1
|
Marcos-Fernández R, Sánchez B, Ruiz L, Margolles A. Convergence of flow cytometry and bacteriology. Current and future applications: a focus on food and clinical microbiology. Crit Rev Microbiol 2023; 49:556-577. [PMID: 35749433 DOI: 10.1080/1040841x.2022.2086035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Since its development in the 1960s, flow cytometry (FCM) was quickly revealed a powerful tool to analyse cell populations in medical studies, yet, for many years, was almost exclusively used to analyse eukaryotic cells. Instrument and methodological limitations to distinguish genuine bacterial signals from the background, among other limitations, have hampered FCM applications in bacteriology. In recent years, thanks to the continuous development of FCM instruments and methods with a higher discriminatory capacity to detect low-size particles, FCM has emerged as an appealing technique to advance the study of microbes, with important applications in research, clinical and industrial settings. The capacity to rapidly enumerate and classify individual bacterial cells based on viability facilitates the monitoring of bacterial presence in foodstuffs or clinical samples, reducing the time needed to detect contamination or infectious processes. Besides, FCM has stood out as a valuable tool to advance the study of complex microbial communities, or microbiomes, that are very relevant in the context of human health, as well as to understand the interaction of bacterial and host cells. This review highlights current developments in, and future applications of, FCM in bacteriology, with a focus on those related to food and clinical microbiology.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
2
|
Brewer RC, Lanz TV, Hale CR, Sepich-Poore GD, Martino C, Swafford AD, Carroll TS, Kongpachith S, Blum LK, Elliott SE, Blachere NE, Parveen S, Fak J, Yao V, Troyanskaya O, Frank MO, Bloom MS, Jahanbani S, Gomez AM, Iyer R, Ramadoss NS, Sharpe O, Chandrasekaran S, Kelmenson LB, Wang Q, Wong H, Torres HL, Wiesen M, Graves DT, Deane KD, Holers VM, Knight R, Darnell RB, Robinson WH, Orange DE. Oral mucosal breaks trigger anti-citrullinated bacterial and human protein antibody responses in rheumatoid arthritis. Sci Transl Med 2023; 15:eabq8476. [PMID: 36812347 PMCID: PMC10496947 DOI: 10.1126/scitranslmed.abq8476] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Periodontal disease is more common in individuals with rheumatoid arthritis (RA) who have detectable anti-citrullinated protein antibodies (ACPAs), implicating oral mucosal inflammation in RA pathogenesis. Here, we performed paired analysis of human and bacterial transcriptomics in longitudinal blood samples from RA patients. We found that patients with RA and periodontal disease experienced repeated oral bacteremias associated with transcriptional signatures of ISG15+HLADRhi and CD48highS100A2pos monocytes, recently identified in inflamed RA synovia and blood of those with RA flares. The oral bacteria observed transiently in blood were broadly citrullinated in the mouth, and their in situ citrullinated epitopes were targeted by extensively somatically hypermutated ACPAs encoded by RA blood plasmablasts. Together, these results suggest that (i) periodontal disease results in repeated breaches of the oral mucosa that release citrullinated oral bacteria into circulation, which (ii) activate inflammatory monocyte subsets that are observed in inflamed RA synovia and blood of RA patients with flares and (iii) activate ACPA B cells, thereby promoting affinity maturation and epitope spreading to citrullinated human antigens.
Collapse
Affiliation(s)
- R. Camille Brewer
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Caryn R. Hale
- Rockefeller University, New York City, NY 10065, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Austin D. Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Thomas S. Carroll
- Bioinformatics Resource Center, Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lisa K. Blum
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Serra E. Elliott
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Nathalie E. Blachere
- Rockefeller University, New York City, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - John Fak
- Rockefeller University, New York City, NY 10065, USA
| | - Vicky Yao
- Department of Computer Science, Rice University, Houston, TX 77005, USA
- Department of Computer Science, Princeton University, Princeton, NJ, 08544, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Mayu O. Frank
- Rockefeller University, New York City, NY 10065, USA
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Alejandro M. Gomez
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Radhika Iyer
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Nitya S. Ramadoss
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | | | - Lindsay B. Kelmenson
- Division of Rheumatology, University of Colorado - Denver, Aurora, CO, 80045, USA
| | - Qian Wang
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Heidi Wong
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | | | - Mark Wiesen
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin D. Deane
- Division of Rheumatology, University of Colorado - Denver, Aurora, CO, 80045, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado - Denver, Aurora, CO, 80045, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Robert B. Darnell
- Rockefeller University, New York City, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Dana E. Orange
- Rockefeller University, New York City, NY 10065, USA
- Hospital for Special Surgery, New York City, NY 10075, USA
| |
Collapse
|
3
|
Novel antibody assessment method for microbial compositional alteration in the oral cavity. Biochem Biophys Rep 2022; 30:101269. [PMID: 35518198 PMCID: PMC9065711 DOI: 10.1016/j.bbrep.2022.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, it has been demonstrated that dysbiosis, an alteration in commensal microflora composition, is intimately involved in the onset of a variety of diseases. It is becoming increasingly evident that the composition of commensal microflora in the oral cavity is closely connected to oral diseases, such as periodontal disease, and systemic diseases, such as inflammatory bowel disease. Next-generation sequencing techniques are used as a method to examine changes in bacterial flora, but additional analytical methods to assess bacterial flora are needed to understand bacterial activity in more detail. In addition, the oral environment is unique because of the role of secretory antibodies contained in saliva in the formation of bacterial flora. The present study aimed to develop a new method for evaluating the compositional change of microbiota using flow cytometry (FCM) with specific antibodies against the bacterial surface antigen, as well as salivary antibodies. Using specific antibodies against Streptococcus mutans, a causative agent of dental caries, and human IgA, bacterial samples from human saliva were analyzed via FCM. The results showed that different profiles could be obtained depending on the oral hygiene status of the subjects. These results suggest that changes in the amount and type of antibodies that bind to oral bacteria may be an indicator for evaluating abnormalities in the oral flora. Therefore, the protocol established in this report could be applied as an evaluation method for alterations in the oral microbiota. We aimed to develop a new method for evaluating dysbiosis using flow cytometry. We used bacterial surface antigen-specific antibodies and salivary antibodies. Different profiles could be obtained depending on oral hygiene status. Changes in antibodies bound to oral bacteria may indicate oral flora abnormalities. Our method can be used to evaluate alterations in the oral microbiota.
Collapse
|
4
|
Maccio-Maretto L, Piqueras V, Barrios BE, Romagnoli PA, Denning TL, Correa SG. Luminal bacteria coated with IgA and IgG during intestinal inflammation as a new and abundant stimulus for colonic macrophages. Immunology 2022; 167:64-76. [PMID: 35689599 DOI: 10.1111/imm.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
In the gut, secretory immunoglobulin A is the predominant humoral response against commensals, although healthy hosts also produce microbiota-specific IgG antibodies. During intestinal inflammation, the content of IgG in the lumen increases along with the proportion of commensal bacteria coated with this antibody, suggesting signalling through the IgG-CD64 axis in the pathogenesis of inflammatory bowel diseases. In this work, we evaluated day by day the frequency of faecal bacteria coated with IgA and IgG during the development of DSS colitis. We studied the phenotype and phagocytic activity of F4/80+ CD64+ colonic macrophages, as well as the production of cytokines and nitric oxide by lamina propria or bone marrow-derived macrophages after stimulation with IgA+ , IgG+ and IgA+ IgG+ bacteria. We found that the percentage of faecal IgA+ IgG+ double-coated bacteria increased rapidly during DSS colitis. Also, analysis of the luminal content of mice with colitis showed a markedly superior ability to coat fresh bacteria. IgA+ IgG+ bacteria were the most potent stimulus for phagocytic activity involving CD64 and Dectin-1 receptors. IgA+ IgG+ bacteria observed during the development of DSS colitis could represent a new marker to monitor permeability and inflammatory progression. The interaction of IgA+ IgG+ bacteria with CD64+ F4/80+ macrophages could be part of the complex cascade of events in colitis. Interestingly, after stimulation, CD64+ colonic macrophages showed features similar to those of restorative macrophages that are relevant for tissue repair and healing.
Collapse
Affiliation(s)
- Lisa Maccio-Maretto
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia Piqueras
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo A Romagnoli
- Centro de Investigation en Medicina Traslacional Severo Amuchastegui - (CIMETSA) - Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Silvia G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
van de Velde CC, Joseph C, Biclot A, Huys GRB, Pinheiro VB, Bernaerts K, Raes J, Faust K. Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME COMMUNICATIONS 2022; 2:40. [PMID: 37938658 PMCID: PMC9723706 DOI: 10.1038/s43705-022-00123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 09/07/2023]
Abstract
A bottleneck for microbial community experiments with many samples and/or replicates is the fast quantification of individual taxon abundances, which is commonly achieved through sequencing marker genes such as the 16S rRNA gene. Here, we propose a new approach for high-throughput and high-quality enumeration of human gut bacteria in a defined community, combining flow cytometry and supervised classification to identify and quantify species mixed in silico and in defined communities in vitro. We identified species in a 5-species in silico community with an F1 score of 71%. In addition, we demonstrate in vitro that our method performs equally well or better than 16S rRNA gene sequencing in two-species cocultures and agrees with 16S rRNA gene sequencing data on the most abundant species in a four-species community. We found that shape and size differences alone are insufficient to distinguish species, and that it is thus necessary to exploit the multivariate nature of flow cytometry data. Finally, we observed that variability of flow cytometry data across replicates differs between gut bacterial species. In conclusion, the performance of supervised classification of gut species in flow cytometry data is species-dependent, but is for some combinations accurate enough to serve as a faster alternative to 16S rRNA gene sequencing.
Collapse
Affiliation(s)
- Charlotte C van de Velde
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Clémence Joseph
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Anaïs Biclot
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Geert R B Huys
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Vitor B Pinheiro
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, B-3000, Leuven, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), B-3001, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Simon-Soro A, Ren Z, Krom BP, Hoogenkamp MA, Cabello-Yeves PJ, Daniel SG, Bittinger K, Tomas I, Koo H, Mira A. Polymicrobial Aggregates in Human Saliva Build the Oral Biofilm. mBio 2022; 13:e0013122. [PMID: 35189700 PMCID: PMC8903893 DOI: 10.1128/mbio.00131-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Biofilm community development has been established as a sequential process starting from the attachment of single cells on a surface. However, microorganisms are often found as aggregates in the environment and in biological fluids. Here, we conduct a comprehensive analysis of the native structure and composition of aggregated microbial assemblages in human saliva and investigate their spatiotemporal attachment and biofilm community development. Using multiscale imaging, cell sorting, and computational approaches combined with sequencing analysis, a diverse mixture of aggregates varying in size, structure, and microbial composition, including bacteria associated with host epithelial cells, can be found in saliva in addition to a few single-cell forms. Phylogenetic analysis reveals a mixture of complex consortia of aerobes and anaerobes in which bacteria traditionally considered early and late colonizers are found mixed together. When individually tracked during colonization and biofilm initiation, aggregates rapidly proliferate and expand tridimensionally, modulating population growth, spatial organization, and community scaffolding. In contrast, most single cells remain static or are incorporated by actively growing aggregates. These results suggest an alternative biofilm development process whereby aggregates containing different species or associated with human cells collectively adhere to the surface as "growth nuclei" to build the biofilm and shape polymicrobial communities at various spatial and taxonomic scales. IMPORTANCE Microbes in biological fluids can be found as aggregates. How these multicellular structures bind to surfaces and initiate the biofilm life cycle remains understudied. Here, we investigate the structural organization of microbial aggregates in human saliva and their role in biofilm formation. We found diverse mixtures of aggregates with different sizes, structures, and compositions in addition to free-living cells. When individually tracked during binding and growth on tooth-like surfaces, most aggregates developed into structured biofilm communities, whereas most single cells remained static or were engulfed by the growing aggregates. Our results reveal that preformed microbial consortia adhere as "buds of growth," governing biofilm initiation without specific taxonomic order or cell-by-cell succession, which provide new insights into spatial and population heterogeneity development in complex ecosystems.
Collapse
Affiliation(s)
- Aurea Simon-Soro
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Zhi Ren
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michel A. Hoogenkamp
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Inmaculada Tomas
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Hyun Koo
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex Mira
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
7
|
Angarita-Díaz MP, Simon-Soro A, Forero D, Balcázar F, Sarmiento L, Romero E, Mira A. Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age. J Oral Microbiol 2021; 13:1956219. [PMID: 34434531 PMCID: PMC8381948 DOI: 10.1080/20002297.2021.1956219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Electrolytes, proteins, and other salivary molecules play an important role in tooth integrity and can serve as biomarkers associated with caries. Objective: To determine the concentration of potential biomarkers in children without caries (CF) and children with caries (CA). Methods: Unstimulated saliva was collected, and the biomarkers quantified in duplicate, using commercial Enzyme Linked Immunosorbent Assay (ELISA) kits to determine IgA, fibronectin, cathelicidin LL-37, and statherin levels, as well as colorimetric tests to detect formate and phosphate. Results: Significantly higher concentrations of statherin was detected in the CF group (Median: 94,734.6; IQR: 92,934.6-95,113.7) compared to the CA2 group (90,875.0; IQR: 83,580.2-94,633.4) (p = 0.03). Slightly higher median IgA (48,250.0; IQR: 31,461.9-67,418.8) and LL-37 levels (56.1; IQR 43.6-116.2) and a lower concentration of formate were detected in the CF group (0.02; IQR 0.0034-0.15) compared to the group with caries (IgA: 37,776.42; IQR: 33,383.9-44,128.5; LL-37: 46.3; IQR: 40.1011-67.7; formate: 0.10; IQR: 0.01-0.18), but these differences were not statistically significant. Conclusion: The fact that these compounds have been identified as good markers for caries among European adults highlights the difficulty of identifying universal biomarkers that are applicable to all ages or to different populations.
Collapse
Affiliation(s)
- María P Angarita-Díaz
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Aurea Simon-Soro
- Department of Health and Genomics, Foundation for the Promotion of Health and Biomedical Research, Valencia, Spain
| | - Diana Forero
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Felipe Balcázar
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Luisa Sarmiento
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Erika Romero
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Alex Mira
- Department of Health and Genomics, Foundation for the Promotion of Health and Biomedical Research, Valencia, Spain
- Centre for Oral Health, School of Health and Welfare, Jönköping University, Sweden
| |
Collapse
|
8
|
Abstract
IgA mediates microbial homeostasis at the intestinal mucosa. Within the gut, IgA acts in a context-dependent manner to both prevent and promote bacterial colonization and to influence bacterial gene expression, thus providing exquisite control of the microbiota. IgA-microbiota interactions are highly diverse across individuals and populations, yet the factors driving this variation remain poorly understood. In this Review, we summarize evidence for the host, bacterial and environmental factors that influence IgA-microbiota interactions. Recent advances have helped to clarify the antigenic specificity and immune selection of intestinal IgA and have highlighted the importance of microbial glycan recognition. Furthermore, emerging evidence suggests that diet and nutrition play an important role in shaping IgA recognition of the microbiota. IgA-microbiota interactions are disrupted during both overnutrition and undernutrition and may be altered dynamically in response to diet, with potential implications for host health. We situate this research in the context of outstanding questions and future directions in order to better understand the fascinating paradigm of IgA-microbiota homeostasis.
Collapse
|
9
|
Quantifying Live Microbial Load in Human Saliva Samples over Time Reveals Stable Composition and Dynamic Load. mSystems 2021; 6:6/1/e01182-20. [PMID: 33594005 PMCID: PMC8561659 DOI: 10.1128/msystems.01182-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evaluating microbial community composition through next-generation sequencing has become increasingly accessible. However, metagenomic sequencing data sets provide researchers with only a snapshot of a dynamic ecosystem and do not provide information about the total microbial number, or load, of a sample. Additionally, DNA can be detected long after a microorganism is dead, making it unsafe to assume that all microbial sequences detected in a community came from living organisms. By combining relic DNA removal by propidium monoazide (PMA) with microbial quantification with flow cytometry, we present a novel workflow to quantify live microbial load in parallel with metagenomic sequencing. We applied this method to unstimulated saliva samples, which can easily be collected longitudinally and standardized by passive collection time. We found that the number of live microorganisms detected in saliva was inversely correlated with salivary flow rate and fluctuated by an order of magnitude throughout the day in healthy individuals. In an acute perturbation experiment, alcohol-free mouthwash resulted in a massive decrease in live bacteria, which would have been missed if we did not consider dead cell signal. While removing relic DNA from saliva samples did not greatly impact the microbial composition, it did increase our resolution among samples collected over time. These results provide novel insight into the dynamic nature of host-associated microbiomes and underline the importance of applying scale-invariant tools in the analysis of next-generation sequencing data sets. IMPORTANCE Human microbiomes are dynamic ecosystems often composed of hundreds of unique microbial taxa. To detect fluctuations over time in the human oral microbiome, we developed a novel workflow to quantify live microbial cells with flow cytometry in parallel with next-generation sequencing, and applied this method to over 150 unstimulated, timed saliva samples. Microbial load was inversely correlated with salivary flow rate and fluctuated by an order of magnitude within a single participant throughout the day. Removing relic DNA improved our ability to distinguish samples over time and revealed that the percentage of sequenced bacteria in a given saliva sample that are alive can range from nearly 0% up to 100% throughout a typical day. These findings highlight the dynamic ecosystem of the human oral microbiome and the benefit of removing relic DNA signals in longitudinal microbiome study designs.
Collapse
|
10
|
Jackson MA, Pearson C, Ilott NE, Huus KE, Hegazy AN, Webber J, Finlay BB, Macpherson AJ, Powrie F, Lam LH. Accurate identification and quantification of commensal microbiota bound by host immunoglobulins. MICROBIOME 2021; 9:33. [PMID: 33516266 PMCID: PMC7847592 DOI: 10.1186/s40168-020-00992-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/29/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Identifying which taxa are targeted by immunoglobulins can uncover important host-microbe interactions. Immunoglobulin binding of commensal taxa can be assayed by sorting bound bacteria from samples and using amplicon sequencing to determine their taxonomy, a technique most widely applied to study Immunoglobulin A (IgA-Seq). Previous experiments have scored taxon binding in IgA-Seq datasets by comparing abundances in the IgA bound and unbound sorted fractions. However, as these are relative abundances, such scores are influenced by the levels of the other taxa present and represent an abstract combination of these effects. Diversity in the practical approaches of prior studies also warrants benchmarking of the individual stages involved. Here, we provide a detailed description of the design strategy for an optimised IgA-Seq protocol. Combined with a novel scoring method for IgA-Seq datasets that accounts for the aforementioned effects, this platform enables accurate identification and quantification of commensal gut microbiota targeted by host immunoglobulins. RESULTS Using germ-free and Rag1-/- mice as negative controls, and a strain-specific IgA antibody as a positive control, we determine optimal reagents and fluorescence-activated cell sorting (FACS) parameters for IgA-Seq. Using simulated IgA-Seq data, we show that existing IgA-Seq scoring methods are influenced by pre-sort relative abundances. This has consequences for the interpretation of case-control studies where there are inherent differences in microbiota composition between groups. We show that these effects can be addressed using a novel scoring approach based on posterior probabilities. Finally, we demonstrate the utility of both the IgA-Seq protocol and probability-based scores by examining both novel and published data from in vivo disease models. CONCLUSIONS We provide a detailed IgA-Seq protocol to accurately isolate IgA-bound taxa from intestinal samples. Using simulated and experimental data, we demonstrate novel probability-based scores that adjust for the compositional nature of relative abundance data to accurately quantify taxon-level IgA binding. All scoring approaches are made available in the IgAScores R package. These methods should improve the generation and interpretation of IgA-Seq datasets and could be applied to study other immunoglobulins and sample types. Video abstract.
Collapse
Affiliation(s)
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Kelsey E. Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Ahmed N. Hegazy
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Gastroenterology, Infectiology, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jonathan Webber
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Andrew J. Macpherson
- Maurice Müller Laboratories, Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
- University Clinic of Visceral Surgery and Medicine, Inselspital, 3010 Bern, Switzerland
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lilian H. Lam
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Marcos-Fernández R, Ruiz L, Blanco-Míguez A, Margolles A, Sánchez B. Precision modification of the human gut microbiota targeting surface-associated proteins. Sci Rep 2021; 11:1270. [PMID: 33446697 PMCID: PMC7809461 DOI: 10.1038/s41598-020-80187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
This work describes a new procedure that allows the targeted modification of the human gut microbiota by using antibodies raised against bacterial surface-associated proteins specific to the microorganism of interest. To this end, a polyclonal antibody recognising the surface-associated protein Surface Layer Protein A of Lactobacillus acidophilus DSM20079T was developed. By conjugating this antibody with fluorescent probes and magnetic particles, we were able to specifically identify this bacterium both in a synthetic, and in real gut microbiotas by means of a flow cytometry approach. Further, we demonstrated the applicability of this antibody to deplete complex human gut microbiotas from L. acidophilus in a single step. L. acidophilus was found to interact with other bacteria both in synthetic and in real microbiotas, as reflected by its concomitant depletion together with other species. Further optimization of the procedure including a trypsin step enabled to achieve the selective and complete isolation of this species. Depleting a single species from a gut microbiota, using antibodies recognizing specific cell surface elements of the target organism, will open up novel ways to tackle research on the specific immunomodulatory and metabolic contributions of a bacterium of interest in the context of a complex human gut microbiota, including the investigation into therapeutic applications by adding/depleting a key bacterium. This represents the first work in which an antibody/flow-cytometry based application enabled the targeted edition of human gut microbiotas, and represents the basis for the design of precision microbiome-based therapies.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Aitor Blanco-Míguez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
12
|
Dzidic M, Mira A, Artacho A, Abrahamsson TR, Jenmalm MC, Collado MC. Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life. Pediatr Allergy Immunol 2020; 31:250-257. [PMID: 31736150 DOI: 10.1111/pai.13176] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Early colonization with a diverse microbiota seems to play a crucial role for appropriate immune maturation during childhood. Breastmilk microbiota is one important source of microbes for the infant, transferred together with maternal IgA antibodies. We previously observed that allergy development during childhood was associated with aberrant IgA responses to the gut microbiota already at 1 month of age, when the IgA antibodies are predominantly maternally derived in breastfed infants. OBJECTIVE To determine the microbial composition and IgA-coated bacteria in breastmilk in relation to allergy development in children participating in an intervention trial with pre- and post-natal Lactobacillus reuteri supplementation. METHODS A combination of flow cytometric cell sorting and 16S rRNA gene sequencing was used to characterize the bacterial recognition patterns by IgA in breastmilk samples collected one month post-partum from 40 mothers whose children did or did not develop allergic and asthmatic symptoms during the first 7 years of age. RESULTS The milk fed to children developing allergic manifestations had significantly lower bacterial richness, when compared to the milk given to children that remained healthy. Probiotic treatment influenced the breastmilk microbiota composition. However, the proportions of IgA-coated bacteria, the total bacterial load and the patterns of IgA-coating were similar in breastmilk between mothers of healthy children and those developing allergies. CONCLUSION Consumption of breastmilk with a reduced microbial richness in the first month of life may play an important role in allergy development during childhood.
Collapse
Affiliation(s)
- Majda Dzidic
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain.,Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain.,Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain.,CIBER-ESP, Madrid, Spain
| | - Alejandro Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain
| | - Thomas R Abrahamsson
- Department of Clinical and Experimental Medicine and Department of Pediatrics, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| |
Collapse
|
13
|
Cell wall hydrolase as a surface-associated protein target for the specific detection of Lactobacillus rhamnosus using flow cytometry. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Nyangahu DD, Jaspan HB. Influence of maternal microbiota during pregnancy on infant immunity. Clin Exp Immunol 2019; 198:47-56. [PMID: 31121057 PMCID: PMC6718277 DOI: 10.1111/cei.13331] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Microbiota from various maternal sites, including the gut, vagina and breast milk, are known to influence colonization in infants. However, emerging evidence suggests that these sites may exert their influence prior to delivery, in turn influencing fetal immune development. The dogma of a sterile womb continues to be challenged. Regardless, there is convincing evidence that the composition of the maternal gut prior to delivery influences neonatal immunity. Therefore, while the presence and function of placental microbiome is not clear, there is consensus that the gut microbiota during pregnancy is a critical determinant of offspring health. Data supporting the notion of bacterial translocation from the maternal gut to extra-intestinal sites during pregnancy are emerging, and potentially explain the presence of bacteria in breast milk. Much evidence suggests that the maternal gut microbiota during pregnancy potentially determines the development of atopy and autoimmune phenotypes in offspring. Here, we highlight the role of the maternal microbiota prior to delivery on infant immunity and predisposition to diseases. Moreover, we discuss potential mechanisms that underlie this phenomenon.
Collapse
Affiliation(s)
- D. D. Nyangahu
- Department of PediatricsUniversity of Washington and Seattle Children’s Research InstituteSeattleWAUSA
| | - H. B. Jaspan
- Department of PediatricsUniversity of Washington and Seattle Children’s Research InstituteSeattleWAUSA
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of ImmunologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
15
|
Ruiz L, García-Carral C, Rodriguez JM. Unfolding the Human Milk Microbiome Landscape in the Omics Era. Front Microbiol 2019; 10:1378. [PMID: 31293535 PMCID: PMC6604669 DOI: 10.3389/fmicb.2019.01378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Studies conducted in the last years have demonstrated that human milk represents a continuous supply of beneficial bacteria to the infant gut, which contribute to the maturation of the digestive and immune functions in the developing infant. Nevertheless, the origin of bacterial populations in milk is not fully understood yet and they have been proposed to originate from maternal skin, infant’s mouth, and (or) endogenously, from the maternal digestive tract through a mechanism involving immune cells. Understanding the composition, functions and assembly of the human milk microbiota has important implications not only for the infant gut microbiota establishment, but also for the mammary health since dysbiosis in the milk bacteria may lead to mastitis. Besides, host, microbial, medical and environmental factors may affect the composition of the human milk microbiome, with implications for the mother-infant health. Application of both culture-dependent and -independent techniques to assess the milk microbiome faces some practical limitations but, together, have allowed providing novel and complementary views on its origin, composition and functioning as summarized in this minireview. In the next future, the application of the ultimate advances in next-generation sequencing and omics approaches, including culturomics, will allow a detailed and comprehensive understanding of the composition and functions of these microbial communities, including their interactions with other milk components, expanding the opportunities to design novel microbiome-based modulation strategies for this ecosystem.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Cristina García-Carral
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Abstract
Understanding the microbiology of dental caries is not a mere academic exercise; it provides the basis for preventive, diagnostic, and treatment strategies and gives the dentist a theoretical framework to become a better professional. The last years have seen the development of new research methodologies, ranging from high-throughput sequencing or "omics" techniques to new fluorescence microscopy applications and microfluidics, which have allowed the study of the oral microbiome to an unprecedented level of detail. Those studies have provided new insights about oral biofilm formation, biomarkers of caries risk, microbial etiology, appropriate sampling, identification of health-associated bacteria, and new anticaries strategies, among others. Several pitfalls are associated with the new technologies, including a small number of samples per study group, elevated cost, and genus- or species-based analyses that do not take into consideration intraspecies variability. However, the new data strongly suggest that saliva may not be an appropriate sample for etiological studies or for bacterial caries-risk tests, that microbial composition alone may be insufficient to predict caries risk, and that antimicrobial or immunization strategies targeting single species are unlikely to be effective. Strategies directed toward modulation of the oral biofilm, such as pre- and probiotics, emerge as promising new approaches to prevent tooth decay.
Collapse
Affiliation(s)
- A Mira
- 1 Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| |
Collapse
|
17
|
Dzidic M, Collado MC, Abrahamsson T, Artacho A, Stensson M, Jenmalm MC, Mira A. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. THE ISME JOURNAL 2018; 12:2292-2306. [PMID: 29899505 PMCID: PMC6092374 DOI: 10.1038/s41396-018-0204-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022]
Abstract
Information on how the oral microbiome develops during early childhood and how external factors influence this ecological process is scarce. We used high-throughput sequencing to characterize bacterial composition in saliva samples collected at 3, 6, 12, 24 months and 7 years of age in 90 longitudinally followed children, for whom clinical, dietary and health data were collected. Bacterial composition patterns changed through time, starting with "early colonizers", including Streptococcus and Veillonella; other bacterial genera such as Neisseria settled after 1 or 2 years of age. Dental caries development was associated with diverging microbial composition through time. Streptococcus cristatus appeared to be associated with increased risk of developing tooth decay and its role as potential biomarker of the disease should be studied with species-specific probes. Infants born by C-section had initially skewed bacterial content compared with vaginally delivered infants, but this was recovered with age. Shorter breastfeeding habits and antibiotic treatment during the first 2 years of age were associated with a distinct bacterial composition at later age. The findings presented describe oral microbiota development as an ecological succession where altered colonization pattern during the first year of life may have long-term consequences for child´s oral and systemic health.
Collapse
Affiliation(s)
- Majda Dzidic
- Department of Health and Genomics, Center for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
- Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - Maria C Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| | - Thomas Abrahamsson
- Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, Linköping, Sweden
| | - Alejandro Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain
| | - Malin Stensson
- Centre for Oral Health, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain.
| |
Collapse
|
18
|
Nyangahu DD, Lennard KS, Brown BP, Darby MG, Wendoh JM, Havyarimana E, Smith P, Butcher J, Stintzi A, Mulder N, Horsnell W, Jaspan HB. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. MICROBIOME 2018; 6:124. [PMID: 29981583 PMCID: PMC6035804 DOI: 10.1186/s40168-018-0511-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/02/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Early life microbiota is an important determinant of immune and metabolic development and may have lasting consequences. The maternal gut microbiota during pregnancy or breastfeeding is important for defining infant gut microbiota. We hypothesized that maternal gut microbiota during pregnancy and breastfeeding is a critical determinant of infant immunity. To test this, pregnant BALB/c dams were fed vancomycin for 5 days prior to delivery (gestation; Mg), 14 days postpartum during nursing (Mn), or during gestation and nursing (Mgn), or no vancomycin (Mc). We analyzed adaptive immunity and gut microbiota in dams and pups at various times after delivery. RESULTS In addition to direct alterations to maternal gut microbial composition, pup gut microbiota displayed lower α-diversity and distinct community clusters according to timing of maternal vancomycin. Vancomycin was undetectable in maternal and offspring sera, therefore the observed changes in the microbiota of stomach contents (as a proxy for breastmilk) and pup gut signify an indirect mechanism through which maternal intestinal microbiota influences extra-intestinal and neonatal commensal colonization. These effects on microbiota influenced both maternal and offspring immunity. Maternal immunity was altered, as demonstrated by significantly higher levels of both total IgG and IgM in Mgn and Mn breastmilk when compared to Mc. In pups, lymphocyte numbers in the spleens of Pg and Pn were significantly increased compared to Pc. This increase in cellularity was in part attributable to elevated numbers of both CD4+ T cells and B cells, most notable Follicular B cells. CONCLUSION Our results indicate that perturbations to maternal gut microbiota dictate neonatal adaptive immunity.
Collapse
Affiliation(s)
- Donald D Nyangahu
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
- Present Address: Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katie S Lennard
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Computational Biology, University of Cape Town, Cape Town, South Africa
| | - Bryan P Brown
- Duke University, Durham, NC, USA
- Present Address: Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew G Darby
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jerome M Wendoh
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Enock Havyarimana
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Peter Smith
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, CA, USA
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, CA, USA
| | - Nicola Mulder
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Computational Biology, University of Cape Town, Cape Town, South Africa
| | - William Horsnell
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, 45000, Orléans, France
| | - Heather B Jaspan
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa.
- Department of Pediatrics and Global Health, University of Washington and Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
19
|
Džunková M, Martinez-Martinez D, Gardlík R, Behuliak M, Janšáková K, Jiménez N, Vázquez-Castellanos JF, Martí JM, D’Auria G, Bandara HMHN, Latorre A, Celec P, Moya A. Oxidative stress in the oral cavity is driven by individual-specific bacterial communities. NPJ Biofilms Microbiomes 2018; 4:29. [PMID: 30510769 PMCID: PMC6258756 DOI: 10.1038/s41522-018-0072-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
The term "bacterial dysbiosis" is being used quite extensively in metagenomic studies, however, the identification of harmful bacteria often fails due to large overlap between the bacterial species found in healthy volunteers and patients. We hypothesized that the pathogenic oral bacteria are individual-specific and they correlate with oxidative stress markers in saliva which reflect the inflammatory processes in the oral cavity. Temporally direct and lagged correlations between the markers and bacterial taxa were computed individually for 26 volunteers who provided saliva samples during one month (21.2 ± 2.7 samples/volunteer, 551 samples in total). The volunteers' microbiomes differed significantly by their composition and also by their degree of microbiome temporal variability and oxidative stress markers fluctuation. The results showed that each of the marker-taxa pairs can have negative correlations in some volunteers while positive in others. Streptococcus mutans, which used to be associated with caries before the metagenomics era, had the most prominent correlations with the oxidative stress markers, however, these correlations were not confirmed in all volunteers. The importance of longitudinal samples collections in correlation studies was underlined by simulation of single sample collections in 1000 different combinations which produced contradictory results. In conclusion, the distinct intra-individual correlation patterns suggest that different bacterial consortia might be involved in the oxidative stress induction in each human subject. In the future, decreasing cost of DNA sequencing will allow to analyze multiple samples from each patient, which might help to explore potential diagnostic applications and understand pathogenesis of microbiome-associated oral diseases.
Collapse
Affiliation(s)
- Mária Džunková
- grid.484129.2Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- 0000 0001 2173 938Xgrid.5338.dInstitute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG, Valencia, Spain
- 0000 0000 9320 7537grid.1003.2Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD Australia
| | - Daniel Martinez-Martinez
- grid.484129.2Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- 0000 0001 2173 938Xgrid.5338.dInstitute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG, Valencia, Spain
| | - Roman Gardlík
- 0000000109409708grid.7634.6Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Behuliak
- 0000000109409708grid.7634.6Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- 0000 0001 1015 3316grid.418095.1Institute of Physiology, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Katarína Janšáková
- 0000000109409708grid.7634.6Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- 0000000109409708grid.7634.6Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Nuria Jiménez
- grid.484129.2Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- 0000 0001 2173 938Xgrid.5338.dInstitute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG, Valencia, Spain
| | - Jorge F. Vázquez-Castellanos
- grid.484129.2Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Jose Manuel Martí
- 0000 0001 2173 938Xgrid.5338.dInstitute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG, Valencia, Spain
| | - Giuseppe D’Auria
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- grid.484129.2Sequencing and Bioinformatics Service of the Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
| | - H. M. H. N. Bandara
- 0000 0000 9320 7537grid.1003.2School of Dentistry, The University of Queensland, Herston, QLD Australia
| | - Amparo Latorre
- grid.484129.2Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- 0000 0001 2173 938Xgrid.5338.dInstitute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG, Valencia, Spain
| | - Peter Celec
- 0000000109409708grid.7634.6Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Andrés Moya
- grid.484129.2Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- 0000 0001 2173 938Xgrid.5338.dInstitute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG, Valencia, Spain
| |
Collapse
|
20
|
Rosier BT, Marsh PD, Mira A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. J Dent Res 2017; 97:371-380. [PMID: 29195050 DOI: 10.1177/0022034517742139] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dental diseases are now viewed as a consequence of a deleterious shift in the balance of the normally stable resident oral microbiome. It is known that frequent carbohydrate consumption or reduced saliva flow can lead to caries, and excessive plaque accumulation increases the risk of periodontal diseases. However, when these "disease drivers" are present, while some individuals appear to be susceptible, others are more tolerant or resilient to suffering from undesirable changes in their oral microbiome. Health-maintaining mechanisms that limit the effect of disease drivers include the complex set of metabolic and functional interrelationships that develop within dental biofilms and between biofilms and the host. In contrast, "positive feedback loops" can develop within these microbial communities that disrupt resilience and provoke a large and abrupt change in function and structure of the ecosystem (a microbial "regime shift"), which promotes dysbiosis and oral disease. For instance, acidification due to carbohydrate fermentation or inflammation in response to accumulated plaque select for a cariogenic or periopathogenic microbiota, respectively, in a chain of self-reinforcing events. Conversely, in tolerant individuals, health-maintaining mechanisms, including negative feedback to the drivers, can maintain resilience and promote resistance to and recovery from disease drivers. Recently studied health-maintaining mechanisms include ammonia production, limiting a drop in pH that can lead to caries, and denitrification, which could inhibit several stages of disease-associated positive feedback loops. Omics studies comparing the microbiome of, and its interaction with, susceptible and tolerant hosts can detect markers of resilience. The neutralization or inhibition of disease drivers, together with the identification and promotion of health-promoting species and functions, for example, by pre- and probiotics, could enhance microbiome resilience and lead to new strategies to prevent disease.
Collapse
Affiliation(s)
- B T Rosier
- 1 Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - P D Marsh
- 2 Department of Oral Biology, School of Dentistry, University of Leeds, UK
| | - A Mira
- 1 Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
21
|
Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Sci Rep 2017; 7:13016. [PMID: 29026146 PMCID: PMC5638952 DOI: 10.1038/s41598-017-13270-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Human breastmilk contains a variety of bacteria that are transmitted to the infant and have been suggested to contribute to gut microbiota development and immune maturation. However, the characterization of fungal organisms in milk from healthy mothers is currently unknown although their presence has been reported in the infant gut and also in milk from other mammals. Breastmilk samples from healthy lactating mothers (n = 65) within 1 month after birth were analyzed. Fungal presence was assessed by different techniques, including microscopy, growth and identification of cultured isolates, fungal load estimation by qPCR, and fungal composition using 28S rRNA gene high-throughput sequencing. In addition, milk macronutrients and human somatic cells were quantified by spectrophotometry and cytometry. qPCR data showed that 89% of samples had detectable levels of fungal DNA, at an estimated median load of 3,5 × 105 cells/ml, potentially including both viable and non-viable fungi. Using different culture media, 33 strains were isolated and identified, confirming the presence of viable fungal species. Pyrosequencing results showed that the most common genera were Malassezia (44%), followed by Candida (19%) and Saccharomyces (12%). Yeast cells were observed by fluorescence microscopy. Future work should study the origin of these fungi and their potential contribution to infant health.
Collapse
|
22
|
Dzidic M, Abrahamsson TR, Artacho A, Björkstén B, Collado MC, Mira A, Jenmalm MC. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. J Allergy Clin Immunol 2016; 139:1017-1025.e14. [PMID: 27531072 DOI: 10.1016/j.jaci.2016.06.047] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/11/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although a reduced gut microbiota diversity and low mucosal total IgA levels in infancy have been associated with allergy development, IgA responses to the gut microbiota have not yet been studied. OBJECTIVE We sought to determine the proportions of IgA coating together with the characterization of the dominant bacteria, bound to IgA or not, in infant stool samples in relation to allergy development. METHODS A combination of flow cytometric cell sorting and deep sequencing of the 16S rDNA gene was used to characterize the bacterial recognition patterns by IgA in stool samples collected at 1 and 12 months of age from children staying healthy or having allergic symptoms up to 7 years of age. RESULTS The children with allergic manifestations, particularly asthma, during childhood had a lower proportion of IgA bound to fecal bacteria at 12 months of age compared with healthy children. These alterations cannot be attributed to differences in IgA levels or bacterial load between the 2 groups. Moreover, the bacterial targets of early IgA responses (including coating of the Bacteroides genus), as well as IgA recognition patterns, differed between healthy children and children with allergic manifestations. Altered IgA recognition patterns in children with allergy were observed already at 1 month of age, when the IgA antibodies are predominantly maternally derived in breast-fed children. CONCLUSION An aberrant IgA responsiveness to the gut microbiota during infancy precedes asthma and allergy development, possibly indicating an impaired mucosal barrier function in allergic children.
Collapse
Affiliation(s)
- Majda Dzidic
- Department of Clinical and Experimental Medicine, Unit of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden; Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain; Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| | - Thomas R Abrahamsson
- Department of Clinical and Experimental Medicine, Division of Paediatrics, Linköping University, Linköping, Sweden
| | - Alejandro Artacho
- Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Bengt Björkstén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain.
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Unit of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden.
| |
Collapse
|
23
|
Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection. mSphere 2016; 1:mSphere00101-16. [PMID: 27303742 PMCID: PMC4888886 DOI: 10.1128/msphere.00101-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific bacterial fractions provides additional information about dysbiotic processes in the gut. The detected patterns have been confirmed with the whole patient cohort independently of the taxonomic differences detected in the nonfractionated microbiomes. The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCEC. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific bacterial fractions provides additional information about dysbiotic processes in the gut. The detected patterns have been confirmed with the whole patient cohort independently of the taxonomic differences detected in the nonfractionated microbiomes.
Collapse
|
24
|
Boix-Amorós A, Collado MC, Mira A. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation. Front Microbiol 2016; 7:492. [PMID: 27148183 PMCID: PMC4837678 DOI: 10.3389/fmicb.2016.00492] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO FoundationValencia, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research CouncilValencia, Spain
| | - Maria C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation Valencia, Spain
| |
Collapse
|
25
|
Berin MC, Shreffler WG. Mechanisms Underlying Induction of Tolerance to Foods. Immunol Allergy Clin North Am 2016; 36:87-102. [DOI: 10.1016/j.iac.2015.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|