when given priority. These results highlight the importance of environmental source pools and parentage in determining microbiome composition, while also providing novel methods for the administration of a known amphibian probiotic. IMPORTANCE Harnessing the functions of host-associated bacteria is a promising mechanism for managing disease outcomes across different host species. In the case of amphibians, certain frog-associated bacteria can mitigate lethal outcomes of infection by the fungal pathogen Batrachochytrium dendrobatidis. Successful probiotic applications require knowledge of community assembly and an understanding of the ecological mechanisms that structure these symbiotic bacterial communities. In our study, we show the importance of environment and parentage in determining bacterial community composition and that community composition can be influenced by priority effects. Further, we provide support for the use of bacterial priority effects as a mechanism to increase the relative abundance of target probiotic taxa in a developing host. While our results show that priority effects are not universally effective across all host-associated bacteria, our ability to increase the relative abundance of specific probiotic taxa may enhance conservation strategies that rely on captive rearing of endangered vertebrates.
Collapse
Affiliation(s)
- Korin Rex Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Myra C. Hughey
- Department of Biology, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
5
|
Shifflett SA, Ferreira FC, González J, Toledo A, Fonseca DM, Ellis VA. Diversity and host specificity of Borrelia burgdorferi's outer surface protein C ( ospC) alleles in synanthropic mammals, with a notable ospC allele U absence from mixed infections. Infect Immun 2024; 92:e0024423. [PMID: 38099660 PMCID: PMC10790820 DOI: 10.1128/iai.00244-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Interactions among pathogen genotypes that vary in host specificity may affect overall transmission dynamics in multi-host systems. Borrelia burgdorferi, a bacterium that causes Lyme disease, is typically transmitted among wildlife by Ixodes ticks. Despite the existence of many alleles of B. burgdorferi's sensu stricto outer surface protein C (ospC) gene, most human infections are caused by a small number of ospC alleles ["human infectious alleles" (HIAs)], suggesting variation in host specificity associated with ospC. To characterize the wildlife host association of B. burgdorferi's ospC alleles, we used metagenomics to sequence ospC alleles from 68 infected individuals belonging to eight mammalian species trapped at three sites in suburban New Brunswick, New Jersey (USA). We found that multiple allele ("mixed") infections were common. HIAs were most common in mice (Peromyscus spp.) and only one HIA was detected at a site where mice were rarely captured. ospC allele U was exclusively found in chipmunks (Tamias striatus), and although a significant number of different alleles were observed in chipmunks, including HIAs, allele U never co-occurred with other alleles in mixed infections. Our results suggest that allele U may be excluding other alleles, thereby reducing the capacity of chipmunks to act as reservoirs for HIAs.
Collapse
Affiliation(s)
- Scarlet A. Shifflett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| | - Francisco C. Ferreira
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Alvaro Toledo
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Dina M. Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Vincenzo A. Ellis
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Brian JI, Aldridge DC. Host and parasite identity interact in scale-dependent fashion to determine parasite community structure. Oecologia 2024; 204:199-211. [PMID: 38206416 PMCID: PMC10830602 DOI: 10.1007/s00442-023-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Understanding the ecological assembly of parasite communities is critical to characterise how changing host and environmental landscapes will alter infection dynamics and outcomes. However, studies frequently assume that (a) closely related parasite species or those with identical life-history strategies are functionally equivalent, and (b) the same factors will drive infection dynamics for a single parasite across multiple host species, oversimplifying community assembly patterns. Here, we challenge these two assumptions using a naturally occurring host-parasite system, with the mussel Anodonta anatina infected by the digenean trematode Echinoparyphium recurvatum, and the snail Viviparus viviparus infected by both E. recurvatum and Echinostoma sp. By analysing the impact of temporal parasite dispersal, host species and size, and the impact of coinfection (moving from broader environmental factors to within-host dynamics), we show that neither assumption holds true, but at different ecological scales. The assumption that closely related parasites can be functionally grouped is challenged when considering dispersal to the host (i.e. larger scales), while the assumption that the same factors will drive infection dynamics for a single parasite across multiple host species is challenged when considering within-host interspecific competition (i.e. smaller scales). Our results demonstrate that host identity, parasite identity and ecological scale require simultaneous consideration in studies of parasite community composition and transmission.
Collapse
Affiliation(s)
- Joshua I Brian
- Aquatic Ecology Group, Department of Zoology, University of Cambridge, The David Attenborough Building, Cambridge, CB2 3QZ, UK.
- Department of Geography, Bush House North East, King's College London, London, WC2B 4BG, UK.
| | - David C Aldridge
- Aquatic Ecology Group, Department of Zoology, University of Cambridge, The David Attenborough Building, Cambridge, CB2 3QZ, UK
| |
Collapse
|
7
|
Zou HX, Rudolf VHW. Bridging theory and experiments of priority effects. Trends Ecol Evol 2023; 38:1203-1216. [PMID: 37633727 DOI: 10.1016/j.tree.2023.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Priority effects play a key role in structuring natural communities, but considerable confusion remains about how they affect different ecological systems. Synthesizing previous studies, we show that this confusion arises because the mechanisms driving priority and the temporal scale at which they operate differ among studies, leading to divergent outcomes in species interactions and biodiversity patterns. We suggest grouping priority effects into two functional categories based on their mechanisms: frequency-dependent priority effects that arise from positive frequency dependence, and trait-dependent priority effects that arise from time-dependent changes in interacting traits. Through easy quantification of these categories from experiments, we can construct community models representing diverse biological mechanisms and interactions with priority effects, therefore better predicting their consequences across ecosystems.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
8
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Bongrand C, Foster JS. Modelled microgravity impacts Vibrio fischeri population structure in a mutualistic association with an animal host. Environ Microbiol 2023; 25:3269-3279. [PMID: 37828645 DOI: 10.1111/1462-2920.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Perturbations to host-microbe interactions, such as environmental stress, can alter and disrupt homeostasis. In this study, we examined the effects of a stressor, simulated microgravity, on beneficial bacteria behaviours when colonising their host. We studied the bacterium Vibrio fischeri, which establishes a mutualistic association in a symbiosis-specific organ within the bobtail squid, Euprymna scolopes. To elucidate how animal-microbe interactions are affected by the stress of microgravity, squid were inoculated with different bacterial strains exhibiting either a dominant- or sharing-colonisation behaviour in High Aspect Ratio Vessels, which simulate the low-shear environment of microgravity. The colonisation behaviours of the sharing and dominant strains under modelled microgravity conditions were determined by counting light-organ homogenate of squids as well as confocal microscopy to assess the partitioning of different strains within the light organ. The results indicated that although the colonisation behaviours of the strains did not change, the population levels of the sharing strains were at lower relative abundance in single-colonised animals exposed to modelled microgravity compared to unit gravity; in addition, there were shifts in the relative abundance of strains in co-colonised squids. Together these results suggest that the initiation of beneficial interactions between microbes and animals can be altered by environmental stress, such as simulated microgravity.
Collapse
Affiliation(s)
- Clotilde Bongrand
- Department of Microbiology and Cell Science, Space Life Sciences Lab, University of Florida, Merritt Island, Florida, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Sciences Lab, University of Florida, Merritt Island, Florida, USA
| |
Collapse
|
10
|
Glidden CK, Karakoç C, Duan C, Jiang Y, Beechler B, Jabbar A, Jolles AE. Distinct life history strategies underpin clear patterns of succession in microparasite communities infecting a wild mammalian host. Mol Ecol 2023; 32:3733-3746. [PMID: 37009964 PMCID: PMC10389068 DOI: 10.1111/mec.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free-living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites (Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free-living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco-evolutionary dynamics on infection outcomes, including parasite co-existence through the lifetime of the host.
Collapse
Affiliation(s)
- Caroline K. Glidden
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Canan Karakoç
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chenyang Duan
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Brianna Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Victoria, Australia
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
11
|
Jones KR, Hughey MC, Belden LK. Colonization order of bacterial isolates on treefrog embryos impacts microbiome structure in tadpoles. Proc Biol Sci 2023; 290:20230308. [PMID: 36946107 PMCID: PMC10031419 DOI: 10.1098/rspb.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Priority effects, or impacts of colonization order, may have lasting influence on ecological community composition. The embryonic microbiome is subject to stochasticity in colonization order of bacteria. Stochasticity may be especially impactful for embryos developing in bacteria-rich environments, such as the embryos of many amphibians. To determine if priority effects experienced as embryos impacted bacterial community composition in newly hatched tadpoles, we selectively inoculated the embryos of laboratory-raised hourglass treefrogs, Dendropsophus ebraccatus, with bacteria initially isolated from the skin of wild D. ebraccatus adults over 2 days. First, embryos were inoculated with two bacteria in alternating sequences. Next, we evaluated the outcomes of priority effects in an in vitro co-culture assay absent of host factors. We then performed a second embryo experiment, inoculating embryos with one of three bacteria on the first day and a community of five target bacteria on the second. Through 16S rRNA gene amplicon sequencing, we observed relative abundance shifts in tadpole bacteria communities due to priority effects. Our results suggest that the initial bacterial source pools of embryos shape bacterial communities at later life stages; however, the magnitude of those changes is dependent on the host environment and the identity of bacterial colonists.
Collapse
Affiliation(s)
- Korin Rex Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - Myra C. Hughey
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| |
Collapse
|
12
|
Ramesh A, Hall SR. Niche theory for within-host parasite dynamics: Analogies to food web modules via feedback loops. Ecol Lett 2023; 26:351-368. [PMID: 36632705 DOI: 10.1111/ele.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/13/2023]
Abstract
Why do parasites exhibit a wide dynamical range within their hosts? For instance, why does infecting dose either lead to infection or immune clearance? Why do some parasites exhibit boom-bust, oscillatory dynamics? What maintains parasite diversity, that is coinfection v single infection due to exclusion or priority effects? For insights on parasite dose, dynamics and diversity governing within-host infection, we turn to niche models. An omnivory food web model (IGP) blueprints one parasite competing with immune cells for host energy (PIE). Similarly, a competition model (keystone predation, KP) mirrors a new coinfection model (2PIE). We then drew analogies between models using feedback loops. The following three points arise: first, like in IGP, parasites oscillate when longer loops through parasites, immune cells and resource regulate parasite growth. Shorter, self-limitation loops (involving resources and enemies) stabilise those oscillations. Second, IGP can produce priority effects that resemble immune clearance. But, despite comparable loop structure, PIE cannot due to constraints imposed by production of immune cells. Third, despite somewhat different loop structure, KP and 2PIE share apparent and resource competition mechanisms that produce coexistence (coinfection) or priority effects of prey or parasites. Together, this mechanistic niche framework for within-host dynamics offers new perspective to improve individual health.
Collapse
|
13
|
Competitive exclusion of phytopathogenic Serratia marcescens from squash bug vectors by the gut endosymbiont Caballeronia. Appl Environ Microbiol 2021; 88:e0155021. [PMID: 34669447 DOI: 10.1128/aem.01550-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many insects harbor microbial symbiotic partners that offer protection against pathogens, parasitoids, and other natural enemies. Mounting evidence suggests that these symbiotic microbes can play key roles in determining infection outcomes in insect vectors, making them important players in the quest to develop novel vector control strategies. Using the squash bug Anasa tristis, we investigated how the presence of Caballeronia symbionts affected the persistence and intensity of phytopathogenic Serratia marcescens within the insect vector. We reared insects aposymbiotically and with different Caballeronia isolates, infected them with S. marcescens, then sampled the insects periodically to assess the intensity and persistence of pathogen infection. Squash bugs harboring Caballeronia consistently had much lower-intensity infections and cleared S. marcescens significantly faster than their aposymbiotic counterparts. These patterns held even when we reversed the timing of exposure to symbiont and pathogen. Taken together, these results indicate that Caballeronia symbionts play an essential role in S. marcescens infection outcomes in squash bugs and could be used to alter vector competence to enhance agricultural productivity in the future. Importance Insect-microbe symbioses have repeatedly been shown to profoundly impact an insect's ability to vector pathogens to other hosts. The use of symbiotic microbes to control insect vector populations is of growing interest in agricultural settings. Our study examines how symbiotic microbes affect the dynamics of a plant pathogen infection within the squash bug vector Anasa tristis-a well-documented pest of squash and other cucurbit plants and vector of Serratia marcescens, causative agent of Cucurbit Yellow Vine Disease. We provide evidence that the symbiont Caballeronia prevents successful, long-term establishment of S. marcescens in the squash bug. These findings give us insight into symbiont-pathogen dynamics within the squash bug that could ultimately determine its ability to transmit pathogens and be leveraged to interrupt disease transmission in this system.
Collapse
|
14
|
Suzuki K, Nakaoka S, Fukuda S, Masuya H. Energy landscape analysis elucidates the multistability of ecological communities across environmental gradients. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenta Suzuki
- Integrated Bioresource Information Division BioResource Research Center RIKEN 3‐1‐1 Koyadai Tsukuba Ibaraki 305‐0074 Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology Faculty of Advanced Life Science Hokkaido University Kita‐10 Nishi‐8Kita‐ku Sapporo Hokkaido 060‐0819 Japan
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Shinji Fukuda
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
- Institute for Advanced Biosciences Keio University 246‐2 MizukamiKakuganji Tsuruoka Yamagata 997‐0052 Japan
- Intestinal Microbiota Project Kanagawa Institute of Industrial Science and Technology 3‐25‐13 TonomachiKawasaki‐ku Kawasaki Kanagawa 210‐0821 Japan
- Transborder Medical Research Center University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8575 Japan
| | - Hiroshi Masuya
- Integrated Bioresource Information Division BioResource Research Center RIKEN 3‐1‐1 Koyadai Tsukuba Ibaraki 305‐0074 Japan
| |
Collapse
|
15
|
Herczeg D, Ujszegi J, Kásler A, Holly D, Hettyey A. Host-multiparasite interactions in amphibians: a review. Parasit Vectors 2021; 14:296. [PMID: 34082796 PMCID: PMC8173923 DOI: 10.1186/s13071-021-04796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
Parasites, including viruses, bacteria, fungi, protists, helminths, and arthropods, are ubiquitous in the animal kingdom. Consequently, hosts are frequently infected with more than one parasite species simultaneously. The assessment of such co-infections is of fundamental importance for disease ecology, but relevant studies involving non-domesticated animals have remained scarce. Many amphibians are in decline, and they generally have a highly diverse parasitic fauna. Here we review the literature reporting on field surveys, veterinary case studies, and laboratory experiments on co-infections in amphibians, and we summarize what is known about within-host interactions among parasites, which environmental and intrinsic factors influence the outcomes of these interactions, and what effects co-infections have on hosts. The available literature is piecemeal, and patterns are highly diverse, so that identifying general trends that would fit most host–multiparasite systems in amphibians is difficult. Several examples of additive, antagonistic, neutral, and synergistic effects among different parasites are known, but whether members of some higher taxa usually outcompete and override the effects of others remains unclear. The arrival order of different parasites and the time lag between exposures appear in many cases to fundamentally shape competition and disease progression. The first parasite to arrive can gain a marked reproductive advantage or induce cross-reaction immunity, but by disrupting the skin and associated defences (i.e., skin secretions, skin microbiome) and by immunosuppression, it can also pave the way for subsequent infections. Although there are exceptions, detrimental effects to the host are generally aggravated with increasing numbers of co-infecting parasite species. Finally, because amphibians are ectothermic animals, temperature appears to be the most critical environmental factor that affects co-infections, partly via its influence on amphibian immune function, partly due to its direct effect on the survival and growth of parasites. Besides their importance for our understanding of ecological patterns and processes, detailed knowledge about co-infections is also crucial for the design and implementation of effective wildlife disease management, so that studies concentrating on the identified gaps in our understanding represent rewarding research avenues. ![]()
Collapse
Affiliation(s)
- Dávid Herczeg
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Dóra Holly
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| |
Collapse
|
16
|
Tomaszewski E, Jennings M, Munk B, Botta R, Lewison R. Landscape Seroprevalence of Three Hemorrhagic Disease-Causing Viruses in a Wild Cervid. ECOHEALTH 2021; 18:182-193. [PMID: 34515899 DOI: 10.1007/s10393-021-01546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Disease plays a major role in shaping wildlife populations worldwide, and changes in landscape conditions can significantly influence risk of pathogen exposure, a threat to vulnerable wild species. Three viruses that cause hemorrhagic disease affect cervid populations in the USA (Odocoileus hemionus adenovirus, bluetongue virus, and epizootic hemorrhagic disease virus), but little is known of their distribution and prevalence in wild populations. We explored the distribution and co-occurrence of seroprevalence of these three pathogens in southern mule deer (Odocoileus hemionus fuliginatus), a subspecies of conservation concern and a harvested species native to southern California, to evaluate the distribution of exposure to these pathogens relative to landscape attributes. We found that habitat type, level of development, and proximity to livestock may affect hemorrhagic disease seroprevalence in southern mule deer. Continued monitoring of hemorrhagic disease-causing viruses in areas where deer are in proximity to cattle and human development is needed to better understand the implications of future outbreaks in wild populations and to identify opportunities to mitigate disease impacts in southern mule deer and other cervid species.
Collapse
Affiliation(s)
- Emma Tomaszewski
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA.
| | - Megan Jennings
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Brandon Munk
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA
| | - Randy Botta
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA
| | - Rebecca Lewison
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
17
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
18
|
Ramsay C, Rohr JR. The application of community ecology theory to co-infections in wildlife hosts. Ecology 2021; 102:e03253. [PMID: 33222193 DOI: 10.1002/ecy.3253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/11/2022]
Abstract
Priority effect theory, a foundational concept from community ecology, states that the order and timing of species arrival during species assembly can affect species composition. Although this theory has been applied to co-infecting parasite species, it has almost always been with a single time lag between co-infecting parasites. Thus, how the timing of parasite species arrival affects co-infections and disease remains poorly understood. To address this gap in the literature, we exposed postmetamorphic Cuban tree frogs (Osteopilus septentrionalis) to Ranavirus, the fungus Batrachochytrium dendrobatidis (Bd), a nematode Aplectana hamatospicula, or pairs of these parasites either simultaneously or sequentially at a range of time lags and quantified load of the secondary parasite and host growth, survival, and parasite tolerance. Prior exposure to Bd or A. hamatospicula significantly increased viral loads relative to hosts singly infected with Ranavirus, whereas A. hamatospicula loads in hosts were higher when coexposed to Bd than when coexposed to Ranavirus. There was a significant positive relationship between time since Ranavirus infection and Bd load, and prior exposure to A. hamatospicula decreased Bd loads compared to simultaneous co-infection with these parasites. Infections with Bd and Ranavirus either singly or in co-infections decreased host growth and survival. This research reveals that time lags between co-infections can affect parasite loads, in line with priority effects theory. As co-infections in the field are unlikely to be simultaneous, an understanding of when co-infections are impacted by time lags between parasite exposures may play a major role in controlling problematic co-infections.
Collapse
Affiliation(s)
- Chloe Ramsay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| |
Collapse
|
19
|
O'Keeffe KR, Oppler ZJ, Brisson D. Evolutionary ecology of Lyme Borrelia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104570. [PMID: 32998077 PMCID: PMC8349510 DOI: 10.1016/j.meegid.2020.104570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
The bacterial genus, Borrelia, is comprised of vector-borne spirochete species that infect and are transmitted from multiple host species. Some Borrelia species cause highly-prevalent diseases in humans and domestic animals. Evolutionary, ecological, and molecular research on many Borrelia species have resulted in tremendous progress toward understanding the biology and natural history of these species. Yet, many outstanding questions, such as how Borrelia populations will be impacted by climate and land-use change, will require an interdisciplinary approach. The evolutionary ecology research framework incorporates theory and data from evolutionary, ecological, and molecular studies while overcoming common assumptions within each field that can hinder integration across these disciplines. Evolutionary ecology offers a framework to evaluate the ecological consequences of evolved traits and to predict how present-day ecological processes may result in further evolutionary change. Studies of microbes with complex transmission cycles, like Borrelia, which interact with multiple vertebrate hosts and arthropod vectors, are poised to leverage the power of the evolutionary ecology framework to identify the molecular interactions involved in ecological processes that result in evolutionary change. Using existing data, we outline how evolutionary ecology theory can delineate how interactions with other species and the physical environment create selective forces or impact migration of Borrelia populations and result in micro-evolutionary changes. We further discuss the ecological and molecular consequences of those micro-evolutionary changes. While many of the currently outstanding questions will necessitate new experimental designs and additional empirical data, many others can be addressed immediately by integrating existing molecular and ecological data within an evolutionary ecology framework.
Collapse
Affiliation(s)
| | - Zachary J Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Timing and order of exposure to two echinostome species affect patterns of infection in larval amphibians. Parasitology 2020; 147:1515-1523. [PMID: 32660661 DOI: 10.1017/s0031182020001092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of priority effects with respect to coinfections is still in its infancy. Moreover, existing coinfection studies typically focus on infection outcomes associated with exposure to distinct sets of parasite species, despite that functionally and morphologically similar parasite species commonly coexist in nature. Therefore, it is important to understand how interactions between similar parasites influence infection outcomes. Surveys at seven ponds in northwest Pennsylvania found that multiple species of echinostomes commonly co-occur. Using a larval anuran host (Rana pipiens) and the two most commonly identified echinostome species from our field surveys (Echinostoma trivolvis and Echinoparyphium lineage 3), we examined how species composition and timing of exposure affect patterns of infection. When tadpoles were exposed to both parasites simultaneously, infection loads were higher than when exposed to Echinoparyphium alone but similar to being exposed to Echinostoma alone. When tadpoles were sequentially exposed to the parasite species, tadpoles first exposed to Echinoparyphium had 23% lower infection loads than tadpoles first exposed to Echinostoma. These findings demonstrate that exposure timing and order, even with similar parasites, can influence coinfection outcomes, and emphasize the importance of using molecular methods to identify parasites for ecological studies.
Collapse
|
21
|
Majzoub ME, Beyersmann PG, Simon M, Thomas T, Brinkhoff T, Egan S. Phaeobacter inhibens controls bacterial community assembly on a marine diatom. FEMS Microbiol Ecol 2020; 95:5481521. [PMID: 31034047 DOI: 10.1093/femsec/fiz060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial communities can have an important influence on the function of their eukaryotic hosts. However, how microbiomes are formed and the influence that specific bacteria have in shaping these communities is not well understood. Here, we used the marine diatom Thalassiosira rotula and the algal associated bacterium Phaeobacter inhibens as a model system to explore these questions. We exposed axenic (bacterial-free) T. rotula cultures to bacterial communities from natural seawater in the presence or absence of P. inhibens strain 2.10 or a variant strain (designated NCV12a1) that lacks antibacterial activity. We found that after 2 days the bacterial communities that assembled on the host were distinct from the free-living communities and comprised predominately of members of the Proteobacteria, Bacteroidetes and Cyanobacteria. In the presence of P. inhibens a higher abundance of Alphaproteobacteria, Flavobacteriia and Verrucomicrobia was detected. We also found only minor differences between the communities that established in the presence of either the wild type or the variant P. inhibens strain, suggesting that the antibacterial activity of P. inhibens is not the primary cause of its influence on bacterial community assembly. This study highlights the dynamic nature of algal microbiome development and the strong influence individual bacterial strains can have on this process.
Collapse
Affiliation(s)
- Marwan E Majzoub
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, High street Randwick, NSW 2052, Australia
| | | | - Meinhard Simon
- Carl-von-Ossientzky- Strasse 9-11 Oldenburg, 26111, Germany
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, High street Randwick, NSW 2052, Australia
| | | | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, High street Randwick, NSW 2052, Australia
| |
Collapse
|
22
|
Barnes EM, Carter EL, Lewis JD. Predicting Microbiome Function Across Space Is Confounded by Strain-Level Differences and Functional Redundancy Across Taxa. Front Microbiol 2020; 11:101. [PMID: 32117131 PMCID: PMC7018939 DOI: 10.3389/fmicb.2020.00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
Variation in the microbiome among individual organisms may play a critical role in the relative susceptibility of those organisms to infection, disease, and death. However, predicting microbiome function is difficult because of spatial and temporal variation in microbial diversity, and taxonomic diversity is not predictive of microbiome functional diversity. Addressing this issue may be particularly important when addressing pandemic diseases, such as the global amphibian die-off associated with Bd. Some of the most important factors in probiotic development for disease treatment are whether bacteria with desired function can be found on native amphibians in the local environment. To address this issue, we isolated, sequenced, and assayed the cutaneous bacterial communities of Plethodon cinereus along a gradient of land use change. Our results suggest that cutaneous community composition, but not overall diversity, change with changes in land use, but this does not correspond to significant change in Bd-inhibitory function. We found that Bd-inhibition is a functionally redundant trait, but that level of inhibition varies over phylogenetic, spatial, and temporal scales. This research provides further evidence for the importance of continued examination of amphibian microbial communities across environmental gradients, including biotic and abiotic interactions, when considering disease dynamics.
Collapse
Affiliation(s)
- Elle M Barnes
- Department of Biological Sciences, Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, United States.,Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| | - Erin L Carter
- Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| | - J D Lewis
- Department of Biological Sciences, Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, United States.,Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| |
Collapse
|
23
|
Knutie SA. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13567] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
- Institute for Systems Genomics University of Connecticut Storrs CT USA
| |
Collapse
|
24
|
Maternal Antibodies Provide Bank Voles with Strain-Specific Protection against Infection by the Lyme Disease Pathogen. Appl Environ Microbiol 2019; 85:AEM.01887-19. [PMID: 31540991 DOI: 10.1128/aem.01887-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Multistrain microbial pathogens often induce strain-specific antibody responses in their vertebrate hosts. Mothers can transmit antibodies to their offspring, which can provide short-term, strain-specific protection against infection. Few experimental studies have investigated this phenomenon for multiple strains of zoonotic pathogens occurring in wildlife reservoir hosts. The tick-borne bacterium Borrelia afzelii causes Lyme disease in Europe and consists of multiple strains that cycle between the tick vector (Ixodes ricinus) and vertebrate hosts, such as the bank vole (Myodes glareolus). We used a controlled experiment to show that female bank voles infected with B. afzelii via tick bite transmit protective antibodies to their offspring. To test the specificity of protection, the offspring were challenged using a natural tick bite challenge with either the maternal strain to which the mothers had been exposed or a different strain. The maternal antibodies protected the offspring against a homologous infectious challenge but not against a heterologous infectious challenge. The offspring from the uninfected control mothers were equally susceptible to both strains. Borrelia outer surface protein C (OspC) is an antigen that is known to induce strain-specific immunity. Maternal antibodies in the offspring reacted more strongly with homologous than with heterologous recombinant OspC, but other antigens may also mediate strain-specific immunity. Our study shows that maternal antibodies provide strain-specific protection against B. afzelii in an ecologically important rodent reservoir host. The transmission of maternal antibodies may have important consequences for the epidemiology of multistrain pathogens in nature.IMPORTANCE Many microbial pathogen populations consist of multiple strains that induce strain-specific antibody responses in their vertebrate hosts. Females can transmit these antibodies to their offspring, thereby providing them with short-term strain-specific protection against microbial pathogens. We investigated this phenomenon using multiple strains of the tick-borne microbial pathogen Borrelia afzelii and its natural rodent reservoir host, the bank vole, as a model system. We found that female bank voles infected with B. afzelii transmitted to their offspring maternal antibodies that provided highly efficient but strain-specific protection against a natural tick bite challenge. The transgenerational transfer of antibodies could be a mechanism that maintains the high strain diversity of this tick-borne pathogen in nature.
Collapse
|
25
|
Bongrand C, Ruby EG. The impact of Vibrio fischeri strain variation on host colonization. Curr Opin Microbiol 2019; 50:15-19. [PMID: 31593868 DOI: 10.1016/j.mib.2019.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
Abstract
Strain-level epidemiology is a key approach to understanding the mechanisms underlying establishment of any host-microbe association. The squid-vibrio light organ symbiosis has proven to be an informative and tractable experimental model in which to discover these mechanisms because it involves only one bacterial species, Vibrio fischeri. In this horizontally transmitted symbiosis, the squid presents nutrients to the bacteria located in a bilobed light-emitting organ, while the symbionts provide bioluminescence to their host. To initiate this association, V. fischeri cells go through several distinct stages: from free-living in the bacterioplankton, to forming a multicellular aggregation near pores on the light organ's surface, to migrating through the pores and into crypts deep in the light organ, where the symbiont population grows and luminesces. Because individual cells must successfully navigate these distinct regions, phenotypic differences between strains will have a strong impact on the composition of the population finally colonizing the squid. Here we review recent advances in our understanding of behavioral characteristics that differentially drive a strain's success, including its effectiveness of aggregation, the rapidity with which it reaches the deep crypts, and its deployment of type VI secretion.
Collapse
|
26
|
Galen SC, Speer KA, Perkins SL. Evolutionary lability of host associations promotes phylogenetic overdispersion of co‐infecting blood parasites. J Anim Ecol 2019; 88:1936-1949. [DOI: 10.1111/1365-2656.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Spencer C. Galen
- Sackler Institute for Comparative Genomics, American Museum of Natural History New York NY USA
- Richard Gilder Graduate School American Museum of Natural History New York NY USA
| | - Kelly A. Speer
- Sackler Institute for Comparative Genomics, American Museum of Natural History New York NY USA
- Richard Gilder Graduate School American Museum of Natural History New York NY USA
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History New York NY USA
| |
Collapse
|
27
|
Olsen NMC, Røder HL, Russel J, Madsen JS, Sørensen SJ, Burmølle M. Priority of Early Colonizers but No Effect on Cohabitants in a Synergistic Biofilm Community. Front Microbiol 2019; 10:1949. [PMID: 31507562 PMCID: PMC6716445 DOI: 10.3389/fmicb.2019.01949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
The arrival order of different species to a habitat can strongly impact community assembly and succession dynamics, thus influencing functionality. In this study, we asked how prior colonization of one community member would influence the assembly of a synergistic multispecies biofilm community grown in vitro. We expected that the prior arrival would confer an advantage, in particular for good biofilm formers. Yet, we did not know if the cohabitants would be impaired or benefit from the pre-colonization of one member, depending on its ability to form biofilm. We used a consortium consisting of four soil bacteria; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. This consortium has been shown to act synergistically when grown together, thus increasing biofilm production. The results showed that the two good biofilm formers gained a fitness advantage (increase in abundance) when allowed prior colonization on an abiotic surface before the arrival of their cohabitants. Interestingly, the significantly higher number of the pre-colonized biofilm formers did not affect the resulting composition in the subsequent biofilm after 24 h.
Collapse
Affiliation(s)
| | | | | | | | | | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, McCulley RL, Borer ET. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 2019; 100:e02758. [PMID: 31306499 DOI: 10.1002/ecy.2758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
The microbes contained within free-living organisms can alter host growth, reproduction, and interactions with the environment. In turn, processes occurring at larger scales determine the local biotic and abiotic environment of each host that may affect the diversity and composition of the microbiome community. Here, we examine variation in the diversity and composition of the foliar fungal microbiome in the grass host, Andropogon gerardii, across four mesic prairies in the central United States. Composition of fungal endophyte communities differed among sites and among individuals within a site, but was not consistently affected by experimental manipulation of nutrient supply to hosts (A. gerardii) or herbivore reduction via fencing. In contrast, mean fungal diversity was similar among sites but was limited by total plant biomass at the plot scale. Our work demonstrates that distributed experiments motivated by ecological theory are a powerful tool to unravel the multiscale processes governing microbial community composition and diversity.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Bradford Condon
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Kimberly J Komatsu
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Candice Y Lumibao
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky, 40536-0312, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
29
|
Couper LI, Kwan JY, Ma J, Swei A. Drivers and patterns of microbial community assembly in a Lyme disease vector. Ecol Evol 2019; 9:7768-7779. [PMID: 31346439 PMCID: PMC6635933 DOI: 10.1002/ece3.5361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022] Open
Abstract
Vector-borne diseases constitute a major global health burden and are increasing in geographic range and prevalence. Mounting evidence has demonstrated that the vector microbiome can impact pathogen dynamics, making the microbiome a focal point in vector-borne disease ecology. However, efforts to generalize preliminary findings across studies and systems and translate these findings into disease control strategies are hindered by a lack of fundamental understanding of the processes shaping the vector microbiome and the interactions therein. Here, we use 16S rRNA sequencing and apply a community ecology framework to analyze microbiome community assembly and interactions in Ixodes pacificus, the Lyme disease vector in the western United States. We find that vertical transmission routes drive population-level patterns in I. pacificus microbial diversity and composition, but that microbial function and overall abundance do not vary over time or between clutches. Further, we find that the I. pacificus microbiome is not strongly structured based on competition but assembles nonrandomly, potentially due to vector-specific filtering processes which largely eliminate all but the dominant endosymbiont, Rickettsia. At the scale of the individual I. pacificus, we find support for a highly limited internal microbial community, and hypothesize that the tick endosymbiont may be the most important component of the vector microbiome in influencing pathogen dynamics.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of BiologyStanford UniversityStanfordCalifornia
| | - Jessica Y. Kwan
- Department of BiologySan Francisco State UniversitySan FranciscoCalifornia
| | - Joyce Ma
- Department of BiologySan Francisco State UniversitySan FranciscoCalifornia
| | - Andrea Swei
- Department of BiologySan Francisco State UniversitySan FranciscoCalifornia
| |
Collapse
|
30
|
Rudolf VHW. The role of seasonal timing and phenological shifts for species coexistence. Ecol Lett 2019; 22:1324-1338. [PMID: 31125170 DOI: 10.1111/ele.13277] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/10/2023]
Abstract
Shifts in the phenologies of coexistence species are altering the temporal structure of natural communities worldwide. However, predicting how these changes affect the structure and long-term dynamics of natural communities is challenging because phenology and coexistence theory have largely proceeded independently. Here, I propose a conceptual framework that incorporates seasonal timing of species interactions into a well-studied competition model to examine how changes in phenologies influence long-term dynamics of natural communities. Using this framework I demonstrate that persistence and coexistence conditions strongly depend on the difference in species' mean phenologies and how this difference varies across years. Consequently, shifts in mean and interannual variation in relative phenologies of species can fundamentally alter the outcome of interactions and the potential for persistence and coexistence of competing species. These effects can be predicted by how per-capita effects scale with differences in species' phenologies. I outline how this approach can be parameterized with empirical systems and discuss how it fits within the context of current coexistence theory. Overall, this synthesis reveals that phenology of species interactions can play a crucial yet currently understudied role in driving coexistence and biodiversity patterns in natural systems and determine how species will respond to future climate change.
Collapse
Affiliation(s)
- Volker H W Rudolf
- BioSciences, Program in Ecology & Evolutionary Biology, Rice University, Houston, TX, USA
| |
Collapse
|
31
|
Clay PA, Dhir K, Rudolf VHW, Duffy MA. Within-Host Priority Effects Systematically Alter Pathogen Coexistence. Am Nat 2019; 193:187-199. [DOI: 10.1086/701126] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Pinky L, González-Parra G, Dobrovolny HM. Superinfection and cell regeneration can lead to chronic viral coinfections. J Theor Biol 2019; 466:24-38. [PMID: 30639572 PMCID: PMC7094138 DOI: 10.1016/j.jtbi.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/14/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Clinical researchers have found that coinfection of the respiratory tract can cause distinct disease outcome, sometimes leading to long-lasting infection, compared to single viral infection. The impact of coinfections in human respiratory tract have not yet been evaluated in either theoretical or experimental studies on a large scale. A few experiments confirm that different respiratory viruses can infect the same cell (superinfection). Superinfection alone cannot cause long-lasting viral coinfections. The combined mechanism of superinfection and cell regeneration provides a plausible mechanism for chronic viral coinfections.
Molecular diagnostic techniques have revealed that approximately 43% of the patients hospitalized with influenza-like illness are infected by more than one viral pathogen, sometimes leading to long-lasting infections. It is not clear how the heterologous viruses interact within the respiratory tract of the infected host to lengthen the duration of what are usually short, self-limiting infections. We develop a mathematical model which allows for single cells to be infected simultaneously with two different respiratory viruses (superinfection) to investigate the possibility of chronic coinfections. We find that a model with superinfection and cell regeneration has a stable chronic coinfection fixed point, while superinfection without cell regeneration produces only acute infections. This analysis suggests that both superinfection and cell regeneration are required to sustain chronic coinfection via this mechanism since coinfection is maintained by superinfected cells that allow slow-growing infections a chance to infect cells and continue replicating. This model provides a possible mechanism for chronic coinfection independent of any viral interactions via the immune response.
Collapse
Affiliation(s)
- Lubna Pinky
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States.
| | - Gilberto González-Parra
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States; Department of Mathematics, New Mexico Tech, Socorro, NM, United States
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
33
|
Zee PC, Fukami T. Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc Biol Sci 2019; 285:rspb.2017.1722. [PMID: 29386363 DOI: 10.1098/rspb.2017.1722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/08/2018] [Indexed: 11/12/2022] Open
Abstract
Priority effects, or the effects of species arrival history on local species abundances, have been documented in a range of taxa. However, factors determining the extent to which priority effects affect community assembly remain unclear. Using laboratory populations of the bacterium Pseudomonas fluorescens, we examined whether shared evolutionary history affected the strength of priority effects. We hypothesized that sympatric evolution of populations belonging to the same guild would lead to niche differentiation, resulting in phenotypic complementarity that weakens priority effects. Consistent with this hypothesis, we found that priority effects tended to be weaker in sympatrically evolved pairs of immigrating populations than in allopatrically evolved pairs. Furthermore, priority effects were weaker under higher phenotypic complementarity. However, these patterns were observed only in populations with a relatively short history of sympatric evolution, and disappeared when populations had evolved together for a long time. Together, our results suggest that the evolutionary history of organismal traits may dictate the strength of priority effects and, consequently, the extent of historical contingency in the assembly of ecological communities.
Collapse
Affiliation(s)
- Peter C Zee
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Castledine M, Buckling A, Padfield D. A shared coevolutionary history does not alter the outcome of coalescence in experimental populations of Pseudomonas fluorescens. J Evol Biol 2019; 32:58-65. [PMID: 30346633 PMCID: PMC7379710 DOI: 10.1111/jeb.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Community coalescence, the mixing of multiple communities, is ubiquitous in natural microbial communities. During coalescence, theory suggests the success of a population will be enhanced by the presence of species it has coevolved with (relative to foreign species), because coevolution will result in greater resource specialization to minimize competition. Thus, more coevolved communities should dominate over less coevolved communities during coalescence events. We test these hypotheses using the bacterium Pseudomonas fluorescens which diversifies into coexisting niche-specialist morphotypes. We first evolved replicate populations for ~40 generations and then isolated evolved genotypes. In a series of competition trials, we determined if using coevolved versus random genotypes affected the relative performance of "communities" of single and multiple genotypes. We found no effect of coevolutionary history on either genotype fitness or community performance, which suggests parallel (co)evolution between communities. However, fitness was enhanced by the presence of other genotypes of the same strain type (wild-type or an isogenic strain with a LacZ marker; the inclusion of the latter necessary to distinguish genotypes during competition), indicative of local adaptation with respect to genetic background. Our results are the first to investigate the effect of (co)evolution on the outcome of coalescence and suggest that when input populations are functionally similar and added at equal mixing ratios, the outcome community may not be asymmetrically dominated by either input population.
Collapse
Affiliation(s)
- Meaghan Castledine
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynCornwallUK
| | - Angus Buckling
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynCornwallUK
| | - Daniel Padfield
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| |
Collapse
|
35
|
Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc Biol Sci 2018; 285:20181804. [PMID: 30381382 PMCID: PMC6235042 DOI: 10.1098/rspb.2018.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Andrea Gomez-Chamorro
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
36
|
Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME JOURNAL 2018; 13:698-706. [PMID: 30353039 DOI: 10.1038/s41396-018-0305-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023]
Abstract
Strain diversity, while now recognized as a key driver underlying partner dynamics in symbioses, is usually difficult to experimentally manipulate and image in hosts with complex microbiota. To address this problem, we have used the luminous marine bacterium Vibrio fischeri, which establishes a symbiosis within the crypts of the nascent light organ of the squid Euprymna scolopes. Competition assays in newly hatched juvenile squid have shown that symbiotic V. fischeri are either niche-sharing "S strains", which share the light organ when co-inoculated with other S strains, or niche-dominant "D strains", which are typically found alone in the light organ after a co-colonization. To understand this D strain advantage, we determined the minimum time that different V. fischeri strains needed to initiate colonization and used confocal microscopy to localize the symbionts along their infection track. Further, we determined whether symbiont-induced host morphogenic events also occurred earlier during a D strain colonization. We conclude that D strains colonized more quickly than S strains. Nevertheless, light-organ populations in field-caught adult squid often contain both D and S strains. We determined experimentally that this symbiont population heterogeneity might be achieved in nature by a serial encounter of different strains in the environment.
Collapse
|
37
|
Lima MS, Laport MS, Lorosa ES, Jurberg J, Dos Santos KRN, da Silva Neto MAC, Rachid CTCDC, Atella GC. Bacterial community composition in the salivary glands of triatomines (Hemiptera: Reduviidae). PLoS Negl Trop Dis 2018; 12:e0006739. [PMID: 30212460 PMCID: PMC6136693 DOI: 10.1371/journal.pntd.0006739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). In the last year, many studies of triatomine gut microbiota have outlined its potential role in modulating vector competence. However, little is known about the microbiota present in the salivary glands of triatomines. Bacterial composition of salivary glands in selected triatomine species was investigated, as well as environmental influences on the acquisition of bacterial communities. Methodology/Principal findings The diversity of the bacterial communities of 30 pairs of salivary glands of triatomines was studied by sequencing of the V1- V3 variable region of the 16S rRNA using the MiSeq platform (Illumina), and bacteria isolated from skin of three vertebrate hosts were identified based on 16S rRNA gene sequence analysis (targeting the V3–V5 region). In a comparative analysis of microbiota in the salivary glands of triatomine species, operational taxonomic units belonging to Arsenophonous appeared as dominant in Triatoma spp (74% of the total 16S coverage), while these units belonging to unclassified Enterobacteriaceae were dominant in the Rhodnius spp (57% of the total 16S coverage). Some intraspecific changes in the composition of the triatomine microbiota were observed, suggesting that some bacteria may have been acquired from the environment. Conclusions and significance Our study revealed the presence of a low-diversity microbiota associated to the salivary glands of the evaluated triatomines. The predominant bacteria genera are associated with triatomine genera and the bacteria can be acquired in the environment in which the insects reside. Further studies are necessary to determine the influence of bacterial communities on vector competence. Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). It is estimated that over 10 000 people die every year from clinical manifestations of Chagas disease, and more than 25 million people risk acquiring the disease per year. Vector control remains the most effective method to prevent infection. In previous studies, the microbiota affected vector competence, thereby highlighting its potential for vector control. In this study, we demonstrate the presence of cultivable and non-cultivable bacteria in the salivary glands of different species of triatomines. The predominant bacterial genera appear to be specific to certain triatomines, e.g., the operational taxonomic units belonging to Arsenophonus bacterial genus is associated with the Triatoma spp, while these units belonging to unclassified Enterobacteriaceae bacterial family are associated with the Rhodnius spp. The operational taxonomic units found in low relative abundance also varied between species of triatomines and their occurrence could be influenced by the environment in which insects reside as well as inter-bacterial modulation by species-specific manner.
Collapse
Affiliation(s)
- Michele Souza Lima
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Prof. Rogério Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Elias Seixas Lorosa
- Laboratório de Referência Nacional e Internacional de Triatomíneos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro-RJ, Brazil
| | - José Jurberg
- Laboratório de Referência Nacional e Internacional de Triatomíneos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro-RJ, Brazil
| | | | - Mário Alberto Cardoso da Silva Neto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | | | - Georgia Correa Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
38
|
Mechai S, Margos G, Feil EJ, Lindsay LR, Michel P, Kotchi SO, Ogden NH. Evidence for an effect of landscape connectivity on Borrelia burgdorferi sensu stricto dispersion in a zone of range expansion. Ticks Tick Borne Dis 2018; 9:1407-1415. [PMID: 30006200 DOI: 10.1016/j.ttbdis.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022]
Abstract
In North America, different strains of the Lyme disease-causing bacterium Borrelia burgdorferi sensu stricto cluster into phylogenetic groups that are associated with different levels of pathogenicity and, for some, specific rodent reservoir hosts. Here we explore whether landscape connectivity, by impacting host dispersal, influences B. burgdorferi s.s. spread patterns. This question is central to modelling spatial patterns of the spread of Lyme disease risk in the zone of northward range-expansion of B. burgdorferi s.s. in southeastern Canada where the study was conducted. We used multi-locus sequence typing (MLST) to characterise B. burgdorferi s.s. in positive ticks collected at 13 sites in southern Quebec, Canada during the early stages of B. burgdorferi s.s. invasion. We used mixed effects logistic regression to investigate whether landscape connectivity (probability of connectivity; PC) affected the probability that samples collected at different sites were of the same strain (MLST sequence type: ST). PC was calculated from a habitat map based on high spatial resolution (15 m) Landsat 8 imagery to identify woodland habitat that are preferred by rodent hosts of B. burgdorferi s.s. There was a significant positive association between the likelihood that two samples were of the same ST and PC, when PC values were grouped into three categories of low, medium and high. When analysing data for individual STs, samples at different sites were significantly more likely to be the same when PC was higher for the rodent-associated ST1. These findings support the hypothesis that dispersion trajectories of B. burgdorferi s.s. in general, and some rodent-associated strains in particular, are at least partly determined by landscape connectivity. This may suggest that dispersion of B. burgdorferi s.s. is more common by terrestrial mammal hosts (which would likely disperse according to landscape connectivity) than by birds, the dispersal of which is likely less constrained by landscape. This study suggests that accounting for landscape connectivity may improve model-based predictions of spatial spread patterns of B. burgdorferi s.s. The findings are consistent with possible past dispersal patterns of B. burgdorferi s.s. as determined by phylogeographic studies.
Collapse
Affiliation(s)
- Samir Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Gabriele Margos
- Ludwig Maximilians Universität München, Department for Infectious Diseases and Zoonoses, Munich, Germany; National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Pascal Michel
- Office of the Chief Science Officer, Public Health Agency of Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Serge Olivier Kotchi
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nick H Ogden
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
39
|
Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol 2018; 15:197-205. [PMID: 29362469 PMCID: PMC6813786 DOI: 10.1038/nrgastro.2017.173] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how microbial communities develop is essential for predicting and directing their future states. Ecological theory suggests that community development is often influenced by priority effects, in which the order and timing of species arrival determine how species affect one another. Priority effects can have long-lasting consequences, particularly if species arrival history varies during the early stage of community development, but their importance to the human gut microbiota and host health remains largely unknown. Here, we explore how priority effects might influence microbial communities in the gastrointestinal tract during early childhood and how the strength of priority effects can be estimated from the composition of the microbial species pool. We also discuss factors that alter microbial transmission, such as delivery mode, diet and parenting behaviours such as breastfeeding, which can influence the likelihood of priority effects. An improved knowledge of priority effects has the potential to inform microorganism-based therapies, such as prebiotics and probiotics, which are aimed at guiding the microbiota towards a healthy state.
Collapse
Affiliation(s)
- Daniel Sprockett
- Department of Microbiology and Immunology, Stanford University School ofMedicine, 291 Campus Drive, Stanford, California 94305, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, California 94305, USA
| | - David A Relman
- Department of Microbiology and Immunology, Stanford University School ofMedicine, 291 Campus Drive, Stanford, California 94305, USA
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, California 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA
| |
Collapse
|
40
|
Wein T, Dagan T, Fraune S, Bosch TCG, Reusch TBH, Hülter NF. Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat. Front Microbiol 2018; 9:443. [PMID: 29593687 PMCID: PMC5861309 DOI: 10.3389/fmicb.2018.00443] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 01/29/2023] Open
Abstract
Most eukaryotic species are colonized by a microbial community – the microbiota – that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host. We established the freshwater polyp Hydra vulgaris and its dominant colonizer Curvibacter as a model system that enables the visualization and quantification of colonizer population size at the single cell resolution, in vivo, in real time. We estimate the carrying capacity of a single Hydra polyp as 2 × 105Curvibacter cells, which is robust among individuals and time. Colonization experiments reveal a clear priority effect of first colonizers that depends on arrival time and colonization history. First arriving colonizers achieve a numerical advantage over secondary colonizers within a short time lag of 24 h. Furthermore, colonizers primed for the Hydra habitat achieve a numerical advantage in the absence of a time lag. These results follow the theoretical expectations for any bacterial habitat with a finite carrying capacity. Thus, Hydra colonization and succession processes are largely determined by the habitat occupancy over time and Curvibacter colonization history. Our experiments provide empirical data on the basic steps of host-associated microbiota establishment – the colonization stage. The presented approach supplies a framework for studying habitat characteristics and colonization dynamics within the host–microbe setting.
Collapse
Affiliation(s)
- Tanita Wein
- Institute of Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Sebastian Fraune
- Institute of Zoology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas C G Bosch
- Institute of Zoology, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Nils F Hülter
- Institute of Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
41
|
Abstract
Persistent genetic variation within populations presents an evolutionary problem, as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the maintenance of genetic variation observed in natural populations. Negative frequency-dependent selection is a powerful type of balancing selection that maintains many natural polymorphisms, but it is also commonly misinterpreted. This review aims to clarify the processes underlying negative frequency-dependent selection, describe classes of polymorphisms that can and cannot result from these processes, and discuss the empirical data needed to accurately identify processes that generate or maintain diversity in nature. Finally, the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress is considered.
Collapse
Affiliation(s)
- Dustin Brisson
- Biology Department, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
42
|
Budischak SA, Wiria AE, Hamid F, Wammes LJ, Kaisar MMM, van Lieshout L, Sartono E, Supali T, Yazdanbakhsh M, Graham AL. Competing for blood: the ecology of parasite resource competition in human malaria-helminth co-infections. Ecol Lett 2018; 21:536-545. [DOI: 10.1111/ele.12919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/14/2017] [Accepted: 01/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Sarah A. Budischak
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Aprilianto E. Wiria
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Parasitology; Faculty of Medicine; Universitas Indonesia; Jakarta Indonesia
| | - Firdaus Hamid
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Microbiology; Faculty of Medicine; Hasanuddin University; Makassar Indonesia
| | - Linda J. Wammes
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Medical Microbiology; Erasmus MC; Rotterdam The Netherlands
| | - Maria M. M. Kaisar
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Parasitology; Faculty of Medicine; Universitas Indonesia; Jakarta Indonesia
| | - Lisette van Lieshout
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Erliyani Sartono
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Taniawati Supali
- Department of Parasitology; Faculty of Medicine; Universitas Indonesia; Jakarta Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| |
Collapse
|
43
|
Wang Y, Rozen DE. Gut microbiota in the burying beetle, Nicrophorus vespilloides, provide colonization resistance against larval bacterial pathogens. Ecol Evol 2018; 8:1646-1654. [PMID: 29435240 PMCID: PMC5792511 DOI: 10.1002/ece3.3589] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Carrion beetles, Nicrophorus vespilloides, are reared on decomposing carrion where larvae are exposed to high populations of carcass-derived bacteria. Larvae do not become colonized with these bacteria but instead are colonized with the gut microbiome of their parents, suggesting that bacteria in the beetle microbiome outcompete the carcass-derived species for larval colonization. Here, we test this hypothesis and quantify the fitness consequences of colonization with different bacterial symbionts. First, we show that beetles colonized by their endogenous microbiome produce heavier broods than those colonized with carcass-bacteria. Next, we show that bacteria from the endogenous microbiome, including Providencia rettgeri and Morganella morganii, are better colonizers of the beetle gut and can outcompete nonendogenous species, including Serratia marcescens and Escherichia coli, during in vivo competition. Finally, we find that Providencia and Morganella provide beetles with colonization resistance against Serratia and thereby reduce Serratia-induced larval mortality. This effect is eliminated in larvae first colonized by Serratia, suggesting that while competition within the larval gut is determined by priority effects, these effects are less important for Serratia-induced mortality. Our work suggests that an unappreciated benefit of parental care in N. vespilloides is the social transmission of the microbiome from parents to offspring.
Collapse
Affiliation(s)
- Yin Wang
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
44
|
Dhami MK, Hartwig T, Fukami T. Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci 2017; 283:rspb.2016.1455. [PMID: 27708148 DOI: 10.1098/rspb.2016.1455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023] Open
Abstract
Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects.
Collapse
Affiliation(s)
- Manpreet K Dhami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Toju H, Vannette RL, Gauthier MPL, Dhami MK, Fukami T. Priority effects can persist across floral generations in nectar microbial metacommunities. OIKOS 2017. [DOI: 10.1111/oik.04243] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hirokazu Toju
- Dept of Biology; Stanford Univ.; Stanford CA 94305-5020 USA
- Center for Ecological Research, Kyoto Univ.; Otsu Shiga Japan
| | - Rachel L. Vannette
- Dept of Biology; Stanford Univ.; Stanford CA 94305-5020 USA
- Dept of Entomology and Nematology; Univ. of California Davis; Davis CA USA
| | - Marie-Pierre L. Gauthier
- Dept of Biology; Stanford Univ.; Stanford CA 94305-5020 USA
- Dept of Biochemistry and Molecular Biology; Univ. of Florida; Gainesville FL USA
| | | | - Tadashi Fukami
- Dept of Biology; Stanford Univ.; Stanford CA 94305-5020 USA
| |
Collapse
|
46
|
Stone BL, Tourand Y, Brissette CA. Brave New Worlds: The Expanding Universe of Lyme Disease. Vector Borne Zoonotic Dis 2017; 17:619-629. [PMID: 28727515 DOI: 10.1089/vbz.2017.2127] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Projections around the globe suggest an increase in tick-vectored disease incidence and distribution, and the potential for emergence of novel tick-borne pathogens. Lyme disease is the most common reported tick-borne illness in the Unites States and is prevalent throughout much of central Europe. In recent years, the worldwide burden of Lyme disease has increased and extended into regions and countries where the disease was not previously reported. In this review, we discuss the trends for increasing Lyme disease, and examine the factors driving Lyme disease expansion, including the effect of climate change on the spread of vector Ixodid ticks and reservoir hosts; and the impacts of increased awareness on disease reporting and diagnosis. To understand the growing threat of Lyme disease, we need to study the interplay between vector, reservoir, and pathogen. In addition, we need to understand the contributions of climate conditions to changes in disease risk.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota
| | - Yvonne Tourand
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota
| |
Collapse
|
47
|
Wang Y, Rozen DE. Gut Microbiota Colonization and Transmission in the Burying Beetle Nicrophorus vespilloides throughout Development. Appl Environ Microbiol 2017; 83:e03250-16. [PMID: 28213538 PMCID: PMC5394326 DOI: 10.1128/aem.03250-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Carrion beetles in the genus Nicrophorus rear their offspring on decomposing carcasses where larvae are exposed to a diverse community of decomposer bacteria. Parents coat the carcass with antimicrobial secretions prior to egg hatch (defined as prehatch care) and also feed regurgitated food, and potentially bacteria, to larvae throughout development (defined as full care). Here, we partition the roles of prehatch and posthatch parental care in the transmission and persistence of culturable symbiotic bacteria to larvae. Using three treatment groups (full care, prehatch care only, and no care), we found that larvae receiving full care are predominantly colonized by bacteria resident in the maternal gut while larvae receiving no care are colonized with bacteria from the carcass. More importantly, larvae receiving only prehatch care were also predominantly colonized by maternal bacteria; this result indicates that parental treatment of the carcass, including application of bacteria to the carcass surface, is sufficient to ensure symbiont transfer even in the absence of direct larval feeding. Later in development, we found striking evidence that pupae undergo an aposymbiotic stage, after which they are recolonized at eclosion with bacteria similar to those found on the molted larval cuticle and on the wall of the pupal chamber. Our results clarify the importance of prehatch parental care for symbiont transmission in Nicrophorus vespilloides and suggest that these bacteria successfully outcompete decomposer bacteria during larval and pupal gut colonization.IMPORTANCE Here, we examine the origin and persistence of the culturable gut microbiota of larvae in the burying beetle Nicrophorus vespilloides This insect is particularly interesting for this study because larvae are reared on decomposing vertebrate carcasses, where they are exposed to high densities of carrion-decomposing microbes. Larvae also receive extensive parental care in the form of carcass preservation and direct larval feeding. We find that parents transmit their gut bacteria to larvae both directly, through regurgitation, and indirectly via their effects on the carcass. In addition, we find that larvae become aposymbiotic during pupation but are recolonized apparently from bacteria shed onto the insect cuticle before adult eclosion. Our results highlight the diverse interactions between insect behavior and development on microbiota composition. They further suggest that competitive interactions mediate the bacterial composition of Nicrophorus larvae together with or apart from the influence of beetle immunity, suggesting that the bacterial communities of these insects may be highly coevolved with those of their host species.
Collapse
Affiliation(s)
- Yin Wang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
48
|
Tiveron MG, Pomerantzeff PMA, de Lourdes Higuchi M, Reis MM, de Jesus Pereira J, Kawakami JT, Ikegami RN, de Almeida Brandao CM, Jatene FB. Infectious agents is a risk factor for myxomatous mitral valve degeneration: A case control study. BMC Infect Dis 2017; 17:297. [PMID: 28431520 PMCID: PMC5399830 DOI: 10.1186/s12879-017-2387-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The etiology of myxomatous mitral valve degeneration (MVD) is not fully understood and may depend on time or environmental factors for which the interaction of infectious agents has not been documented. The purpose of the study is to analyze the effect of Mycoplasma pneumoniae (Mp), Chlamydophila pneumoniae (Cp) and Borrelia burgdorferi (Bb) on myxomatous mitral valve degeneration pathogenesis and establish whether increased in inflammation and collagen degradation in myxomatous mitral valve degeneration etiopathogenesis. METHODS An immunohistochemical test was performed to detect the inflammatory cells (CD20, CD45, CD68) and Mp, Bb and MMP9 antigens in two groups. The in situ hybridization was performed to detect Chlamydophila pneumoniae and the bacteria study was performed using transmission electron microscopy. Group 1 (n = 20), surgical specimen composed by myxomatous mitral valve degeneration, and group 2 (n = 20), autopsy specimen composed by normal mitral valve. The data were analyzed using SigmaStat version 20 (SPSS Inc., Chicago, IL, USA). The groups were compared using Student's t test, Mann-Whitney test. A correlation analysis was performed using Spearman's correlation test. P values lower than 0.05 were considered statistically significant. RESULTS By immunohistochemistry, there was a higher inflammatory cells/mm2 for CD20 and CD45 in group 1, and CD68 in group 2. Higher number of Mp and Cp antigens was observed in group 1 and more Bb antigens was detected in group 2. The group 1 exhibited a positive correlation between the Bb and MVD percentage, between CD45 and Mp, and between MMP9 with Mp. These correlations were not observed in the group 2. Electron microscopy revealed the presence of structures compatible with microorganisms that feature Borrelia and Mycoplasma characteristics. CONCLUSIONS The presence of infectious agents, inflammatory cells and collagenases in mitral valves appear to contribute to the pathogenesis of MVD. Mycoplasma pneumoniae was strongly related with myxomatous mitral valve degeneration. Despite of low percentage of Borrelia burgdorferi in MD group, this agent was correlated with myxomatous degeneration and this may occour due synergistic actions between these infectious agents likely contribute to collagen degradation.
Collapse
Affiliation(s)
- Marcos Gradim Tiveron
- Program in Thoracic and Cardiovascular Surgery, Medical School, University of Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Sao Paulo, 05403-900, Sao Paulo, Brazil.
| | | | - Maria de Lourdes Higuchi
- Heart Institute of the Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcia Martins Reis
- Heart Institute of the Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Joyce Tieko Kawakami
- Heart Institute of the Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Nishiyama Ikegami
- Heart Institute of the Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Fabio Biscegli Jatene
- Heart Institute of the Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Rynkiewicz EC, Brown J, Tufts DM, Huang CI, Kampen H, Bent SJ, Fish D, Diuk-Wasser MA. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasit Vectors 2017; 10:64. [PMID: 28166814 PMCID: PMC5292797 DOI: 10.1186/s13071-016-1964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. Methods In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Results Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. Conclusions This asymmetric competitive interaction suggests that strain identity and the biotic context of co-infection is important to predict strain dynamics and persistence. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1964-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Julia Brown
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Ching-I Huang
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Germany
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Durland Fish
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
50
|
Durand J, Herrmann C, Genné D, Sarr A, Gern L, Voordouw MJ. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector. Appl Environ Microbiol 2017; 83:e02552-16. [PMID: 27836839 PMCID: PMC5244308 DOI: 10.1128/aem.02552-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Coralie Herrmann
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|