1
|
Fernandez NL, Simmons LA. Two distinct regulatory systems control pulcherrimin biosynthesis in Bacillus subtilis. PLoS Genet 2024; 20:e1011283. [PMID: 38753885 PMCID: PMC11135676 DOI: 10.1371/journal.pgen.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MarR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
He P, Hu S, Zhang Y, Xiang Z, Zhang Z, Wang D, Chen S. A new ROS response factor YvmB protects Bacillus licheniformis against oxidative stress under adverse environment. Appl Environ Microbiol 2024; 90:e0146823. [PMID: 38193675 PMCID: PMC10880666 DOI: 10.1128/aem.01468-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Bacillus spp., a class of aerobic bacteria, is widely used as a biocontrol microbe in the world. However, the reactive oxygen species (ROS) will accumulate once the aerobic bacteria are exposed to environmental stresses, which can decrease cell activity or lead to cell death. Hydroxyl radical (·OH), the strongest oxide in the ROS, can damage DNA directly, which is generated through Fenton Reaction by H2O2 and free iron. Here, we proved that the synthesis of pulcherriminic acid (PA), an iron chelator produced by Bacillus spp., could reduce DNA damage to protect cells from oxidative stress by sequestrating excess free iron, which enhanced the cell survival rates in stressful conditions (salt, antibiotic, and high temperature). It was worth noting that the synthesis of PA was found to be increased under oxidative stress. Thus, we demonstrated that the YvmB, a direct negative regulator of PA synthesis cluster yvmC-cypX, could be oxidized at cysteine residue (C57) to form a dimer losing the DNA-binding activity, which led to an improvement in PA production. Collectively, our findings highlight that YvmB senses ROS to regulate PA synthesis is one of the evolved proactive defense systems in bacteria against adverse environments.IMPORTANCEUnder environment stress, the electron transfer chain will be perturbed resulting in the accumulation of H2O2 and rapidly transform to ·OH through Fenton Reaction. How do bacteria deal with oxidative stress? At present, several iron chelators have been reported to decrease the ·OH generation by sequestrating iron, while how bacteria control the synthesis of iron chelators to resist oxidative stress is still unclear. Our study found that the synthesis of iron chelator PA is induced by reactive oxygen species (ROS), which means that the synthesis of iron chelator is a proactive defense mechanism against environment stress. Importantly, YvmB is the first response factor found to protect cells by reducing the ROS generation, which present a new perspective in antioxidation studies.
Collapse
Affiliation(s)
- Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhengwei Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, China
| |
Collapse
|
3
|
Freimoser FM, Mahler M, McCullough M, Brachmann AO, Nägeli L, Hilber-Bodmer M, Piel J, Hoffmann SA, Cai Y. Heterologous pulcherrimin production in Saccharomyces cerevisiae confers inhibitory activity on Botrytis conidiation. FEMS Yeast Res 2024; 24:foad053. [PMID: 38140959 PMCID: PMC10786192 DOI: 10.1093/femsyr/foad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023] Open
Abstract
Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.
Collapse
Affiliation(s)
- Florian M Freimoser
- Agroscope, Research Division Plant Protection, Route de Duillier 60, 1260 Nyon 1, Switzerland
| | - Marina Mahler
- Agroscope, Research Division Plant Protection, Route de Duillier 60, 1260 Nyon 1, Switzerland
| | - Mark McCullough
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester M1 7DN, UK
| | - Alexander O Brachmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lukas Nägeli
- Agroscope, Research Division Plant Protection, Route de Duillier 60, 1260 Nyon 1, Switzerland
| | - Maja Hilber-Bodmer
- Agroscope, Research Division Plant Protection, Route de Duillier 60, 1260 Nyon 1, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester M1 7DN, UK
| |
Collapse
|
4
|
Fernandez NL, Simmons LA. Two Distinct Regulatory Systems Control Pulcherrimin Biosynthesis in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574033. [PMID: 38260623 PMCID: PMC10802322 DOI: 10.1101/2024.01.03.574033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MerR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important, and somewhat enigmatic, role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Zhang H, Wang S, Deng Q, Zhang X, Liao B, Huang J, Zeng K. The effect of pulcherriminic acid produced by Metschnikowia citriensis in controlling postharvest diseases of citrus fruits. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105657. [PMID: 38072532 DOI: 10.1016/j.pestbp.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
The biocontrol effectiveness of Metschnikowia citriensis relies on its production of pulcherriminic acid (PA), which forms insoluble and stable pulcherrimin pigments by chelating iron ions, this inhibits pathogen growth by preventing their utilization of chelated Fe3+. In this study, ΔM. citriensis, which did not produce PA, was used as a control to examine changes in its biocontrol effectiveness by adding tryptophan to the medium. Tryptophan was shown to have no discernible impact on the growth and PA production of ΔM. citriensis; moreover, the PA synthesis-related genes PULs, Snf2, and leucyl-tRNA synthesis-related genes A3136 and A3022 were all down-regulated in ΔM. citriensis. The PA-free ΔM. citriensis eventually showed a much poorer inhibition zone against the pathogens in vitro, and a noticeably decreased control efficiency against postharvest diseases in citrus fruit. Tryptophan was added to the medium, which had no appreciable impact on inhibitory zone of ΔM. citriensis against pathogens in vitro, but enhanced its ability to control citrus postharvest diseases. Additionally, the control effects of culture broth of M. citriensis and ΔM. citriensis on postharvest diseases in citrus fruit were assessed. It was found that both culture broth of M. citriensis and ΔM. citriensis exhibited remarkable control effects against citrus postharvest diseases, with culture broth of M. citriensis which containing PA being more effective in controlling the disease. Last but not least, we extracted and dissolved pulcherrimin to obtain PA extracts, which were then injected to citrus fruits to assess the biocontrol effectiveness. The findings demonstrated that postharvest diseases of citrus fruit can be effectively controlled by PA extracts. This research suggested a new biological strategy for the management of citrus postharvest diseases.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shupei Wang
- College of Environmental and Life Sciences, Nanning Normal university, Nanning 530001, PR China
| | - Qian Deng
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Xiong Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Bi Liao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jian Huang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| |
Collapse
|
6
|
Angelini LL, Dos Santos RAC, Fox G, Paruthiyil S, Gozzi K, Shemesh M, Chai Y. Pulcherrimin protects Bacillus subtilis against oxidative stress during biofilm development. NPJ Biofilms Microbiomes 2023; 9:50. [PMID: 37468524 PMCID: PMC10356805 DOI: 10.1038/s41522-023-00418-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Pulcherrimin is an iron-binding reddish pigment produced by various bacterial and yeast species. In the soil bacterium Bacillus subtilis, this pigment is synthesized intracellularly as the colorless pulcherriminic acid by using two molecules of tRNA-charged leucine as the substrate; pulcherriminic acid molecules are then secreted and bind to ferric iron extracellularly to form the red-colored pigment pulcherrimin. The biological importance of pulcherrimin is not well understood. A previous study showed that secretion of pulcherrimin caused iron depletion in the surroundings and growth arrest on cells located at the edge of a B. subtilis colony biofilm. In this study, we identified that pulcherrimin is primarily produced under biofilm conditions and provides protection to cells in the biofilm against oxidative stress. We presented molecular evidence on how pulcherrimin lowers the level of reactive oxygen species (ROS) and alleviates oxidative stress and DNA damage caused by ROS accumulation in a mature biofilm. We also performed global transcriptome profiling to identify differentially expressed genes in the pulcherrimin-deficient mutant compared with the wild type, and further characterized the regulation of genes by pulcherrimin that are related to iron homeostasis, DNA damage response (DDR), and oxidative stress response. Based on our findings, we propose pulcherrimin as an important antioxidant that modulates B. subtilis biofilm development.
Collapse
Affiliation(s)
| | | | - Gabriel Fox
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Srinand Paruthiyil
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Medical Scientist Training Program (MSTP), Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Kevin Gozzi
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
- The Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, MA, 02142, USA
| | - Moshe Shemesh
- Department of Food Science, Agricultural Research Organization The Volcani Institute, Derech Hamacabim, POB 15159, Rishon LeZion, 7528809, Israel
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Charron-Lamoureux V, Haroune L, Pomerleau M, Hall L, Orban F, Leroux J, Rizzi A, Bourassa JS, Fontaine N, d'Astous ÉV, Dauphin-Ducharme P, Legault CY, Bellenger JP, Beauregard PB. Pulcherriminic acid modulates iron availability and protects against oxidative stress during microbial interactions. Nat Commun 2023; 14:2536. [PMID: 37137890 PMCID: PMC10156857 DOI: 10.1038/s41467-023-38222-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Siderophores are soluble or membrane-embedded molecules that bind the oxidized form of iron, Fe(III), and play roles in iron acquisition by microorganisms. Fe(III)-bound siderophores bind to specific receptors that allow microbes to acquire iron. However, certain soil microbes release a compound (pulcherriminic acid, PA) that, upon binding to Fe(III), forms a precipitate (pulcherrimin) that apparently functions by reducing iron availability rather than contributing to iron acquisition. Here, we use Bacillus subtilis (PA producer) and Pseudomonas protegens as a competition model to show that PA is involved in a peculiar iron-managing system. The presence of the competitor induces PA production, leading to precipitation of Fe(III) as pulcherrimin, which prevents oxidative stress in B. subtilis by restricting the Fenton reaction and deleterious ROS formation. In addition, B. subtilis uses its known siderophore bacillibactin to retrieve Fe(III) from pulcherrimin. Our findings indicate that PA plays multiple roles by modulating iron availability and conferring protection against oxidative stress during inter-species competition.
Collapse
Affiliation(s)
| | - Lounès Haroune
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Institut de pharmacologie de Sherbrooke, Faculté de médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maude Pomerleau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léo Hall
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Orban
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Leroux
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Adrien Rizzi
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Sébastien Bourassa
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Fontaine
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Élodie V d'Astous
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Claude Y Legault
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascale B Beauregard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
8
|
Li H, Dai J, Shi Y, Zhu X, Jia L, Yang Z. Molecular Regulatory Mechanism of the Iron-Ion-Promoted Asexual Sporulation of Antrodia cinnamomea in Submerged Fermentation Revealed by Comparative Transcriptomics. J Fungi (Basel) 2023; 9:jof9020235. [PMID: 36836349 PMCID: PMC9959139 DOI: 10.3390/jof9020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Antrodia cinnamomea is a precious edible and medicinal fungus with activities of antitumor, antivirus, and immunoregulation. Fe2+ was found to promote the asexual sporulation of A. cinnamomea markedly, but the molecular regulatory mechanism of the effect is unclear. In the present study, comparative transcriptomics analysis using RNA sequencing (RNA-seq) and real time quantitative PCR (RT-qPCR) were conducted on A. cinnamomea mycelia cultured in the presence or absence of Fe2+ to reveal the molecular regulatory mechanisms underlying iron-ion-promoted asexual sporulation. The obtained mechanism is as follows: A. cinnamomea acquires iron ions through reductive iron assimilation (RIA) and siderophore-mediated iron assimilation (SIA). In RIA, ferrous iron ions are directly transported into cells by the high-affinity protein complex formed by a ferroxidase (FetC) and an Fe transporter permease (FtrA). In SIA, siderophores are secreted externally to chelate the iron in the extracellular environment. Then, the chelates are transported into cells through the siderophore channels (Sit1/MirB) on the cell membrane and hydrolyzed by a hydrolase (EstB) in the cell to release iron ions. The O-methyltransferase TpcA and the regulatory protein URBS1 promote the synthesis of siderophores. HapX and SreA respond to and maintain the balance of the intercellular concentration of iron ions. Furthermore, HapX and SreA promote the expression of flbD and abaA, respectively. In addition, iron ions promote the expression of relevant genes in the cell wall integrity signaling pathway, thereby accelerating the cell wall synthesis and maturation of spores. This study contributes to the rational adjustment and control of the sporulation of A. cinnamomea and thereby improves the efficiency of the preparation of inoculum for submerged fermentation.
Collapse
Affiliation(s)
- Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jianing Dai
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yu Shi
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, China
| | - Luqiang Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
9
|
Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. PHYTOPATHOLOGY 2022; 112:549-560. [PMID: 34293909 DOI: 10.1094/phyto-03-21-0128-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gray mold caused by Botrytis cinerea is one of the most widespread and damaging diseases in cannabis crops worldwide. With challenging restrictions on pesticide use and few effective control measures, biocontrol agents are needed to manage this disease. The aim of this study was to identify bacterial biocontrol agents with wide-spectrum activity against B. cinerea and other cannabis fungal pathogens. Twelve Bacillus and Pseudomonas strains were first screened with in vitro confrontational assays against 10 culturable cannabis pathogens, namely B. cinerea, Sclerotinia sclerotiorum, Fusarium culmorum, F. sporotrichoides, F. oxysporum, Nigrospora sphaerica, N. oryzae, Alternaria alternata, Phoma sp., and Cercospora sp. Six strains displaying the highest inhibitory activity, namely Bacillus velezensis LBUM279, FZB42, LBUM1082, Bacillus subtilis LBUM979, P. synxantha LBUM223, and P. protegens Pf-5, were further assessed in planta where all, except LBUM223, significantly controlled gray mold development on cannabis leaves. Notably, LBUM279 and FZB42 reduced disease severity by at least half compared with water-treated plants and prevented lesion development and/or sporulation up to 9 days after pathogen inoculation. Genomes of LBUM279, LBUM1082, and LBUM979 were sequenced de novo and taxonomic affiliations were determined to ensure nonrelatedness with pathogenic strains. Moreover, the genomes were exempt of detrimental genes encoding major toxins and virulence factors that could otherwise pose a biosafety risk when used on crops. Eighteen gene clusters of potential biocontrol interest were also identified. To our knowledge, this is the first reported attempt to control cannabis fungal diseases in planta by direct antagonism with beneficial bacteria.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Gabrielle Cantin
- Institute of Health and Life Sciences, Collège La Cité, Ottawa, ON K1K 4R3, Canada
| | - David L Joly
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
10
|
Wang S, Zhang H, Ruan C, Yi L, Deng L, Zeng K. Metschnikowia citriensis FL01 antagonize Geotrichum citri-aurantii in citrus fruit through key action of iron depletion. Int J Food Microbiol 2021; 357:109384. [PMID: 34517294 DOI: 10.1016/j.ijfoodmicro.2021.109384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
Metschnikowia citriensis FL01 has great potential for biocontrol applications for its excellent biocontrol efficacy on postharvest diseases of citrus fruit, and the iron depletion by pulcherriminic acid (PA) and then formation of insoluble pigment pulcherrimin had been speculated as an important action mechanism. To identify the genes involved in pulcherrimin synthesis and reutilization in M. citriensis FL01, we de novo assembled the genome of M. citriensis FL01 based on long-read PacBio sequencing. The final assembled genome consisted of 12 contigs with a genome size of 25.74 Mb, G + C content of 49.16% and 9310 protein-coding genes. The genome-wide BLAST of the PUL genes of M. pulcherrima APC 1.2 showed that the four PUL genes were clustered and located on Contig 4 of M. citriensis FL01. In order to further clarify the role of pulcherrimin pigment on biocontrol of M. citriensis FL01, CRISPR/cas9 technology was used to knock out PUL2 gene that was responsible for PA synthesis and the pigmentless mutants with stable phenotype were obtained. The mutant strains of M. citriensis FL01 lost the ability to produce pulcherrimin pigment, and simultaneously lost the ability to inhibit the growth of Geotrichum citri-aurantii in vitro. Moreover, the biocontrol efficacy of pigmentless mutant strains against sour rot was about 80% lower than that of wild-type M. citriensis FL01. These results directly proved that the iron depletion was an important mechanism of M. citriensis FL01.
Collapse
Affiliation(s)
- Shupei Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; College of Environmental and Life Sciences, Nanning Normal university, Nanning 530001, PR China
| | - Hongyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Changqing Ruan
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, 401331 Chongqing, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nat Commun 2020; 11:6338. [PMID: 33311500 PMCID: PMC7732839 DOI: 10.1038/s41467-020-20153-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Bacillus subtilis coordinates cellular functions of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we use unsupervised machine learning to modularize the transcriptome and quantitatively describe regulatory activity under diverse conditions, creating an unbiased summary of gene expression. We obtain 83 independently modulated gene sets that explain most of the variance in expression and demonstrate that 76% of them represent the effects of known regulators. The TRN structure and its condition-dependent activity uncover putative or recently discovered roles for at least five regulons, such as a relationship between histidine utilization and quorum sensing. The TRN also facilitates quantification of population-level sporulation states. As this TRN covers the majority of the transcriptome and concisely characterizes the global expression state, it could inform research on nearly every aspect of transcriptional regulation in B. subtilis. The systems-level regulatory structure underlying gene expression in bacteria can be inferred using machine learning algorithms. Here we show this structure for Bacillus subtilis, present five hypotheses gleaned from it, and analyse the process of sporulation from its perspective.
Collapse
|
12
|
Yuan S, Yong X, Zhao T, Li Y, Liu J. Research Progress of the Biosynthesis of Natural Bio-Antibacterial Agent Pulcherriminic Acid in Bacillus. Molecules 2020; 25:E5611. [PMID: 33260656 PMCID: PMC7731078 DOI: 10.3390/molecules25235611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 11/16/2022] Open
Abstract
Pulcherriminic acid is a cyclic dipeptide found mainly in Bacillus and yeast. Due to the ability of pulcherriminic acid to chelate Fe3+ to produce reddish brown pulcherrimin, microorganisms capable of synthesizing pulcherriminic acid compete with other microorganisms for environmental iron ions to achieve bacteriostatic effects. Therefore, studying the biosynthetic pathway and their enzymatic catalysis, gene regulation in the process of synthesis of pulcherriminic acid in Bacillus can facilitate the industrial production, and promote the wide application in food, agriculture and medicine industries. After initially discussing, this review summarizes current research on the synthesis of pulcherriminic acid by Bacillus, which includes the crystallization of key enzymes, molecular catalytic mechanisms, regulation of synthetic pathways, and methods to improve efficiency in synthesizing pulcherriminic acid and its precursors. Finally, possible applications of pulcherriminic acid in the fermented food, such as Chinese Baijiu, applying combinatorial biosynthesis will be summarized.
Collapse
Affiliation(s)
- Siqi Yuan
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
- Luzhou Laojiao Group Co. Ltd., Airentang Square, Jiangyang District, Luzhou 646000, China
| | - Xihao Yong
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
| | - Ting Zhao
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
| | - Yuan Li
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
| | - Jun Liu
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
- Wuliangye Group Co. Ltd., No. 150 Minjiang West Road, Yibin 644000, China
| |
Collapse
|
13
|
Sipiczki M. Metschnikowia pulcherrima and Related Pulcherrimin-Producing Yeasts: Fuzzy Species Boundaries and Complex Antimicrobial Antagonism. Microorganisms 2020; 8:E1029. [PMID: 32664630 PMCID: PMC7409158 DOI: 10.3390/microorganisms8071029] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/30/2022] Open
Abstract
Yeasts affiliated with the Metschnikowia pulcherrima clade (subclade) of the large ascomycetous genus Metschnikowia frequently turn out to produce the characteristic maroon-red pulcherrimin when tested for pigment production and prove to exert antagonistic effects on many types of microorganisms. The determination of the exact taxonomic position of the strains is hampered by the shortage of distinctive morphological and physiological properties of the species of the clade and the lack of rDNA barcode gaps. The rDNA repeats of the type strains of the species are not homogenized and are assumed to evolve by a birth-and-death mechanism combined with reticulation. The taxonomic division is further hampered by the incomplete biological (reproductive) isolation of the species: certain type strains can be hybridized and genome sequencing revealed chimeric genome structures in certain strains that might have evolved from interspecies hybrids (alloploid genome duplication). Various mechanisms have been proposed for the antimicrobial antagonism. One is related to pulcherrimin production. The diffusible precursor of pulcherrimin, the pulcherriminic acid is secreted by the cells into the environment where it forms the insoluble pulcherrimin with the ferric ions. The lack of free iron caused by the immobilization of ferric ions inhibits the growth of many microorganisms. Recent results of research into the complexity of the taxonomic division of the pulcherrimin-producing Metschnikowia yeasts and the mechanism(s) underlying their antimicrobial antagonism are discussed in this review.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
14
|
Multistep Metabolic Engineering of Bacillus licheniformis To Improve Pulcherriminic Acid Production. Appl Environ Microbiol 2020; 86:AEM.03041-19. [PMID: 32111589 DOI: 10.1128/aem.03041-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The cyclodipeptide pulcherriminic acid, produced by Bacillus licheniformis, is derived from cyclo(l-Leu-l-Leu) and possesses excellent antibacterial activities. In this study, we achieved the high-level production of pulcherriminic acid via multistep metabolic engineering of B. licheniformis DWc9n*. First, we increased leucine (Leu) supply by overexpressing the ilvBHC-leuABCD operon and ilvD, involved in Leu biosynthesis, to obtain strain W1, and the engineered strain W2 was further attained by the deletion of gene bkdAB, encoding a branched-chain α-keto acid dehydrogenase in W1. As a result, the intracellular Leu content and pulcherriminic acid yield of W2 reached 147.4 mg/g DCW (dry cell weight) and 189.9 mg/liter, which were 227.6% and 48.9% higher than those of DWc9n*, respectively. Second, strain W3 was constructed through overexpressing the leucyl-tRNA synthase gene leuS in W2, and it produced 367.7 mg/liter pulcherriminic acid. Third, the original promoter of the pulcherriminic acid synthetase cluster yvmC-cypX in W3 was replaced with a proven strong promoter, PbacA, to produce the strain W4, and its pulcherriminic acid yield was increased to 507.4 mg/liter. Finally, pulcherriminic acid secretion was strengthened via overexpressing the transporter gene yvmA in W4, resulting in the W4/pHY-yvmA strain, which yielded 556.1 mg/liter pulcherriminic acid, increased by 337.8% compared to DWc9n*, which is currently the highest pulcherriminic acid yield to the best of our knowledge. Taken together, we provided an efficient strategy for enhancing pulcherriminic acid production, which could apply to the high-level production of other cyclodipeptides.IMPORTANCE Pulcherriminic acid is a cyclodipeptide derived from cyclo(l-Leu-l-Leu), which shares the same iron chelation group with hydroxamate sidephores. Generally, pulcherriminic acid-producing strains could be the perfect candidates for antibacterial and anti-plant-pathogenic fungal agents. In this study, we obtained the promising W4/pHY-yvmA pulcherriminic acid-producing strain via a multistep metabolic modification. The engineered W4/pHY-yvmA strain is able to achieve 556.1 mg/liter pulcherriminic acid production, which is the highest yield so far to the best of our knowledge.
Collapse
|
15
|
Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity. J Bacteriol 2020; 202:JB.00547-19. [PMID: 31818924 DOI: 10.1128/jb.00547-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.
Collapse
|
16
|
Witwinowski J, Moutiez M, Coupet M, Correia I, Belin P, Ruzzini A, Saulnier C, Caraty L, Favry E, Seguin J, Lautru S, Lequin O, Gondry M, Pernodet JL, Darbon E. Study of bicyclomycin biosynthesis in Streptomyces cinnamoneus by genetic and biochemical approaches. Sci Rep 2019; 9:20226. [PMID: 31882990 PMCID: PMC6934819 DOI: 10.1038/s41598-019-56747-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
Abstract
The 2,5-Diketopiperazines (DKPs) constitute a large family of natural products with important biological activities. Bicyclomycin is a clinically-relevant DKP antibiotic that is the first and only member in a class known to target the bacterial transcription termination factor Rho. It derives from cyclo-(L-isoleucyl-L-leucyl) and has an unusual and highly oxidized bicyclic structure that is formed by an ether bridge between the hydroxylated terminal carbon atom of the isoleucine lateral chain and the alpha carbon of the leucine in the diketopiperazine ring. Here, we paired in vivo and in vitro studies to complete the characterization of the bicyclomycin biosynthetic gene cluster. The construction of in-frame deletion mutants in the biosynthetic gene cluster allowed for the accumulation and identification of biosynthetic intermediates. The identity of the intermediates, which were reproduced in vitro using purified enzymes, allowed us to characterize the pathway and corroborate previous reports. Finally, we show that the putative antibiotic transporter was dispensable for the producing strain.
Collapse
Affiliation(s)
- Jerzy Witwinowski
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Coupet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Correia
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Antonio Ruzzini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Corinne Saulnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laëtitia Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emmanuel Favry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Frédéric Joliot Institute for Life Sciences, CEA, SPI, Saclay, France
| | - Jérôme Seguin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- CEA, DEN, Centre de Marcoule, Bagnols-sur-Cèze, France
| | - Sylvie Lautru
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Lequin
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emmanuelle Darbon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Abstract
Understanding the processes that underpin the mechanism of biofilm formation, dispersal, and inhibition is critical to allow exploitation and to understand how microbes thrive in the environment. Here, we reveal that the formation of an extracellular iron chelate restricts the expansion of a biofilm. The countering benefit to self-restriction of growth is protection of an environmental niche. These findings highlight the complex options and outcomes that bacteria need to balance to modulate their local environment to maximize colonization, and therefore survival. Biofilm formation by Bacillus subtilis is a communal process that culminates in the formation of architecturally complex multicellular communities. Here we reveal that the transition of the biofilm into a nonexpanding phase constitutes a distinct step in the process of biofilm development. Using genetic analysis we show that B. subtilis strains lacking the ability to synthesize pulcherriminic acid form biofilms that sustain the expansion phase, thereby linking pulcherriminic acid to growth arrest. However, production of pulcherriminic acid is not sufficient to block expansion of the biofilm. It needs to be secreted into the extracellular environment where it chelates Fe3+ from the growth medium in a nonenzymatic reaction. Utilizing mathematical modeling and a series of experimental methodologies we show that when the level of freely available iron in the environment drops below a critical threshold, expansion of the biofilm stops. Bioinformatics analysis allows us to identify the genes required for pulcherriminic acid synthesis in other Firmicutes but the patchwork presence both within and across closely related species suggests loss of these genes through multiple independent recombination events. The seemingly counterintuitive self-restriction of growth led us to explore if there were any benefits associated with pulcherriminic acid production. We identified that pulcherriminic acid producers can prevent invasion by neighboring communities through the generation of an “iron-free” zone, thereby addressing the paradox of pulcherriminic acid production by B. subtilis.
Collapse
|
18
|
Abstract
Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis, very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism. Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology.
Collapse
|
19
|
Gore-Lloyd D, Sumann I, Brachmann AO, Schneeberger K, Ortiz-Merino RA, Moreno-Beltrán M, Schläfli M, Kirner P, Santos Kron A, Rueda-Mejia MP, Somerville V, Wolfe KH, Piel J, Ahrens CH, Henk D, Freimoser FM. Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Mol Microbiol 2019; 112:317-332. [PMID: 31081214 PMCID: PMC6851878 DOI: 10.1111/mmi.14272] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2019] [Indexed: 12/14/2022]
Abstract
Metschnikowia pulcherrima synthesises the pigment pulcherrimin, from cyclodileucine (cyclo(Leu-Leu)) as a precursor, and exhibits strong antifungal activity against notorious plant pathogenic fungi. This yeast therefore has great potential for biocontrol applications against fungal diseases; particularly in the phyllosphere where this species is frequently found. To elucidate the molecular basis of the antifungal activity of M. pulcherrima, we compared a wild-type strain with a spontaneously occurring, pigmentless, weakly antagonistic mutant derivative. Whole genome sequencing of the wild-type and mutant strains identified a point mutation that creates a premature stop codon in the transcriptional regulator gene SNF2 in the mutant. Complementation of the mutant strain with the wild-type SNF2 gene restored pigmentation and recovered the strong antifungal activity. Mass spectrometry (UPLC HR HESI-MS) proved the presence of the pulcherrimin precursors cyclo(Leu-Leu) and pulcherriminic acid and identified new precursor and degradation products of pulcherriminic acid and/or pulcherrimin. All of these compounds were identified in the wild-type and complemented strain, but were undetectable in the pigmentless snf2 mutant strain. These results thus identify Snf2 as a regulator of antifungal activity and pulcherriminic acid biosynthesis in M. pulcherrima and provide a starting point for deciphering the molecular functions underlying the antagonistic activity of this yeast.
Collapse
Affiliation(s)
- Deborah Gore-Lloyd
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Inés Sumann
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Alexander O Brachmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Kerstin Schneeberger
- Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | | | | | - Michael Schläfli
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Pascal Kirner
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Amanda Santos Kron
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Vincent Somerville
- Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Kenneth H Wolfe
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Christian H Ahrens
- Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.,SIB, Swiss Institute of Bioinformatics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Daniel Henk
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| |
Collapse
|
20
|
Sirén K, Mak SST, Melkonian C, Carøe C, Swiegers JH, Molenaar D, Fischer U, Gilbert MTP. Taxonomic and Functional Characterization of the Microbial Community During Spontaneous in vitro Fermentation of Riesling Must. Front Microbiol 2019; 10:697. [PMID: 31024486 PMCID: PMC6465770 DOI: 10.3389/fmicb.2019.00697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although there is an extensive tradition of research into the microbes that underlie the winemaking process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sampled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We specifically explored community variation relating to three points: (i) how microbial communities vary by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how microbial community varies between musts that successfully complete alcoholic fermentation and those that become 'stuck' in the process. Our metabarcoding data showed a general influence of microbial composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the differential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing on a subset of the samples to provide preliminary insights into the potential relevance of this observation, and used the data to both investigate functional potential and reconstruct draft genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions during the early fermentation stage. The binning results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read recruitment and functional analysis of this data revealed that during fermentation, a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. During alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down. Complementary approaches to annotation instead of relying a single database provide more coherent information true species. Lastly, our metabarcoding data enabled us to identify a relationship between stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that although the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermentations. Overall, our results showcase the different ways in which metagenomic analyses can improve our understanding of the wine alcoholic fermentation process.
Collapse
Affiliation(s)
- Kimmo Sirén
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Siu Tze Mak
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Chrats Melkonian
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Carøe
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Douwe Molenaar
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ulrich Fischer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Morrison MD, Fajardo-Cavazos P, Nicholson WL. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity 2019; 5:1. [PMID: 30623021 PMCID: PMC6323116 DOI: 10.1038/s41526-018-0061-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
The human spaceflight environment is notable for the unique factor of microgravity, which exerts numerous physiologic effects on macroscopic organisms, but how this environment may affect single-celled microbes is less clear. In an effort to understand how the microbial transcriptome responds to the unique environment of spaceflight, the model Gram-positive bacterium Bacillus subtilis was flown on two separate missions to the International Space Station in experiments dubbed BRIC-21 and BRIC-23. Cells were grown to late-exponential/early stationary phase, frozen, then returned to Earth for RNA-seq analysis in parallel with matched ground control samples. A total of 91 genes were significantly differentially expressed in both experiments; 55 exhibiting higher transcript levels in flight samples and 36 showing higher transcript levels in ground control samples. Genes upregulated in flight samples notably included those involved in biofilm formation, biotin and arginine biosynthesis, siderophores, manganese transport, toxin production and resistance, and sporulation inhibition. Genes preferentially upregulated in ground control samples notably included those responding to oxygen limitation, e.g., fermentation, anaerobic respiration, subtilosin biosynthesis, and anaerobic regulatory genes. The results indicated differences in oxygen availability between flight and ground control samples, likely due to differences in cell sedimentation and the toroidal shape assumed by the liquid cultures in microgravity.
Collapse
Affiliation(s)
- Michael D. Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| |
Collapse
|
22
|
Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc Natl Acad Sci U S A 2018; 115:11030-11035. [PMID: 30297402 DOI: 10.1073/pnas.1806268115] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites are key in how organisms from all domains of life interact with their environment and each other. The iron-binding molecule pulcherrimin was described a century ago, but the genes responsible for its production in budding yeasts have remained uncharacterized. Here, we used phylogenomic footprinting on 90 genomes across the budding yeast subphylum Saccharomycotina to identify the gene cluster associated with pulcherrimin production. Using targeted gene replacements in Kluyveromyces lactis, we characterized the four genes that make up the cluster, which likely encode two pulcherriminic acid biosynthesis enzymes, a pulcherrimin transporter, and a transcription factor involved in both biosynthesis and transport. The requirement of a functional putative transporter to utilize extracellular pulcherrimin-complexed iron demonstrates that pulcherriminic acid is a siderophore, a chelator that binds iron outside the cell for subsequent uptake. Surprisingly, we identified homologs of the putative transporter and transcription factor genes in multiple yeast genera that lacked the biosynthesis genes and could not make pulcherrimin, including the model yeast Saccharomyces cerevisiae We deleted these previously uncharacterized genes and showed they are also required for pulcherrimin utilization in S. cerevisiae, raising the possibility that other genes of unknown function are linked to secondary metabolism. Phylogenetic analyses of this gene cluster suggest that pulcherrimin biosynthesis and utilization were ancestral to budding yeasts, but the biosynthesis genes and, subsequently, the utilization genes, were lost in many lineages, mirroring other microbial public goods systems that lead to the rise of cheater organisms.
Collapse
|
23
|
Regulation of the Synthesis and Secretion of the Iron Chelator Cyclodipeptide Pulcherriminic Acid in Bacillus licheniformis. Appl Environ Microbiol 2018; 84:AEM.00262-18. [PMID: 29703732 DOI: 10.1128/aem.00262-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 01/27/2023] Open
Abstract
The cyclodipeptide pulcherriminic acid synthesized by Bacillus licheniformis is an iron chelator that antagonizes certain pathogens by removing iron from the environment. But since the insoluble iron-pulcherriminic acid complex cannot act as an iron carrier as siderophores do, excessive synthesized pulcherriminic acid causes iron starvation for the producer cells. At present, the regulation of pulcherriminic acid synthesis and the mechanism by which B. licheniformis strikes a balance between biocontrol and self-protection from excessive iron removal remain unclear. This study provides insights into the regulatory network and explains the mechanism of pulcherriminic acid biosynthesis. The yvmC-cypX synthetic gene cluster was directly negatively regulated by three regulators: AbrB, YvnA, and YvmB. Within the regulatory network, YvnA expression was repressed not only by AbrB but also by iron-limiting environments, while YvmB expression was repressed by YvnA. The transporter gene yvmA is repressed by YvmB and is required for pulcherriminic acid secretion. The biosynthesis window is determined by the combined concentration of the three regulators in an iron-rich environment. Under iron-limiting conditions, cells close the pulcherriminic acid synthesis pathway by downregulating YvnA expression.IMPORTANCE The cyclodipeptides are widespread in nature and exhibit a broad variety of biological and pharmacological activities. The cyclodipeptide scaffold is synthesized by nonribosomal peptide synthetases (NRPSs) and cyclodipeptide synthases (CDPSs). At present, it is clear that CDPSs use aminoacyl tRNAs as substrates to synthesize the two peptide bonds, and the pulcherriminic acid synthase YvmC is a member of the eight identified CDPSs. However, little is known about the regulation of cyclodipeptide synthesis and secretion. In this study, we show that AbrB, which is considered to be the main regulator of NRPS-dependent pathways, is also involved in the regulation of CDPS genes. However, AbrB is not the decisive factor for pulcherriminic acid synthesis, as the expression of YvnA determines the fate of pulcherriminic acid synthesis. With this information on how CDPS gene transcription is regulated, a clearer understanding of cyclodipeptide synthesis can be developed for B. licheniformis Similar approaches may be used to augment our knowledge on CDPSs in other bacteria.
Collapse
|
24
|
Piombo E, Sela N, Wisniewski M, Hoffmann M, Gullino ML, Allard MW, Levin E, Spadaro D, Droby S. Genome Sequence, Assembly and Characterization of Two Metschnikowia fructicola Strains Used as Biocontrol Agents of Postharvest Diseases. Front Microbiol 2018; 9:593. [PMID: 29666611 PMCID: PMC5891927 DOI: 10.3389/fmicb.2018.00593] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
The yeast Metschnikowia fructicola was reported as an efficient biological control agent of postharvest diseases of fruits and vegetables, and it is the bases of the commercial formulated product "Shemer." Several mechanisms of action by which M. fructicola inhibits postharvest pathogens were suggested including iron-binding compounds, induction of defense signaling genes, production of fungal cell wall degrading enzymes and relatively high amounts of superoxide anions. We assembled the whole genome sequence of two strains of M. fructicola using PacBio and Illumina shotgun sequencing technologies. Using the PacBio, a high-quality draft genome consisting of 93 contigs, with an estimated genome size of approximately 26 Mb, was obtained. Comparative analysis of M. fructicola proteins with the other three available closely related genomes revealed a shared core of homologous proteins coded by 5,776 genes. Comparing the genomes of the two M. fructicola strains using a SNP calling approach resulted in the identification of 564,302 homologous SNPs with 2,004 predicted high impact mutations. The size of the genome is exceptionally high when compared with those of available closely related organisms, and the high rate of homology among M. fructicola genes points toward a recent whole-genome duplication event as the cause of this large genome. Based on the assembled genome, sequences were annotated with a gene description and gene ontology (GO term) and clustered in functional groups. Analysis of CAZymes family genes revealed 1,145 putative genes, and transcriptomic analysis of CAZyme expression levels in M. fructicola during its interaction with either grapefruit peel tissue or Penicillium digitatum revealed a high level of CAZyme gene expression when the yeast was placed in wounded fruit tissue.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Turin, Italy
- Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Turin, Italy
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Michael Wisniewski
- United States Department of Agriculture – Agricultural Research Service, Kernersville, WV, United States
| | - Maria Hoffmann
- Division of Microbiology, United States Food and Drug Administration, College Park, MD, United States
| | - Maria L. Gullino
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Turin, Italy
- Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Turin, Italy
| | - Marc W. Allard
- Division of Microbiology, United States Food and Drug Administration, College Park, MD, United States
| | - Elena Levin
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Turin, Italy
- Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Turin, Italy
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
25
|
Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S. Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 2017; 183:1323-1335. [PMID: 28523413 DOI: 10.1007/s12010-017-2500-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
Pulcherrimin, a potential biocontrol agent produced by microorganisms, has the promising applications in the agricultural, medical, and food areas, and the low yield of pulcherrimin has hindered its applications. In this study, the red pigment produced by Bacillus licheniformis DW2 was identified as pulcherrimin through the spectrometry analysis and genetic manipulation, and the component of the medium used for pulcherrimin production was optimized. Based on our results, the addition of 1.0 g L-1 Tween 80 could improve the yield of pulcherrimin, and glucose and (NH4)2SO4 were served as the optimal carbon and nitrogen sources for pulcherrimin synthesis, respectively. Furthermore, an orthogonal array design was applied for optimization of the medium. Under optimized condition, the maximum yield of pulcherrimin was 331.17 mg L-1, 5.30-fold higher than that of the initial condition, which was the maximum yield reported for pulcherrimin production. Collectively, this study provided a promising strain and a feasible approach to achieve the high-level production of antimicrobial pulcherrimin.
Collapse
Affiliation(s)
- Xiaoyun Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dongbo Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yangyang Zhan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
26
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|