1
|
Singha S, Koop G, Rahman MM, Ceciliani F, Howlader MMR, Boqvist S, Cremonesi P, Hoque MN, Persson Y, Lecchi C. Foodborne bacteria in milk and milk products along the water buffalo milk chain in Bangladesh. Sci Rep 2024; 14:16708. [PMID: 39030251 PMCID: PMC11271598 DOI: 10.1038/s41598-024-67705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Controlling foodborne pathogens in buffalo milk is crucial for ensuring food safety. This study estimated the prevalence of nine target genes representing seven critical foodborne bacteria in milk and milk products, and identified factors associated with their presence in buffalo milk chain nodes in Bangladesh. One hundred and forty-three milk samples from bulk tank milk (n = 34), middlemen (n = 37), milk collection centers (n = 37), and milk product shops (n = 35) were collected and analyzed using RT-PCR. Escherichia (E.) coli, represented through yccT genes, was the most prevalent throughout the milk chain (81-97%). Chi-squared tests were performed to identify the potential risk factors associated with the presence of foodborne bacteria encoded for different genes. At the middleman level, the prevalence of E. coli was associated with the Mymensingh, Noakhali, and Bhola districts (P = 0.01). The prevalence of Listeria monocytogenes, represented through inlA genes, and Yersinia (Y.) enterocolitica, represented through yst genes, were the highest at the farm level (65-79%). The prevalence of both bacteria in bulk milk was associated with the Noakhali and Bhola districts (P < 0.05). The prevalence of Y. enterocolitica in bulk milk was also associated with late autumn and spring (P = 0.01) and was higher in buffalo-cow mixed milk than in pure buffalo milk at the milk collection center level (P < 0.01). The gene stx2 encoding for Shiga toxin-producing (STEC) E. coli was detected in 74% of the milk products. At the middleman level, the prevalence of STEC E. coli was associated with the use of cloths or tissues when drying milk containers (P = 0.01). Salmonella enterica, represented through the presence of invA gene, was most commonly detected (14%) at the milk collection center. The use of plastic milk containers was associated with a higher prevalence of Staphylococcus aureus, represented through htrA genes, at milk product shops (P < 0.05). These results suggest that raw milk consumers in Bangladesh are at risk if they purchase and consume unpasteurized milk.
Collapse
Affiliation(s)
- Shuvo Singha
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Lodi, Italy
- Department of Physiology, Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
| | - Gerrit Koop
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
- Sustainable Ruminant Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Md Mizanur Rahman
- Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Lodi, Italy
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
| | - Md Matiar Rahman Howlader
- Department of Physiology, Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sofia Boqvist
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh.
- Department of Animal Biosciences, The Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 26900, Lodi, Italy
| | - M Nazmul Hoque
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ylva Persson
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
- Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Lodi, Italy
- Udder Health Bangladesh, Chattogram, 4225, Bangladesh
| |
Collapse
|
2
|
Ravindhiran R, Sivarajan K, Sekar JN, Murugesan R, Dhandapani K. Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. MICROBIAL ECOLOGY 2023; 86:2231-2251. [PMID: 37479828 DOI: 10.1007/s00248-023-02269-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Listeria monocytogenes, the third most deleterious zoonotic pathogen, is a major causative agent of animal and human listeriosis, an infection related to the consumption of contaminated food products. Even though, this pathogen has been responsible for the outbreaks of foodborne infections in the early 1980s, the major outbreaks have been reported during the past two decades. Listeriosis infection in the host is a rare but life-threatening disease with major public health and economic implications. Extensive reports on listeriosis outbreaks are associated with milk and milk products, meat and meat products, and fresh produce. This bacterium can adapt to any environmental and stress conditions, making it a prime causative agent for major foodborne diseases. The pathogen could survive an antibiotic treatment and persist in the host cell, thereby escaping the standard diagnostic practices. The current review strives to provide concise information on the epidemiology, serotypes, and pathogenesis of the L. monocytogenes to decipher the knowledge on the endurance of the pathogen inside the host and food products as a vehicle for Listeria contaminations. In addition, various detection methods for Listeria species from food samples and frontline regimens of L. monocytogenes treatment have also been discussed.
Collapse
Affiliation(s)
- Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
3
|
Oluwafemi YD, Igere BE, Ekundayo TC, Ijabadeniyi OA. Prevalence of Listeria monocytogenes in milk in Africa: a generalized logistic mixed-effects and meta-regression modelling. Sci Rep 2023; 13:12646. [PMID: 37542148 PMCID: PMC10403535 DOI: 10.1038/s41598-023-39955-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Listeria outbreaks and food recalls is on the raise globally. Milk particularly is highly susceptible to Listeria as its production and storage adequately support Listeria growth. The extent of milk contamination with Listeria monocytogenes (Lm) and preventative actions to halt milk associated outbreaks in Africa are unknown. Hence, this study aimed at assessing the national and subregional prevalence of Lm in milk in Africa and identify impacting factors via generalized logistic mixed-effects (GLMEs) and meta-regression modelling. Lm-milk-specific data acquired from primary studies according to standard protocol were fitted using a GLMEs. The GLMEs was subjected to leave-one-study-out-cross-validation (LOSOCV). Factors impacting Lm prevalence in milk were assayed via a 1000-permutation-assisted meta-regression-modelling. The pooled prevalence of Lm in milk in Africa was 4.35% [2.73-6.86] with a prediction interval (PI) of 0.14-59.86% and LOSOCV value of 2.43% [1.62-3.62; PI: 0.32-16.11%]. Western Africa had the highest prevalence [20.13%, 4.13-59.59], then Southern Africa [5.85%, 0.12-75.72], Northern Africa [4.67%, 2.82-7.64], Eastern Africa [1.91%, 0.64-5.55], and there was no record from Central Africa. In term of country, Lm prevalence in milk significantly (p < 0.01) varied from 0.00 to 90.00%. Whereas the Lm prevalence was negligibly different (p = 0.77) by milk type, raw-milk had the highest prevalence [5.26%], followed by fermented-milk [4.76%], boiled-milk [2.90%], pasteurized-milk [1.64%], and powdered-milk [1.58%]. DNA extraction approach did not significantly (p = 0.07) affect Lm prevalence (Boiling [7.82%] versus Kit [7.24%]) as well as Lm detection method (p = 0.10; (ACP [3.64%] vs. CP [8.92%] vs. CS [2.27%] vs. CSP [6.82%]). Though a bivariate/multivariate combination of all tested variables in meta-regression explained 19.68-68.75% (R2) variance in Lm prevalence in milk, N, nation, and subregion singly/robustly accounted for 17.61% (F1;65 = 7.5994; p = 0.005), 63.89% (F14;52 = 4.2028; p = 0.001), and 16.54% (F3;63 = 3.4743; p = 0.026), respectively. In conclusion, it is recommended that adequate sample size should be prioritized in monitoring Lm in milk to prevent spuriously high or low prevalence to ensure robust, plausible, and credible estimate. Also, national efforts/interests and commitments to Lm monitoring should be awaken.
Collapse
Affiliation(s)
- Yinka D Oluwafemi
- Department of Microbiology, University of Medical Sciences, Ondo, Nigeria
| | - Bright E Igere
- Department of Microbiology, Dennis Osadebay University Anwai, Asaba, Delta State, Nigeria
| | - Temitope C Ekundayo
- Department of Microbiology, University of Medical Sciences, Ondo, Nigeria.
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, 4001, South Africa.
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, 4001, South Africa
| |
Collapse
|
4
|
Abou Elez RMM, Elsohaby I, Al-Mohammadi AR, Seliem M, Tahoun ABMB, Abousaty AI, Algendy RM, Mohamed EAA, El-Gazzar N. Antibacterial and anti-biofilm activities of probiotic Lactobacillus plantarum against Listeria monocytogenes isolated from milk, chicken and pregnant women. Front Microbiol 2023; 14:1201201. [PMID: 37538844 PMCID: PMC10394229 DOI: 10.3389/fmicb.2023.1201201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that poses significant risks to public health and food safety. The present study aimed to identify the presence of Listeria spp. in various samples, including pasteurized milk, chicken fillets, and stool samples from pregnant women in Sharkia Governorate, Egypt. Additionally, the study identified the serotypes, virulence-associated genes, antimicrobial resistance patterns, and biofilm formation in L. monocytogenes isolates. Moreover, the antibacterial and anti-biofilm activity of Lactobacillus plantarum ATCC 14917 (L. plantarum) against L. monocytogenes isolates was investigated. A cross-sectional study was conducted from August 2021 to January 2022 to collect 300 samples of pasteurized milk, chicken fillets, and stool from pregnant women admitted to outpatient clinics of hospitals. The results showed that 32.7% of the samples were positive for Listeria spp., including L. innocua (48.9%), L. monocytogenes (26.5%), L. ivanovii (14.3%), L. grayi (5.1%), and L. welshimeri (5.1%). Among all L. monocytogenes isolates, hlyA, actA, inlC, and inlJ virulence-associated genes were detected. However, the virulence genes plcB, iap, and inlA were found in 10 (38.5%), 8 (30.8%), and 25 (96.2%) isolates, respectively. The L. monocytogenes isolates classified into four serotypes (1/2a, 1/2b, 1/2c, and 4b), with 1/2a and 4b each identified in 30.8% of the isolates, while 1/2b and 1/2c were identified in 19.2% of the isolates. All L. monocytogenes isolates showed 100% resistance to streptomycin, kanamycin, and nalidix acid, and 92.3% of isolates showed gentamicin resistance. However, all isolates were susceptible to ampicillin and ampicillin/sulbactam. Multidrug resistance (MDR) was observed in 20 (76.9%) L. monocytogenes isolates. The biofilm formation ability of 26 L. monocytogenes isolates was evaluated at different incubation temperatures. At 4°C, 25°C, and 37°C, 53.8, 69.2, and 80.8% of the isolates, respectively, were biofilm producers. Furthermore, 23.1% were strong biofilm producers at both 4°C and 25°C, while 34.6% were strong biofilm formers at 37°C. Treating L. monocytogenes isolates with L. plantarum cell-free supernatant (CFS) reduced the number of biofilm-producing isolates to 15.4, 42.3, and 53.8% at 4°C, 25°C, and 37°C, respectively. L. plantarum's CFS antibacterial activity was tested against six virulent, MDR, and biofilm-forming L. monocytogenes isolates. At a concentration of 5 μg/mL of L. plantarum CFS, none of the L. monocytogenes isolates exhibited an inhibition zone. However, an inhibition zone was observed against L. monocytogenes strains isolated from pasteurized milk and pregnant women's stools when using a concentration of 10 μg/mL. Transmission electron microscopy (TEM) revealed that L. plantarum CFS induced morphological and intracellular structural changes in L. monocytogenes. In conclusion, this study identified virulent MDR L. monocytogenes isolates with strong biofilm-forming abilities in food products in Egypt, posing significant risks to food safety. Monitoring the prevalence and antimicrobial resistance profile of L. monocytogenes in dairy and meat products is crucial to enhance their safety. Although L. plantarum CFS showed potential antibacterial and anti-biofilm effects against L. monocytogenes isolates, further research is needed to explore its full probiotic potential.
Collapse
Affiliation(s)
- Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa Seliem
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa B. M. B. Tahoun
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira I. Abousaty
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reem M. Algendy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Kalinin EV, Chalenko YM, Kezimana P, Stanishevskyi YM, Ermolaeva SA. Combination of growth conditions and InlB-specific dot-immunoassay for rapid detection of Listeria monocytogenes in raw milk. J Dairy Sci 2023; 106:1638-1649. [PMID: 36710191 DOI: 10.3168/jds.2022-21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/03/2022] [Indexed: 01/30/2023]
Abstract
The gram-positive bacterium Listeria monocytogenes is an important foodborne pathogen contaminating dairy products. Closely related to L. monocytogenes saprophytic Listeria spp. are also frequent contaminators of food and, particularly, dairy products. To distinguish L. monocytogenes from nonpathogenic Listeria spp. and other bacteria, a dot-immunoassay was developed. The immunoassay is based on the polyclonal antibody to the secreted form of the surface virulence-associated L. monocytogenes-specific InlB protein. To increase InlB production, bacteria were grown on the brain-heart infusion agar supplemented with 0.2% activated charcoal (BHIC agar). Direct plating of artificially contaminated raw milk samples on the BHIC agar followed by the dot-immunoassay allowed a rapid identification of L. monocytogenes in concentrations as little as 10 cfu/mL. Using the developed approach, preliminary results were obtained within 14 h, and the final results were obtained after 26 h. The dot-immunoassay was tested on L. monocytogenes strains belonging to different clonal complexes and phylogenetic lineages, Listeria spp., and other bacterial species. Results showed the exceptional specificity of the developed dot-immunoassay for the rapid identification of L. monocytogenes.
Collapse
Affiliation(s)
- Egor V Kalinin
- Laboratory of Ecology of Pathogenic Bacteria, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; Institutue of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| | - Yaroslava M Chalenko
- Laboratory of Ecology of Pathogenic Bacteria, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Parfait Kezimana
- Institutue of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Yaroslav M Stanishevskyi
- Institutue of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Svetlana A Ermolaeva
- Laboratory of Ecology of Pathogenic Bacteria, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia.
| |
Collapse
|
6
|
Algammal AM, Alfifi KJ, Mabrok M, Alatawy M, Abdel-moneam DA, Alghamdi S, Azab MM, Ibrahim RA, Hetta HF, El-Tarabili RM. Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes. Infect Drug Resist 2022; 15:2167-2185. [PMID: 35498633 PMCID: PMC9052338 DOI: 10.2147/idr.s365254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023] Open
Abstract
Background Bacillus cereus is a common food poisoning pathogen in humans. This study aimed to investigate the prevalence, molecular typing, antibiogram profile, pathogenicity, dissemination of virulence and antibiotic resistance genes associated with natural B. cereus infection among Mugil seheli. Methods Consequently, 120 M. seheli (40 healthy and 80 diseased) were obtained from private fish farms in Port-said Governorate, Egypt. Afterward, samples were processed for clinical, post-mortem, and bacteriological examinations. The recovered isolates were tested for antimicrobial susceptibility, phenotypic assessment of virulence factors, pathogeneicity, and PCR-based detection of virulence and antibiotic resistance genes. Results B. cereus was isolated from 30 (25%) examined fish; the highest prevalence was noticed in the liver (50%). The phylogenetic and sequence analyses of the gyrB gene revealed that the tested B. cereus isolate displayed a high genetic similarity with other B. cereus strains from different origins. All the recovered B. cereus isolates (n =60, 100%) exhibited β-hemolytic and lecithinase activities, while 90% (54/60) of the tested isolates were biofilm producers. Using PCR, the tested B. cereus isolates harbor nhe, hbl, cytK, pc-plc, and ces virulence genes with prevalence rates of 91.6%, 86.6%, 83.4%, 50%, and 33.4%, respectively. Moreover, 40% (24/60) of the tested B. cereus isolates were multidrug-resistant (MDR) to six antimicrobial classes and carried the bla1, bla2, tetA, and ermA genes. The experimentally infected fish with B. cereus showed variable mortality in direct proportion to the inoculated doses. Conclusion As far as we know, this is the first report that emphasized the existence of MDR B. cereus in M. seheli that reflects a threat to the public health and the aquaculture sector. Newly emerging MDR B. cereus in M. seheli commonly carried virulence genes nhe, hbl, cytK, and pc-plc, as well as resistance genes bla1, bla2, tetA, and ermA.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Khyreyah J Alfifi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Marfat Alatawy
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Dalia A Abdel-moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, 12613, Egypt
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Marwa M Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Reham A Ibrahim
- Marine Environmental Division- National Institute of Oceanography and Fisheries (NIOF), Suez, 43511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
7
|
ROSA MCD, IACUZIO R, BARBOSA GR, PEREIRA RDCL, CRUZADO-BRAVO M, RALL VLM, VALLIM DC, SILVA NCC. Detection of Listeria innocua in the dairy processing chain: resistance to antibiotics and essential oils. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.81421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Munir MZ, Khan JA, Ijaz M, Akhtar F. First substantiation of clinico-molecular investigation of pathogenic Listeria monocytogenes in Nili-Ravi buffaloes. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:120-127. [PMID: 36118607 PMCID: PMC9441160 DOI: 10.22099/ijvr.2022.41671.6062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Background Listeriosis is a zoonotic disease of humans, animals, birds, fish, and crustaceans worldwide. Domestic animals, especially ruminants, are more susceptible to listeriosis. This infectious disease is caused by Listeria monocytogenes, an intracellular bacterium that can cross blood-brain, placental and intestinal barriers. In Pakistan, the incidence and reliable diagnostic tools for the L. monocytogenes are unidentified in Nili-Ravi buffaloes. Aims This study was designed to inspect listeriosis in buffaloes through molecular techniques and haemato-biochemical analyses. Methods A total of 230 samples (115 milk and 115 faecal samples) were collected from symptomatic listeriosis cases in Nili-Ravi buffaloes of 3 geographical districts (Rawalpindi, Faisalabad, and Muzaffargarh) Punjab, Pakistan. These samples were processed for DNA extraction using commercialized kits, and L. monocytogenes was confirmed by conventional PCR. Results The results revealed that 6.08% and 4.34% of the isolates from milk and faecal samples were found positive for L. monocytogenes, respectively. The phylogenetic analysis of these isolates showed 97-100% similarity to isolates from the USA, Switzerland, Japan, and India. The accession numbers on NCBI GenBank appeared as HF558398 (Switzerland), KP965732 (India), EU372032 (USA), and LC259850 (Japan). Haemato-biochemical examinations showed that the values of WBCs, plasma fibrinogen, ALT, and AST significantly increased (P<0.05) in diseased buffaloes compared to healthy ones. Conclusion The occurrence of listeriosis in buffaloes urges continuous monitoring and surveillance to prevent this emerging disease in Pakistan.
Collapse
Affiliation(s)
- M. Z. Munir
- Ph.D. Student in Veterinary Medicine, Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary, and Animal Sciences, Lahore, 54000, Pakistan
| | - J. A. Khan
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary, and Animal Sciences, Lahore, 54000, Pakistan
| | - M. Ijaz
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary, and Animal Sciences, Lahore, 54000, Pakistan
| | - F. Akhtar
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary, and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
9
|
Bioactivity of Essential Oils for Mitigation of Listeria monocytogenes Isolated from Fresh Retail Chicken Meat. Foods 2021; 10:foods10123006. [PMID: 34945555 PMCID: PMC8701900 DOI: 10.3390/foods10123006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is one of the most severe foodborne pathogens found in several habitats. Therefore, this study aims to investigate the antilisterial activity of different essential oils (EOs) against multidrug-resistant (MDR) L. monocytogenes strains isolated from fresh chicken meat. Our results showed that the prevalence of L. monocytogenes in the examined samples was 48%. Seventy-eight isolates were identified as L. monocytogenes. Out of these, 64.1% were categorized as MDR and were categorized in 18 patterns with 50 MDR isolates. One isolate was selected randomly from each pattern to investigate their biofilm-forming ability, resistance, and virulence genes incidence. Out of 18 MDR isolates, 88.9% showed biofilm-forming ability. Moreover, the most prevalent resistance genes were ermB (72%), aadA (67%), penA (61%), and floR genes (61%). However, the most prevalent virulence genes were inlA (94.4%), prfA (88.9%), plcB (83.3%), and actaA (83.3%). The antilisterial activity of EOs showed that cinnamon bark oil (CBO) was the most effective antilisterial agent. CBO activity could be attributed to the bioactivity of cinnamaldehyde which effects cell viability by increasing the bacterial cell electrical conductivity, ion leakage, and salt tolerance capacity loss. Therefore, CBO could be an effective alternative natural agent for food safety applications.
Collapse
|
10
|
Alsayeqh AF, Baz AHA, Darwish WS. Antimicrobial-resistant foodborne pathogens in the Middle East: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68111-68133. [PMID: 34668139 DOI: 10.1007/s11356-021-17070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Foodborne pathogens are known as significant public health hazards worldwide, particularly in the Middle East region. Antimicrobial resistance (AMR) among foodborne pathogens becomes one of the top challenges for the environment, public health, and food safety sectors. However, less is known about antimicrobial-resistant foodborne pathogens in the Middle East region. Possibly because of the lack of surveillance, documentation, and reporting. This review focuses on the current status of antimicrobial resistance profiling among foodborne pathogens in the Middle East. Therefore, PubMed and other relevant databases were searched following PRISMA guidelines. Subject heading and texts were searched for "antimicrobial resistances," "foodborne," and "Middle East" to identify observational studies on AMR foodborne pathogens published during the last 10 years (2011 to 2020). Article retrieval and screening were done using a structured search string and strict inclusion/exclusion criteria. Median and interquartile ranges of percent resistance were calculated for each antibiotic-bacterium combination. A total of 249 articles were included in the final analysis from ten countries, where only five countries had more than 85% of the included articles. The most commonly reported pathogens were Escherichia coli, Salmonella spp. Staphylococcus aureus, and Listeria spp. An apparent rise in drug resistance among foodborne pathogens was recorded particularly against amoxicillin-clavulanic acid, ampicillin, nalidixic acid, streptomycin, and tetracycline that are commonly prescribed in most countries in the Middle East. Besides, there is a lack of standardization and quality control for microbiological identification and susceptibility testing methods in many of the Middle East countries.
Collapse
Affiliation(s)
- Abdullah F Alsayeqh
- Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, 662251452, Saudi Arabia
| | | | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
11
|
Conditions of In Vitro Biofilm Formation by Serogroups of Listeria monocytogenes Isolated from Hass Avocados Sold at Markets in Mexico. Foods 2021; 10:foods10092097. [PMID: 34574207 PMCID: PMC8467555 DOI: 10.3390/foods10092097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is an important pathogen that has been implicated in foodborne illnesses and the recall of products such as fruit and vegetables. This study determines the prevalence of virulence-associated genes and serogroups and evaluates the effects of different growth media and environmental conditions on biofilm formation by L. monocytogenes. Eighteen L. monocytogenes isolates from Hass avocados sold at markets in Guadalajara, Mexico, were characterized by virulence-associated genes and serogroup detection with PCR. All isolates harbored 88.8% actA, 88.8% plcA, 83.3% mpl, 77.7% inlB, 77.7% hly, 66.6% prfA, 55.5% plcB, and 33.3% inlA. The results showed that 38.8% of isolates harbored virulence genes belonging to Listeria pathogenicity island 1 (LIPI-1). PCR revealed that the most prevalent serogroup was serogroup III (1/2b, 3b, and 7 (n = 18, 66.65%)), followed by serogroup IV (4b, 4d-4e (n = 5, 27.7%)) and serogroup I (1/2a-3a (n = 1, 5.5%)). The assessment of the ability to develop biofilms using a crystal violet staining method revealed that L. monocytogenes responded to supplement medium TSBA, 1/10 diluted TSBA, and TSB in comparison with 1/10 diluted TSB (p < 0.05) on polystyrene at 240 h (p < 0.05). In particular, the biofilm formation by L. monocytogenes (7.78 ± 0.03-8.82 ± 0.03 log10 CFU/cm2) was significantly different in terms of TSBA on polypropylene type B (PP) (p < 0.05). In addition, visualization by epifluorescence microscopy, scanning electron microscopy (SEM), and treatment (DNase I and proteinase K) revealed the metabolically active cells and extracellular polymeric substances of biofilms on PP. L. monocytogenes has the ability to develop biofilms that harbor virulence-associated genes, which represent a serious threat to human health and food safety.
Collapse
|
12
|
El Hag MM, El Zubeir I, Mustafa NE. Prevalence of Listeria species in dairy farms in Khartoum State (Sudan). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Virulence Characterization of Listeria monocytogenes, Listeria innocua, and Listeria welshimeri Isolated from Fish and Shrimp Using In Vivo Early Zebrafish Larvae Models and Molecular Study. Pathogens 2020; 9:pathogens9121028. [PMID: 33302405 PMCID: PMC7762612 DOI: 10.3390/pathogens9121028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
Listeriosis is one of the most notable foodborne diseases and is characterized by high rates of mortality. L. monocytogenes is the main cause of human listeriosis outbreaks, however, there are isolated cases of disease caused by other species of the genus Listeria. The aim of this study was to evaluate strains of L. monocytogenes (n = 7), L. innocua (n = 6), and L. welshimeri (n = 2) isolated from fish and shrimps for their virulence based on the presence of virulence genes and the in vivo Danio rerio (zebrafish) larvae models. A total of 15 strains were analyzed. The zebrafish larvae model showed that the larvae injected with L. monocytogenes strains were characterized by the lowest survival rate (46.5%), followed by L. innocua strains (64.2%) and L. welshimeri (83.0%) strains. Multiplex PCRs were used for detection of selected virulence genes (luxS, actA2, prfA, inlB, rrn, iap, sigB, plcB, actA, hlyA), the majority of which were present in L. monocytogenes. Only a few virulence-related genes were found in L. welshimeri, however, no correlation between the occurrence of these genes and larval survival was confirmed. This research highlights the importance of the potential impact that Listeria spp. strains isolated from fish and shrimps may have on consumers.
Collapse
|
14
|
Kowalska J, MaĆkiw E, Stasiak M, Kucharek K, Postupolski J. Biofilm-Forming Ability of Pathogenic Bacteria Isolated from Retail Food in Poland. J Food Prot 2020; 83:2032-2040. [PMID: 32663301 DOI: 10.4315/jfp-20-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
ABSTRACT Biofilms have a significant impact on food safety in the food industry. Many foodborne outbreaks have been associated with pathogenic bacterial strains that can form a biofilm. The present study was conducted under the Official Control and Monitoring Program in Poland to examine the ability of pathogenic bacteria collected from retail food samples to form biofilms. Biofilm formation was assessed by qualitative detection of extracellular polymeric substances on Congo red agar, by adherence to glass with the tube method, by the crystal violet biofilm (CV) assay, and by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. A total of 40 isolates from food samples (10 strains each of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Bacillus cereus) were examined. The strains were classified as adherent, slightly adherent, or nonadherent; biofilm production was classified as weak (WBP), moderate (MBP), or strong (SBP); and metabolic activity was classified as weak (WMA), moderate (MMA), or high (HMA). The incubation conditions and time influenced the amount of biofilm formed as well as did the growth medium. In the test tubes with Luria-Bertani broth (LBB), 22.5% of the strains were adherent and 77.5% were slightly adherent. Stronger adhesion was obtained in brain heart infusion (BHI) with 2% sucrose; 60% of the isolates were classified as adherent. With the CV assay with LBB, SBP was noted for 7.5% of the strains after 24 h of incubation and for 37.5% of the strains after 48 h. In BHI plus 2% sucrose, SBP was noted for 42.5 and 37.6% of the strains after 24 and 48 h, respectively. With the MTT assay with LBB, HMA was found for 15% of the strains after 24 h of incubation and for 25% of the strains after 48 h. In BHI plus 2% sucrose, 70 and 85% of the incubated strains were classified as HMA after 24 and 48 h, respectively. HIGHLIGHTS
Collapse
Affiliation(s)
- Joanna Kowalska
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland.,(ORCID: https://orcid.org/0000-0001-9798-1068 [J.K.])
| | - ElŻbieta MaĆkiw
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Monika Stasiak
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Katarzyna Kucharek
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Jacek Postupolski
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| |
Collapse
|
15
|
Antimicrobial effect of spore-forming probiotics Bacillus laterosporus and Bacillus megaterium against Listeria monocytogenes. Arch Microbiol 2020; 202:2791-2797. [PMID: 32743669 DOI: 10.1007/s00203-020-02004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
There are several reports on the detection of Listeria monocytogenes in Iran, which has been identified as a major public health problem. In addition, due to drug resistance and strong biofilm formation of this pathogen, new approaches such as using probiotics are needed to combat this bacterium. The aim of this study was to investigate the effect of spore-forming probiotics on the expression of virulence genes hly, plc, inlA, and invasion of L. monocytogenes. Spore-forming probiotics were co-cultured with L. monocytogenes at different time points and following cell count, the expression level of virulence genes of L. monocytogenes was assessed by real-time PCR. To investigate the effect of the isolated strains on the invasiveness of L. monocytogenes at different time points, HT-29 cell line was used. Sporulated probiotics reduced the growth of L. monocytogenes in broth medium at different time periods. The number of L. monocytogenes co-cultured with Bacillus laterosporus decreased by 1, 3, 3, and 6 log at 2, 4, 8 and 24 h after treatment, respectively. In addition, the expression of virulence genes was decreased at different time points and the expression of hly and plcA genes was more affected. The invasion rate of L. monocytogenes on HT-29 cells was decreased by 1 to 6 log at different time points. Both probiotic strains inhibited bacterial growth at different time points; however, more sensitive methods should be established for an accurate assessment.
Collapse
|
16
|
Sun Y, Wen S, Zhao L, Xia Q, Pan Y, Liu H, Wei C, Chen H, Ge J, Wang H. Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet Res 2020; 16:176. [PMID: 32503535 PMCID: PMC7275385 DOI: 10.1186/s12917-020-02372-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to investigate the association among biofilm formation, virulence gene expression, and antibiotic resistance in P. mirabilis isolates collected from diarrhetic animals (n = 176) in northeast China between September 2014 and October 2016. Results Approximately 92.05% of the isolates were biofilm producers, whereas 7.95% of the isolates were non-producers. The prevalence of virulence genes in the biofilm producer group was significantly higher than that in the non-producer group. Biofilm production was significantly associated with the expression of ureC, zapA, rsmA, hmpA, mrpA, atfA, and pmfA (P < 0.05). The results of drug susceptibility tests revealed that approximately 76.7% of the isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR). Biofilm production was significantly associated with resistance to doxycycline, tetracycline, sulfamethoxazole, kanamycin, and cephalothin (P < 0.05). Although the pathogenicity of the biofilm producers was stronger than that of the non-producers, the biofilm-forming ability of the isolates was not significantly associated with morbidity and mortality in mice (P > 0.05). Conclusion Our findings suggested that a high level of multidrug resistance in P. mirabilis isolates obtained from diarrhetic animals in northeast China. The results of this study indicated that the positive rates of the genes expressed by biofilm-producing P. mirabilis isolates were significantly higher than those expressed by non-producing isolates.
Collapse
Affiliation(s)
- Yadong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.,Liaoning Vocational College of Ecological Engineering, Shenyang, 110122, P.R. China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, P.R. China
| | - Qiqi Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Chengwei Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, P.R. China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, P.R. China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
17
|
Gwida M, Lüth S, El-Ashker M, Zakaria A, El-Gohary F, Elsayed M, Kleta S, Al Dahouk S. Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua. Microorganisms 2020; 8:microorganisms8030414. [PMID: 32183339 PMCID: PMC7143663 DOI: 10.3390/microorganisms8030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Foodborne infection with Listeria causes potentially life-threatening disease listeriosis. Listeria monocytogenes is widely recognized as the only species of public health concern, and the closely related species Listeria innocua is commonly used by the food industry as an indicator to identify environmental conditions that allow for presence, growth, and persistence of Listeria spp. in general. In our study, we analyze the occurrence of Listeria spp. in a farm-to-fork approach in a poultry production chain in Egypt and identify bacterial entry gates and transmission systems. Prevalence of Listeria innocua at the three production stages (farm, slaughterhouse, food products) ranged from 11% to 28%. The pathogenic species Listeria monocytogenes was not detected, and Listeria innocua strains under study did not show genetic virulence determinants. However, the close genetic relatedness of Listeria innocua isolates (maximum 63 SNP differences) indicated cross-contamination between all stages from farm to final food product. Based on these results, chicken can be seen as a natural source of Listeria. Last but not least, sanitary measures during production should be reassessed to prevent bacterial contamination from entering the food chain and to consequently prevent human listeriosis infections. For this purpose, surveillance must not be restricted to pathogenic species.
Collapse
Affiliation(s)
- Mayada Gwida
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.G.)
| | - Stefanie Lüth
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
- Institute for Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
- Correspondence:
| | - Maged El-Ashker
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Zakaria
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.G.)
| | - Mona Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.G.)
| | - Sylvia Kleta
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
- RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
18
|
|
19
|
Osman KM, Kappell AD, Fox EM, Orabi A, Samir A. Prevalence, Pathogenicity, Virulence, Antibiotic Resistance, and Phylogenetic Analysis of Biofilm-Producing Listeria monocytogenes Isolated from Different Ecological Niches in Egypt: Food, Humans, Animals, and Environment. Pathogens 2019; 9:E5. [PMID: 31861483 PMCID: PMC7168649 DOI: 10.3390/pathogens9010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Serious outbreaks of foodborne disease have been caused by Listeria monocytogenes found in retail delicatessens and the severity of disease is significant, with high hospitalization and mortality rates. Little is understood about the formidable public health threat of L. monocytogenes in all four niches, humans, animals, food, and environment, in Egypt. This study analyzed the presence of L. monocytogenes collected from the four environmental niches and bioinformatics analysis was implemented to analyze and compare the data. PCR was used to detect virulence genes encoded by pathogenicity island (LIPI-1). prfA amino acid substation that causes constitutive expression of virulence was common in 77.7% of isolates. BLAST analysis did not match other isolates in the NCBI database, suggesting this may be a characteristic of the region associated with these isolates. A second group included the NH1 isolate originating in China, and BLAST analysis showed this prfA allele was shared with isolates from other global locations, such as Europe and North America. Identification of possible links and transmission pathways between the four niches helps to decrease the risk of disease in humans, to take more specific control measures in the context of disease prevention, to limit economic losses associated with food recalls, and highlights the need for treatment options.
Collapse
Affiliation(s)
- Kamelia M. Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| | - Anthony D. Kappell
- Water Quality Center, Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA;
| | - Edward M. Fox
- Department of Applied Sciences, North Umbria University, Newcastle upon Tyne NE1 2SU, UK;
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| |
Collapse
|
20
|
Rodríguez-Campos D, Rodríguez-Melcón C, Alonso-Calleja C, Capita R. Persistent Listeria monocytogenes Isolates from a Poultry-Processing Facility Form more Biofilm but Do Not Have a Greater Resistance to Disinfectants Than Sporadic Strains. Pathogens 2019; 8:E250. [PMID: 31756896 PMCID: PMC6963312 DOI: 10.3390/pathogens8040250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
Some strains of Listeria monocytogenes can persist in food-processing environments, increasing the likelihood of the contamination of foodstuffs. To identify traits that contribute to bacterial persistence, a selection of persistent and sporadic L. monocytogenes isolates from a poultry-processing facility was investigated for biofilm-forming ability (crystal violet assay). The susceptibility of sessile cells to treatments (five minutes) with sodium hypochlorite having 10% active chlorine (SHY: 10,000 ppm, 25,000 ppm, and 50,000 ppm) and benzalkonium chloride (BZK: 2500 ppm, 10,000 ppm, and 25,000 ppm) was also studied. All isolates exhibited biofilm formation on polystyrene. Persistent strains showed larger (p < 0.001) biofilm formation (OD580 = 0.301 ± 0.097) than sporadic strains (OD580 = 0.188 ± 0.082). A greater susceptibility to disinfectants was observed for biofilms of persistent strains than for those of sporadic strains. The application of SHY reduced biofilms only for persistent strains. BZK increased OD580 in persistent strains (2500 ppm) and in sporadic strains (all concentrations). These results indicate that the use of BZK at the concentrations tested could represent a public health risk. Findings in this work suggest a link between persistence and biofilm formation, but do not support a relationship between persistence and the resistance of sessile cells to disinfectants.
Collapse
Affiliation(s)
- Daniel Rodríguez-Campos
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (D.R.-C.); (C.R.-M.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
21
|
Inhibitory effect of bacteriocins from enterococci on developing and preformed biofilms of Listeria monocytogenes, Listeria ivanovii and Listeria innocua. World J Microbiol Biotechnol 2019; 35:96. [PMID: 31218558 DOI: 10.1007/s11274-019-2675-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/15/2019] [Indexed: 02/08/2023]
Abstract
The biofilm-forming ability of Listeria spp. is a concern to the food industry and health sectors. The aim of this study was to verify the inhibitory activity of bacteriocins produced by enterococci (Enterococcus faecium 20, 22 and 24 and Enterococcus faecalis 27) on developing biofilm and preformed biofilm of Listeria species. Bacteriocins were partially purified from cell free supernatant (CFS). L. monocytogenes 2032, L. innocua 2050 and L. ivanovii 2056 were selected to analyse the inhibitory effect of bacteriocins on biofilm biomass (crystal violet staining) and biofilm viability (XTT-reduction). The biomass of the developing and preformed biofilms of Listeria species were reduced (p < 0.05) in the presence of all bacteriocins tested. Overall, the reduction in biofilm biomass of developing biofilms was up to 87.4% for bacteriocin produced by E. faecium 22 (CFS22) against L. ivanovii and up to 87.1% for CFS22 against L. monocytogenes. These findings are in accordance with those observed in confocal microscopy analysis. Most of the CFS-containing bacteriocin (CFS22, CFS24, CFS27) were effective at decreasing the viability of biofilm cells from all Listeria species. The highest reduction in viability was observed for L. monocytogenes preformed biofilm cells (up to 98.7%), evidenced by fluorescence microscopy of propidium iodide-labelled cells. Scanning electron microscopy showed that cells of biofilm-treated bacteriocins displayed degenerative changes that may be indicative of cellular leakages. This study suggests that bacteriocins produced by enterococci have prospective applications to prevent biofilm formation and/or to reduce cell viability of formed biofilms of distinct Listeria species.
Collapse
|
22
|
Ricchi M, Scaltriti E, Cammi G, Garbarino C, Arrigoni N, Morganti M, Pongolini S. Short communication: Persistent contamination by Listeria monocytogenes of bovine raw milk investigated by whole-genome sequencing. J Dairy Sci 2019; 102:6032-6036. [PMID: 31103293 DOI: 10.3168/jds.2019-16267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Following the persistent detection of Listeria monocytogenes in raw bovine milk sold through a vending machine, the 120 lactating cows of the herd producing the milk were subjected to bacteriological investigation. A single cow with subclinical mastitis (1.2-1.3 × 105 somatic cells/mL) and persistent L. monocytogenes excretion was detected. The cow was subjected to antimicrobial therapy, but L. monocytogenes excretion remained high (>3.0 × 102 cfu/mL). Following culling of the infected cow, L. monocytogenes disappeared from the tank milk, and further isolates were recovered from the mammary parenchyma and lymph nodes of the infected cow. To investigate the clonal nature of the contamination, all isolates recovered in the study (n = 13) were analyzed by serogroup PCR, pulsed-field gel electrophoresis, and whole-genome sequencing. Our results demonstrated the clonal nature of the contamination. All isolates belonged to lineage II, serogroup IIa, sequence type 37, clonal complex 37 and harbored some virulence determinants. This case showed that, although relatively rare, prolonged milk contamination by L. monocytogenes can originate from subclinical and persistently infected cows, posing a health risk to consumers.
Collapse
Affiliation(s)
- M Ricchi
- Diagnostic Section of Piacenza, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Strada Faggiola 1, 29027-Gariga di Podenzano, (PC), Italy.
| | - E Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via dei Mercati 13/A, 43126-Parma, Italy
| | - G Cammi
- Diagnostic Section of Piacenza, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Strada Faggiola 1, 29027-Gariga di Podenzano, (PC), Italy
| | - C Garbarino
- Diagnostic Section of Piacenza, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Strada Faggiola 1, 29027-Gariga di Podenzano, (PC), Italy
| | - N Arrigoni
- Diagnostic Section of Piacenza, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Strada Faggiola 1, 29027-Gariga di Podenzano, (PC), Italy
| | - M Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via dei Mercati 13/A, 43126-Parma, Italy
| | - S Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via dei Mercati 13/A, 43126-Parma, Italy
| |
Collapse
|
23
|
Skowron K, Wiktorczyk N, Grudlewska K, Kwiecińska-Piróg J, Wałecka-Zacharska E, Paluszak Z, Gospodarek-Komkowska E. Drug-susceptibility, biofilm-forming ability and biofilm survival on stainless steel of Listeria spp. strains isolated from cheese. Int J Food Microbiol 2019; 296:75-82. [PMID: 30851643 DOI: 10.1016/j.ijfoodmicro.2019.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
The aim of the study was to analyze the contamination of mold cheese (Brie, Camembert, Gorgonzola, Munster and Roquefort) with Listeria spp. and assessment of culturable cells number recovered from the biofilm formed on the surface of stainless steel by obtained strains. Identified isolates (MALDI TOF MS technique) were subjected to susceptibility testing (disk-diffusion method) and their genetic similarity (PFGE method), ability to form biofilm (quantitative method), biofilm dry weight, and biofilm survival on stainless steel were evaluated. Out of 250 samples of cheese 26 (10.4%) were Listeria spp. positive, including 15 isolates (6.0% of samples) of L. monocytogenes, 7 isolates of L. innocua (2.8% of samples) and 4 isolates of L. welshimeri species (1.6% of samples). Of the 26 isolates tested, 22 strains were genetically different. It was shown that L. innocua and L. welshimeri strains were sensitive to all antibiotics tested, while two (16.7%) L. monocytogenes strains were resistant to penicillin and one (8.3%) to erythromycin. L. monocytogenes formed biofilm most intensively on stainless steel, while L. welshimeri the least effectively. The median of bacteria number recovered from the biofilm for L. monocytogenes was 6.81 log CFU × cm-2, for L. innocua - 5.63 log CFU × cm-2, and for L. welshimeri - 4.93 log CFU × cm-2. The survival in the biofilm of Listeria spp. strains decreased along with the increase in a storage temperature of steel coupons. The longest survival time was reported at 4 °C, i.e. 47.58-124.41 days, with an elimination rate of 0.06-0.13 log CFU × day-1. Collectively, L. monocytogenes is the most prevalent species of Listeria genus in the mold cheese. The ability of L. monocytogenes strains to form biofilm on stainless steel and survive in the food processing environment increases chance of the secondary contamination of food posing risk to the consumer health.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Natalia Wiktorczyk
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| | - Katarzyna Grudlewska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwid St., 50-375 Wrocław, Poland
| | - Zbigniew Paluszak
- Department of Microbiology and Food Technology, UTP University of Science and Technology, 6 Bernardyńska St., 85-029 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| |
Collapse
|
24
|
Abay S, Çakır Bayram L, Aydin F, Müştak HK, Diker KS, Erol İ. Pathogenicity, genotyping and antibacterial susceptibility of the Listeria spp. recovered from stray dogs. Microb Pathog 2018; 126:123-133. [PMID: 30381253 DOI: 10.1016/j.micpath.2018.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/25/2018] [Accepted: 10/27/2018] [Indexed: 12/22/2022]
Abstract
The present study aimed to determine the prevalence of Listeria spp. in stray dogs in the Kayseri province of Turkey. In addition, serotyping, genotyping and virulence gene analysis of the isolated Listeria spp. were performed and their pathogenicity and antibacterial susceptibility were investigated. The study included 80 rectal swaps taken from 80 stray dogs of different ages and gender that were sheltered in the Kayseri Municipal Dog Shelter. Listeria selective broth and Listeria selective agar were used for the isolation of Listeria spp. and the isolates were identified using a Microbact 12L (Oxoid, England) identification test kit. 16S rDNA sequencing and species-specific polymerase chain reaction (PCR) were performed for molecular identification of the isolates, multiplex PCR and a serological test were performed for serotyping, and PCR was used for virulence gene analysis. For determining the pathogenicity of L. monocytogenes and L. innocua isolates, a total of 100 mice (50 pregnant and 50 non-pregnant) were used. The mice were infected intraperitoneally; the inoculation dose was 1 × 109 CFU/mL and 0.2 mL was used for each animal. Tissue samples obtained from infected mice were processed for the re-isolation of the Listeria spp. and then stained with hematoxylin eosin and Brown-Brenn Gram stain. The antibiotic susceptibilities of the isolates were determined by the disk diffusion method. Listeria spp. were isolated from 5 (6.25%) of the 80 fecal samples. While 1 of the isolates was identified as L. monocytogenes, 4 of them were identified as L. innocua. Serotyping by serological and molecular methods revealed the isolate of L. monocytogenes to be serotype 1/2a. According to the phylogenetic trees, L. innocua and L. monocytogenes strains were clustered in different groups. The L. monocytogenes isolate was positive for all virulence genes tested. All L. innocua isolates were positive for the plcB gene. While all L. innocua isolates were negative for the lin1068 gene, 3 L. innocua isolates were found to be positive for the lin0558 gene. In mice infected with L. monocytogenes, pathological findings were observed in the uterus, intestines, pancreas, and heart. In mice infected with L. innocua, pathological findings were observed in the stomach, intestines and spleen. L. monocytogenes- or L. innocua-related infections or other inflammatory reactions were not observed in the brains of infected animals. On histopathological examination with Gram stain, an abundance of Listeria spp. was observed in the lesions of the liver, spleen, uterus, and kidney. Moreover, while abortion was observed in all animals infected with L. monocytogenes, it was not observed in any of the animals infected with L. innocua. Antibiotic susceptibility testing revealed that all 5 isolates were sensitive to ampicillin, amoxicillin/clavulanic acid, erythromycin, gentamicin, penicillin G, and trimethoprim-sulfamethoxazole and were resistant to nalidixic acid, streptomycin, and cefuroxime sodium. Considering also the pathogenicity of the isolated microorganisms, it can be suggested that stray dogs as carriers of Listeria spp. are a significant risk to public health. As L. innocua isolates, which are considered apathogenic, led to the occurrence of lesions similar to those caused by L. monocytogenes, detailed studies on the pathogenesis of L. innocua infections caused by L. innocua isolates recovered from various sources are required.
Collapse
Affiliation(s)
- Seçil Abay
- Erciyes University, Veterinary Faculty, Department of Microbiology, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Erciyes University, Veterinary Faculty, Department of Pathology, Kayseri, Turkey
| | - Fuat Aydin
- Erciyes University, Veterinary Faculty, Department of Microbiology, Kayseri, Turkey
| | - Hamit Kaan Müştak
- Ankara University, Veterinary Faculty, Department of Microbiology, Ankara, Turkey
| | - Kadir Serdar Diker
- Ankara University, Veterinary Faculty, Department of Microbiology, Ankara, Turkey
| | - İrfan Erol
- Ankara University, Veterinary Faculty, Department of Food Hygiene and Technology, Ankara, Turkey
| |
Collapse
|
25
|
Pang M, Xie X, Bao H, Sun L, He T, Zhao H, Zhou Y, Zhang L, Zhang H, Wei R, Xie K, Wang R. Insights Into the Bovine Milk Microbiota in Dairy Farms With Different Incidence Rates of Subclinical Mastitis. Front Microbiol 2018; 9:2379. [PMID: 30459717 PMCID: PMC6232673 DOI: 10.3389/fmicb.2018.02379] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis continues to be a complex disease associated with significant economic loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can show substantial variation among different farms; however, the milk microbiota, which have a direct influence on bovine mammary gland health, have never been associated with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe the milk microbiota from two dairy farms with different IRSCMs and to identify the predominant mastitis pathogens along with commensal or potential beneficial bacteria. Our study showed that Klebsiella, Escherichia-Shigella, and Streptococcus were the mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM). The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent in all milk samples, suggesting gut bacteria can be one of the predominant microbial contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study showed complex diversity between the milk microbiota in dairy farms with different IRSCMs. This suggests that variation in IRSCMs may not only be determined by the heterogeneity and prevalence of mastitis-causing pathogens but also be associated with potential beneficial bacteria. In the future, milk microbiota should be considered in bovine mammary gland health management. This would be helpful for both the establishment of a targeted mastitis control system and the control of the safety and quality of dairy products.
Collapse
Affiliation(s)
- Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongduo Bao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lichang Sun
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang Zhao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Zhou
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kaizhou Xie
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ran Wang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
26
|
Ranjbar R, Halaji M. Epidemiology of Listeria monocytogenes prevalence in foods, animals and human origin from Iran: a systematic review and meta-analysis. BMC Public Health 2018; 18:1057. [PMID: 30139345 PMCID: PMC6108140 DOI: 10.1186/s12889-018-5966-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Listeria monocytogenes as the main causative agent of human listeriosis is an intracellular bacterium that has the capability to infect a wide range of cell types. Human listeriosis is a sporadic foodborne disease, which is epidemiologically linked with consumption of contaminated food products. Listeriosis may range from mild and self-limiting diseases in healthy people to severe systemic infections in susceptible populations. This study aimed to investigate the prevalence of L. monocytogenes in food resources and human samples from Iran. Methods A systematic search was performed by using electronic databases from papers that were published by Iranian authors Since January of 2000 to the end of April 2017. Then, 47 publications which met our inclusion criteria were selected for data extraction and analysis by Comprehensive Meta-Analysis Software. Results The pooled prevalence of L. monocytogenes in human origin was 10% (95% CI: 7–12%) ranging from 0 to 28%. The prevalence of L. monocytogenes in animals was estimated at 7% (95% CI: 4–10%) ranging from 1 to 18%. Moreover, the pooled prevalence of L. monocytogenes in Iranian food samples was estimated at 4% (95% CI: 3–5%) ranging from 0 to 50%. From those 12 studies which reported the distribution of L. monocytogenes serotypes, it was concluded that 4b, 1/2a, and 1/2b were the most prevalent serotypes. Conclusions The prevalence of L. monocytogenes and prevalent serotypes in Iran are comparable with other parts of the world. Although the overall prevalence of human cross-contamination origin was low, awareness about the source of contamination is very important because of the higher incidence of infections in susceptible groups. Electronic supplementary material The online version of this article (10.1186/s12889-018-5966-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Halaji
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Helmy YA, El-Adawy H, Abdelwhab EM. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt. Pathogens 2017; 6:pathogens6030033. [PMID: 28754024 PMCID: PMC5617990 DOI: 10.3390/pathogens6030033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Egypt has a unique geographical location connecting the three old-world continents Africa, Asia and Europe. It is the country with the highest population density in the Middle East, Northern Africa and the Mediterranean basin. This review summarizes the prevalence, reservoirs, sources of human infection and control regimes of common bacterial, parasitic and viral zoonoses in animals and humans in Egypt. There is a gap of knowledge conerning the epidemiology of zoonotic diseases at the human-animal interface in different localities in Egypt. Some zoonotic agents are “exotic” for Egypt (e.g., MERS-CoV and Crimean-Congo hemorrhagic fever virus), others are endemic (e.g., Brucellosis, Schistosomiasis and Avian influenza). Transboundary transmission of emerging pathogens from and to Egypt occurred via different routes, mainly importation/exportation of apparently healthy animals or migratory birds. Control of the infectious agents and multidrug resistant bacteria in the veterinary sector is on the frontline for infection control in humans. The implementation of control programs significantly decreased the prevalence of some zoonoses, such as schistosomiasis and fascioliasis, in some localities within the country. Sustainable awareness, education and training targeting groups at high risk (veterinarians, farmers, abattoir workers, nurses, etc.) are important to lessen the burden of zoonotic diseases among Egyptians. There is an urgent need for collaborative surveillance and intervention plans for the control of these diseases in Egypt.
Collapse
Affiliation(s)
- Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, 41511 Ismailia, Egypt.
| | - Hosny El-Adawy
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
- Faculty of Veterinary Medicine, Kafrelsheikh University, 335516 Kafrelsheikh, Egypt.
| | - Elsayed M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|