1
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
2
|
Yuan G, Cao C, Cao D, Li B, Li X, Li H, Shen H, Wang Z, Chen G. Receptor-interacting protein 3-phosphorylated Ca 2+ /calmodulin-dependent protein kinase II and mixed lineage kinase domain-like protein mediate intracerebral hemorrhage-induced neuronal necroptosis. J Neurochem 2023; 164:94-114. [PMID: 36424866 DOI: 10.1111/jnc.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 11/26/2022]
Abstract
Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+ /calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood-brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.
Collapse
Affiliation(s)
- Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Zhang Q, Hu XM, Zhao WJ, Ban XX, Li Y, Huang YX, Wan H, He Y, Liao LS, Shang L, Jiang B, Qing GP, Xiong K. Targeting Necroptosis: A Novel Therapeutic Option for Retinal Degenerative Diseases. Int J Biol Sci 2023; 19:658-674. [PMID: 36632450 PMCID: PMC9830514 DOI: 10.7150/ijbs.77994] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The discovery of the necroptosis, a form of regulated necrosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL), represents a major breakthrough that has dramatically altered the conception of necrosis - traditionally thought of as uncontrolled cell death - in various human diseases. Retinal cell death is a leading cause of blindness and has been identified in most retinal diseases, e.g., age-related macular degeneration, glaucoma, retinal detachment, retinitis pigmentosa, etc. Increasing evidence demonstrates that retinal degenerative diseases also share a common mechanism in necroptosis. Exacerbated necroptotic cell death hinders the treatment for retinal degenerative diseases. In this review, we highlight recent advances in identifying retinal necroptosis, summarize the underlying mechanisms of necroptosis in retinal degenerative diseases, and discuss potential anti-necroptosis strategies, such as selective inhibitors and chemical agents, for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ye He
- Changsha Aier Eye Hospital, Changsha, China
| | - Lv-shuang Liao
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Bin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-ping Qing
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,✉ Corresponding author: E-mail:
| |
Collapse
|
4
|
Liu C, Sun X, Cai Y, Li D, Li B, Gao R, Zhang L, Chen G. Pramipexole alleviates traumatic brain injury in rats through inhibiting necroptosis. Neurosci Lett 2022; 791:136911. [DOI: 10.1016/j.neulet.2022.136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022]
|
5
|
Gao S, Huang X, Zhang Y, Bao L, Wang X, Zhang M. Investigation on the expression regulation of RIPK1/RIPK3 in the retinal ganglion cells (RGCs) cultured in high glucose. Bioengineered 2021; 12:3947-3956. [PMID: 34281454 PMCID: PMC8806785 DOI: 10.1080/21655979.2021.1944456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetic retinopathy (DR) represents the most typical complication of type 2 diabetes mellitus and one of the most primary oculopathy causing blindness. However, the mechanism of DR remains unknown. RIPK1/RIPK3, as homologous serine/threonine kinases, are key elements in mediating necroptosis and may have functions in DR development. To clarify the relationship between DR and RIPK1/RIPK3, this study established a model of apoptosis using high-glucose induced RGCs, which were treated with 7.5, 19.5, and 35 mM D-glucose for 12, 24, and 48 h, respectively. Subsequently, the expression of RIPK1/RIPK3 was determined and the protective effect of necrostatin-1 on RGCs injury induced by high glucose was explored. The results demonstrated that the expression of RIPK1 and RIPK3 in the cells was increased markedly following 12 h treatment with 19.5 mM D-glucose. Additionally, following an addition of 100 μM necrostatin-1 in 19.5 mM D-glucose medium for RGCs treatment 12 h, the protein expression of RIPK1 and RIPK3 was decreased markedly, and the number of Nissl bodies in cells was increased substantially. The findings of the present study indicated that high glucose could induce the expression of RIPK1/RIPK3, and necrostatin-1 could effectively protect RGCs from D-glucose-induced cell necrosis.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Li Bao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Jantas D, Lasoń W. Preclinical Evidence for the Interplay between Oxidative Stress and RIP1-Dependent Cell Death in Neurodegeneration: State of the Art and Possible Therapeutic Implications. Antioxidants (Basel) 2021; 10:antiox10101518. [PMID: 34679652 PMCID: PMC8532910 DOI: 10.3390/antiox10101518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are the most frequent chronic, age-associated neurological pathologies having a major impact on the patient’s quality of life. Despite a heavy medical, social and economic burden they pose, no causative treatment is available for these diseases. Among the important pathogenic factors contributing to neuronal loss during neurodegeneration is elevated oxidative stress resulting from a disturbed balance between endogenous prooxidant and antioxidant systems. For many years, it was thought that increased oxidative stress was a cause of neuronal cell death executed via an apoptotic mechanism. However, in recent years it has been postulated that rather programmed necrosis (necroptosis) is the key form of neuronal death in the course of neurodegenerative diseases. Such assumption was supported by biochemical and morphological features of the dying cells as well as by the fact that various necroptosis inhibitors were neuroprotective in cellular and animal models of neurodegenerative diseases. In this review, we discuss the relationship between oxidative stress and RIP1-dependent necroptosis and apoptosis in the context of the pathomechanism of neurodegenerative disorders. Based on the published data mainly from cellular models of neurodegeneration linking oxidative stress and necroptosis, we postulate that administration of multipotential neuroprotectants with antioxidant and antinecroptotic properties may constitute an efficient pharmacotherapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
|
7
|
Liao LS, Lu S, Yan WT, Wang SC, Guo LM, Yang YD, Huang K, Hu XM, Zhang Q, Yan J, Xiong K. The Role of HSP90α in Methamphetamine/Hyperthermia-Induced Necroptosis in Rat Striatal Neurons. Front Pharmacol 2021; 12:716394. [PMID: 34349659 PMCID: PMC8326403 DOI: 10.3389/fphar.2021.716394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is one of the most widely abused synthetic drugs in the world. The users generally present hyperthermia (HT) and psychiatric symptoms. However, the mechanisms involved in METH/HT-induced neurotoxicity remain elusive. Here, we investigated the role of heat shock protein 90 alpha (HSP90α) in METH/HT (39.5°C)-induced necroptosis in rat striatal neurons and an in vivo rat model. METH treatment increased core body temperature and up-regulated LDH activity and the molecular expression of canonical necroptotic factors in the striatum of rats. METH and HT can induce necroptosis in primary cultures of striatal neurons. The expression of HSP90α increased following METH/HT injuries. The specific inhibitor of HSP90α, geldanamycin (GA), and HSP90α shRNA attenuated the METH/HT-induced upregulation of receptor-interacting protein 3 (RIP3), phosphorylated RIP3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated MLKL. The inhibition of HSP90α protected the primary cultures of striatal neurons from METH/HT-induced necroptosis. In conclusion, HSP90α plays an important role in METH/HT-induced neuronal necroptosis and the HSP90α-RIP3 pathway is a promising therapeutic target for METH/HT-induced neurotoxicity in the striatum.
Collapse
Affiliation(s)
- Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kai Huang
- Department of Human Anatomy and Histoembryolog, School of Basic Medical Sciences, Shaoyang University, Shaoyang, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
8
|
RIP1-Mediated Necroptosis Facilitates Oxidative Stress‒Induced Melanocyte Death, Offering Insight into Vitiligo. J Invest Dermatol 2021; 141:2921-2931.e6. [PMID: 34102211 DOI: 10.1016/j.jid.2020.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022]
Abstract
Vitiligo is a common depigmentation disease characterized by melanocyte death, which is attributed to various mechanisms such as apoptosis and autoimmune destruction. However, whether necroptosis, a newly discovered way of cell death, plays a key role in the pathogenesis of vitiligo is still elusive and has not been well-studied. In this study, we found that necroptosis markers, including phosphorylated RIP3 and phosphorylated-MLKL, were positive in melanocytes from vitiligo perilesional skins, which supported the existence of necroptosis in vitiligo. Furthermore, the expression of RIP1 was remarkably upregulated in melanocytes treated with hydrogen peroxide. Then, RIP1 intervention suppression and MLKL deficiency could significantly enhance the resistance of melanocytes to hydrogen peroxide‒induced necroptosis. Mechanistically, we confirmed that RIP1 and RIP3 could form necrosomes under oxidative stress and further trigger phosphorylated MLKL translocation to the cell membrane, which led to the destruction of melanocytes. Finally, we showed that RIP1-mediated generation of mitochondrial ROS contributed to necrosome formation in melanocytes. Collectively, our study confirms that necroptosis significantly facilitates oxidative stress‒induced melanocyte death through the RIP1 signaling pathway, offering insight into vitiligo.
Collapse
|
9
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-Han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-Qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-Wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-Xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-Shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
10
|
Inhibition of MLKL Attenuates Necroptotic Cell Death in a Murine Cell Model of Ischaemia Injury. J Clin Med 2021; 10:jcm10020212. [PMID: 33435617 PMCID: PMC7826539 DOI: 10.3390/jcm10020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Steatosis in donor livers poses a major risk of organ dysfunction due to their susceptibility to ischaemia-reperfusion (I/R) injury during transplant. Necroptosis, a novel form of programmed cell death, is orchestrated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has been implicated in I/R injury. Here we investigated the mechanisms of cell death pathways in an in vitro model of hepato-steatotic ischaemia. METHODS Free fatty acid (FFA) treated alpha mouse liver 12 (AML-12) cells were incubated in oxygen-glucose-deprivation (OGD) conditions as seen during ischaemia. RESULTS We found that OGD triggered upregulation of insoluble fraction of RIPK3 and MLKL in FFA + OGD cells compared to FFA control cells. We report that intervention with small interfering (si) MLKL and siRIPK3 significantly attenuated cell death in FFA + OGD cells. Absence of activated CASPASE8 and cleaved-CASPASE3, no change in the expression of CASPASE1 and prostaglandin-endoperoxide synthase 2 (Ptgs2) in FFA + OGD treated cells compared to FFA control cells indicated that apoptosis, pyroptosis and ferroptosis, respectively, are unlikely to be active in this model. CONCLUSION Our findings indicate that RIPK3-MLKL dependent necroptosis contributed to cell death in our in vitro model. Both MLKL and RIPK3 are promising therapeutic targets to inhibit necroptosis during ischaemic injury in fatty liver.
Collapse
|
11
|
Yan WT, Lu S, Yang YD, Ning WY, Cai Y, Hu XM, Zhang Q, Xiong K. Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regen Res 2021; 16:1628-1637. [PMID: 33433494 PMCID: PMC8323674 DOI: 10.4103/1673-5374.303032] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosis-related publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yan Cai
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Zanetti LC, Weinlich R. Necroptosis, the Other Main Caspase-Independent Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:123-138. [PMID: 34370290 DOI: 10.1007/978-3-030-62026-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past decades witnessed the discovery of novel modes of cell death, such as ferroptosis, pyroptosis and necroptosis, all of them presenting common necrotic traits. In this chapter, we revisit the early discoveries that unveiled necroptosis as a distinct cell death mechanism. We describe necroptosis, its main regulators and their role in maintaining cellular homeostasis and in the disease state. We conclude by discussing its phenotypic similarities with ferroptosis and the possible crosstalk between these pathways.
Collapse
Affiliation(s)
- Larissa C Zanetti
- Hospital Israelita Albert Einstein. Av. Albert Einstein, São Paulo, SP, Brazil.
| | - Ricardo Weinlich
- Hospital Israelita Albert Einstein. Av. Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Xu Q, Tan X, Xian W, Geng J, Li H, Tang B, Zhang H, Wang H, Gao Q, Kang P. Changes of Necroptosis in Irbesartan Medicated Cardioprotection in Diabetic Rats. Diabetes Metab Syndr Obes 2021; 14:3851-3863. [PMID: 34522112 PMCID: PMC8434868 DOI: 10.2147/dmso.s300388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is strongly linked to microvascular disease, renin-angiotensin system (RAS) activation, cardiac inflammation and cell apoptosis. Irbesartan is an angiotensin II (Ang II) receptor antagonist in RAS system, which inhibited the conversion of Ang I into Ang II, while the specific mechanism is still obscure. OBJECTIVE This study aims to investigate the expressions necroptosis RIP1-RIP3-MLKL pathway in myocardium of diabetic rats, and the protective action of irbesartan on myocardial damage. MATERIALS AND METHODS In our study, 30 Sprague-Dawley rats were divided into 5 groups: CON4W, high glucose and high caloric (HC4W), diabetes mellitus 4 weeks (DM4W group), diabetes mellitus 8 weeks (DM8W group), and irbesartan diabetes 8 weeks (Ir DM8W group). RESULTS We discovered that as diabetes progresses, the rats gradually lost weight, the HW/BW ratio were increased gradually, and the cardiac function became worse accompanied with the aggravation of inflammatory injury. Meanwhile, the myocardial fibers and cells were disordered, and the expression of positive substances, RIP1 and RIP3 increased significantly. The mRNA and protein levels of myocardial RIP1, RIP3 and MLKL were all increased with the progression of DM. After the intervention of irbesartan in diabetic rats, the cardiac function was improved, whereas inflammatory injury and HW/BW ratio were decreased. Also, the myocardial fibrosis injury was attenuated, and the PAS positive substances, RIP1 and RIP3 were significantly decreased. The curative effect of irbesartan was related to decreased myocardial RIP1, RIP3 and MLKL mRNA and protein levels. CONCLUSION In conclusion, irbesartan has a cardioprotective effect on the diabetic rats, and its mechanism may be connected with inhibition of RIP1-RIP3-MLKL pathway.
Collapse
Affiliation(s)
- Qingmei Xu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xin Tan
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Wei Xian
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Jiayi Geng
- Department of Preventive Medicine, Bengbu Medical College, Bengbu, Anhui, 233000, People’s Republic of China
| | - Haoyu Li
- Clinic Medical College of AnHui Medical University, Hefei, Anhui, 230000, People’s Republic of China
| | - Bi Tang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
- Cardiovascular Disease Research Center of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Heng Zhang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Hongju Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
- Cardiovascular Disease Research Center of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233000, People’s Republic of China
| | - Pinfang Kang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
- Cardiovascular Disease Research Center of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
- Correspondence: Pinfang Kang Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of ChinaTel +86 552-3086107 Email
| |
Collapse
|
14
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
15
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
16
|
Nasseri B, Zareian P, Alizade H. Apelin attenuates streptozotocin-induced learning and memory impairment by modulating necroptosis signaling pathway. Int Immunopharmacol 2020; 84:106546. [PMID: 32413735 DOI: 10.1016/j.intimp.2020.106546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
Apelin is a neuropeptide that plays an important role in neuronal protection. In this study, we investigated the effects of apelin intracerebroventricular administration on spatial learning and memory-related behaviors, and necroptosis signaling pathways in the hippocampus of streptozotocin (STZ) -injected rats. Apelin treatment was implemented following STZ-induced dementia for 15 days. After conducting a behavioral test (Morris Water Maze), the cellular and molecular aspects were examined to detect the apelin effect on the necroptosis signaling pathway. We demonstrated that STZ administration significantly slowed down the learning capability. However apelin treatment notably reversed this neuroinflammation induced behavioral impairment. Furthermore, molecular investigations showed that apelin treatment reduced the hippocampal RIP1, RIP3, and TNF-α level. Our results suggest that apelin treatment attenuates STZ-induced dementia. This effect may be mediated by inhibition of the necroptosis signaling pathway which seems to be associated with the ability of apelin to reduce central TNF-α level. This data provides evidence of the neuroprotective effect of apelin on STZ-induced learning and memory impairment and characterize some of the underlying mechanisms.
Collapse
Affiliation(s)
- Behzad Nasseri
- Department of Physiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Parvin Zareian
- Department of Physiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Hadi Alizade
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Guo LM, Wang Z, Li SP, Wang M, Yan WT, Liu FX, Wang CD, Zhang XD, Chen D, Yan J, Xiong K. RIP3/MLKL-mediated neuronal necroptosis induced by methamphetamine at 39°C. Neural Regen Res 2020; 15:865-874. [PMID: 31719251 PMCID: PMC6990769 DOI: 10.4103/1673-5374.268902] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine is one of the most prevalent drugs abused in the world. Methamphetamine abusers usually present with hyperpyrexia (39°C), hallucination and other psychiatric symptoms. However, the detailed mechanism underlying its neurotoxic action remains elusive. This study investigated the effects of methamphetamine + 39°C on primary cortical neurons from the cortex of embryonic Sprague-Dawley rats. Primary cortex neurons were exposed to 1 mM methamphetamine + 39°C. Propidium iodide staining and lactate dehydrogenase release detection showed that methamphetamine + 39°C triggered obvious necrosis-like death in cultured primary cortical neurons, which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially. Western blot assay results showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39°C for 3 hours. After pre-treatment with RIP3 inhibitor GSK’872, propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly decreased; RIP3 and MLKL protein expression significantly decreased. Immunohistochemistry staining results also showed that the expressions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse. Taken together, the above results suggest that methamphetamine + 39°C can induce RIP3/MLKL regulated necroptosis, thereby resulting in neurotoxicity. The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University, China (approval numbers: 2017-S026 and 2017-S033) on March 7, 2017.
Collapse
Affiliation(s)
- Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province; Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shi-Ping Li
- Department of Neurology, People's Hospital of Lianhua, Pingxiang, Jiangxi Province, China
| | - Mi Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chu-Dong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xu-Dong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
18
|
Kang P, Wang J, Fang D, Fang T, Yu Y, Zhang W, Shen L, Li Z, Wang H, Ye H, Gao Q. Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radic Biol Med 2020; 146:198-210. [PMID: 31689484 DOI: 10.1016/j.freeradbiomed.2019.10.416] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Necroptosis is one of a regulated programmed death mode, fibrosis is closely related with cell death. It has been reported that inhibition of necroptosis can play the protective role in cardiac ischemia and reperfusion injury, stroke and other diseases, but the mechanisms of aldehyde dehydrogenases 2 (ALDH2) against high glucose induced neonatal rat ventricular primary cardiomyocytes fibrosis and necroptosis had not been elucidated clearly. This study was to observe the effect of ALDH2 on high glucose (HG) induced myocardial fibrosis and necroptosis in primary rat cardiomyocytes model. In contrast to normal glucose group, in HG group, with the decreases of ALDH2 activity, mRNA and protein levels, the cardiomyocytes viability was decreased, reactive oxygen species (ROS), the inflammation factors - tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) levels, collagen I (col I) and col III mRNA expressions and tissue inhibitors of matrix metalloproteinase 4 (TIMP4) protein expression were increased, while matrix metalloproteinase 14 (MMP14) protein level, the ratio of MMP14/TIMP4 were decreased, and the necroptosis key factors - the receptor interacting protein 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) at mRNA and protein expressions were increased, the inflammasome core proteins - NLRP3 and ASC protein expressions were also increased, the apoptosis rate and necrosis rate were also increased. When the cardiomyocytes were treated with Alda-1 (the ALDH2 agonist) in HG intervention, the cell viability, ALDH2 activity, mRNA and protein levels, MMP14 protein level, the ratio of MMP14/TIMP4 were higher, ROS and TNF-α, IL-6, IL-1β levels, RIP1, RIP3, MLKL, NLRP3 and ASC expressions, col I and col III, TIMP4 expressions, the apoptosis rate and necrosis rate were lower than in HG group. Daidzin, the antagonist of ALDH2 abolished the role of Alda-1. In summary, ALDH2 maybe is a key regulator in high glucose induced cardiomyocytes injury. Activation of ALDH2 prevented the happening of fibrosis, apoptosis and necroptosis in high glucose induced primary cardiomyocytes injury model, the protective effects were related to the inhibiting of oxidative stress and inflammation, changing of MMP14 and TIMP4, then inhibiting the happening of fibrosis, apoptosis and necroptosis. These findings advance our understanding of the intensive mechanisms of ALDH2's cardioprotection, and provide the targeted basis for clinical diabetes treatment.
Collapse
Affiliation(s)
- Pinfang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China; Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jiahui Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Dian Fang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Tingting Fang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Ying Yu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Weiping Zhang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Lin Shen
- Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Zhenghong Li
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Hongju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China
| | - Hongwei Ye
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Cardiovascular Research Center, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
19
|
Zhang J, Liu W, Zhang X, Lin S, Yan J, Ye J. Sema3A inhibits axonal regeneration of retinal ganglion cells via ROCK2. Brain Res 2019; 1727:146555. [PMID: 31733191 DOI: 10.1016/j.brainres.2019.146555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
Abstract
Successful regeneration of injured axons in the adult mammalian central nervous system (CNS) is mainly limited by lesion-induced neuronal apoptosis and the inhibitory environment consisting of numerous extrinsic and intrinsic factors. Semaphorin 3A (Sema3A), a classic axonal guidance cue, contributes to the failure of axonal regeneration and can be neutralized to enhance axonal regeneration. Previous studies have suggested that blockage of rho-associated protein kinase 2 (ROCK2) also exerts a protective effect on the survival and axonal regeneration of retinal ganglion cells (RGC, RGCs) after injury. Yet unresolved question is the interaction between the two factors. We thus evaluated the role of Sema3A and ROCK2 in RGC axonal regeneration. In this study, we first examined the expression of Sema3A and ROCK2 against optic nerve crush in vivo and oxygen-glucose deprivation insult to RGCs in vitro at different time points. Then Sema3A, ROCK2 inhibitor Y-27632, combination of both and phosphate-buffered saline (PBS) only were injected into the vitreous cavity after optic nerve crush at various times in different experiments. In order to assess axonal regeneration, we detected the mRNA levels of small proline-rich protein 1A (Sprr1A) and growth-associated protein 43 (GAP43) by quantitative real time-polymerase chain reaction (RT-qPCR), evaluated visual function by Flash Visual Evoked Potentials (F-VEPs), and checked the protein level of GAP43 by immunofluorescent staining. Our results demonstrated that Sema3A significantly suppressed optic nerve regeneration and this effect can be attenuated via blocking ROCK2. Moreover, Sema3A promoted the phosphorylation of myosin light chain 2 (MLC2) (specific downstream effector of ROCK2 concerning neurite growth). Collectively, Sema3A may negatively regulate axonal regeneration through ROCK2 in RGCs.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wenyi Liu
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xi Zhang
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jun Yan
- Department 1, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
20
|
Wang Y, Jiao J, Zhang S, Zheng C, Wu M. RIP3 inhibition protects locomotion function through ameliorating mitochondrial antioxidative capacity after spinal cord injury. Biomed Pharmacother 2019; 116:109019. [DOI: 10.1016/j.biopha.2019.109019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
|
21
|
Wang S, Liao L, Huang Y, Wang M, Zhou H, Chen D, Liu F, Ji D, Xia X, Jiang B, Huang J, Xiong K. Pin1 Is Regulated by CaMKII Activation in Glutamate-Induced Retinal Neuronal Regulated Necrosis. Front Cell Neurosci 2019; 13:276. [PMID: 31293391 PMCID: PMC6603237 DOI: 10.3389/fncel.2019.00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
In our previous study, we reported that peptidyl-prolyl isomerase 1 (Pin1)-modulated regulated necrosis (RN) occurred in cultured retinal neurons after glutamate injury. In the current study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in Pin1-modulated RN in cultured rat retinal neurons, and in an animal in vivo model. We first demonstrated that glutamate might lead to calcium overloading mainly through ionotropic glutamate receptors activation. Furthermore, CaMKII activation induced by overloaded calcium leads to Pin1 activation and subsequent RN. Inactivation of CaMKII by KN-93 (KN, i.e., a specific CaMKII inhibitor) application can decrease the glutamate-induced retinal neuronal RN. Finally, by using an animal in vivo model, we also demonstrated the important role of CaMKII in glutamate-induced RN in rat retina. In addition, flash electroretinogram results provided evidence that the impaired visual function induced by glutamate can recover after CaMKII inhibition. In conclusion, CaMKII is an up-regulator of Pin1 and responsible for the RN induced by glutamate. This study provides further understanding of the regulatory pathway of RN and is a complementary mechanism for Pin1 activation mediated necrosis. This finding will provide a potential target to protect neurons from necrosis in neurodegenerative diseases, such as glaucoma, diabetic retinopathy, and even central nervous system diseases.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
22
|
Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 2019; 10:487. [PMID: 31221990 PMCID: PMC6586814 DOI: 10.1038/s41419-019-1716-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Endothelium (EC) is a key component of blood–brain barrier (BBB), and has an important position in the neurovascular unit. Its dysfunction and death after cerebral ischemic/reperfusion (I/R) injury not only promote evolution of neuroinflammation and brain edema, but also increase the risk of intracerebral hemorrhage of thrombolytic therapies. However, the mechanism and specific interventions of EC death after I/R injury are poorly understood. Here we showed that necroptosis was a mechanism underlying EC death, which promoted BBB breakdown after I/R injury. Treatment of rats with receptor interacting protein kinase 1 (RIPK1)-inhibitor, necrostatin-1 reduced endothelial necroptosis and BBB leakage. We furthermore showed that perivascular M1-like microglia-induced endothelial necroptosis leading to BBB disruption requires tumor necrosis factor-α (TNF-α) secreted by M1 type microglia and its receptor, TNF receptor 1 (TNFR1), on endothelium as the primary mediators of these effects. More importantly, anti-TNFα (infliximab, a potent clinically used drug) treatment significantly ameliorate endothelial necroptosis, BBB destruction and improve stroke outcomes. Our data identify a previously unexplored role for endothelial necroptosis in BBB disruption and suggest infliximab might serve as a potential drug for stroke therapy.
Collapse
|
23
|
Wang S, Huang Y, Yan Y, Zhou H, Wang M, Liao L, Wang Z, Chen D, Ji D, Xia X, Liu F, Huang J, Xiong K. Calpain2 but not calpain1 mediated by calpastatin following glutamate-induced regulated necrosis in rat retinal neurons. Ann Anat 2019; 221:57-67. [DOI: 10.1016/j.aanat.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
|
24
|
RETRACTED: Astragaloside protects oxygen and glucose deprivation induced injury by regulation of microRNA-21 in retinal ganglion cell line RGC-5. Biomed Pharmacother 2019; 109:1826-1833. [DOI: 10.1016/j.biopha.2018.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
|
25
|
Wang Z, Guo LM, Wang SC, Chen D, Yan J, Liu FX, Huang JF, Xiong K. Progress in studies of necroptosis and its relationship to disease processes. Pathol Res Pract 2018; 214:1749-1757. [PMID: 30244947 DOI: 10.1016/j.prp.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022]
Abstract
This review briefly introduces the mechanism and detection methods of necroptosis in recent years. The most significant points of this review focus on the involvement of necroptotic proteins in disease progression. The following aspects are summarized: 1) RIPs, MLKL, and the upstream and downstream molecules that mediate necroptosis; 2) The development of detection methods for necroptosis; 3) The involvement of related necroptotic proteins in diverse diseases etiology; and 4) The application of necroptotic proteins in disease diagnosis.
Collapse
Affiliation(s)
- Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Shu-Chao Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
26
|
Wang Z, Guo LM, Wang Y, Zhou HK, Wang SC, Chen D, Huang JF, Xiong K. Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J Cell Physiol 2018; 233:4864-4884. [PMID: 29334122 DOI: 10.1002/jcp.26294] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023]
Abstract
Heat shock protein 90α (HSP90α) maintains cell stabilization and regulates cell death, respectively. Recent studies have shown that HSP90α is involved in receptor interacting protein 3 (RIP3)-mediated necroptosis in HT29 cells. It is known that oxygen and glucose deprivation (OGD) can induce necroptosis, which is regulated by RIP3 in neurons. However, it is still unclear whether HSP90α participates in the process of OGD-induced necroptosis in cultured neurons via the regulation of RIP3. Our study found that necroptosis occurs in primary cultured cortical neurons and PC-12 cells following exposure to OGD insult. Additionally, the expression of RIP3/p-RIP3, MLKL/p-MLKL, and the RIP1/RIP3 complex (necrosome) significantly increased following OGD, as measured through immunofluorescence (IF) staining, Western blotting (WB), and immunoprecipitation (IP) assay. Additionally, data from computer simulations and IP assays showed that HSP90α interacts with RIP3. In addition, HSP90α was overexpressed following OGD in cultured neurons, as measured through WB and IF staining. Inhibition of HSP90α in cultured neurons, using the specific inhibitor, geldanamycin (GA), and siRNA/shRNA of HSP90α, protected cultured neurons from necrosis. Our study showed that the inhibitor of HSP90α, GA, rescued cultured neurons not only by decreasing the expression of total RIP3/MLKL, but also by decreasing the expression of p-RIP3/p-MLKL and the RIP1/RIP3 necrosome. In this study, we reveal that inhibition of HSP90α protects primary cultured cortical neurons and PC-12 cells from OGD-induced necroptosis through the modulation of RIP3 expression.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li-Min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong-Kang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-Chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP. Sci Rep 2018; 8:6379. [PMID: 29686306 PMCID: PMC5913227 DOI: 10.1038/s41598-018-24414-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Necroptosis is an essential pathophysiological process in cerebral ischemia-related diseases. Therefore, targeting necroptosis may prevent cell death and provide a much-needed therapy. Ansiomycin is an inhibitor of protein synthesis which can also activate c-Jun N-terminal kinases. The present study demonstrated that anisomycin attenuated necroptosis by upregulating CHIP (carboxyl terminus of Hsc70-interacting protein) leading to the reduced levels of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) proteins in two in vitro models of cerebral ischemia. Further exploration in this research revealed that losing neither the co-chaperone nor the ubiquitin E3 ligase function of CHIP could abolish its ability to reduce necroptosis. Collectively, this study identifies a novel means of preventing necroptosis in two in vitro models of cerebral ischemia injury through activating the expression of CHIP, and it may provide a potential target for the further study of the disease.
Collapse
|
28
|
Wang S, Liao L, Wang M, Zhou H, Huang Y, Wang Z, Chen D, Ji D, Xia X, Wang Y, Liu F, Huang J, Xiong K. Pin1 Promotes Regulated Necrosis Induced by Glutamate in Rat Retinal Neurons via CAST/Calpain2 Pathway. Front Cell Neurosci 2018; 11:425. [PMID: 29403356 PMCID: PMC5786546 DOI: 10.3389/fncel.2017.00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to investigate whether peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) can interact with calpastatin (CAST) and regulate CAST/calpain2, under excessive glutamate conditions, and subsequently regulate necrosis in rat retinal neurons. Glutamate triggered CAST/calpain2-mediated necrosis regulation in primary cultured retinal neurons, as demonstrated by propidium iodide-staining and lactate dehydrogenase assay. Co-IP results and a computer simulation suggested that Pin1 could bind to CAST. Western blot, real-time quantitative polymerase chain reaction, immunofluorescence, and phosphorylation analysis results demonstrated that CAST was regulated by Pin1, as proven by the application of juglone (i.e., a Pin1 specific inhibitor). The retinal ganglion cell 5 cell line, combined with siRNA approach and flow cytometry, was then used to verify the regulatory pathway of Pin1 in CAST/calpain2-modulated neuronal necrosis that was induced by glutamate. Finally, in vivo studies further confirmed the role of Pin1 in CAST/calpain2-modulated necrosis following glutamate excitation, in the rat retinal ganglion cell and inner nuclear layers. In addition, a flash electroretinogram study provided evidence for the recovery of impaired visual function, which was induced by glutamate, with juglone treatment. Our work aims to investigate the involvement of the Pin1-CAST/calpain2 pathway in glutamate-mediated excitotoxicity.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
29
|
Lee HY, Itahana Y, Schuechner S, Fukuda M, Je HS, Ogris E, Virshup DM, Itahana K. Ca2+-dependent demethylation of phosphatase PP2Ac promotes glucose deprivation–induced cell death independently of inhibiting glycolysis. Sci Signal 2018; 11:11/512/eaam7893. [DOI: 10.1126/scisignal.aam7893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Liao L, Shang L, Li N, Wang S, Wang M, Huang Y, Chen D, Huang J, Xiong K. Mixed lineage kinase domain-like protein induces RGC-5 necroptosis following elevated hydrostatic pressure. Acta Biochim Biophys Sin (Shanghai) 2017; 49:879-889. [PMID: 28981598 DOI: 10.1093/abbs/gmx088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) is an essential component of the necroptosis signaling pathway. Phosphorylation of its downstream target, mixed lineage kinase domain-like protein (MLKL), has been proposed to induce necroptosis by initiating Ca2+ influx. Our previous studies have shown that RGC-5 retinal ganglion cells undergo RIP3-mediated necroptosis following elevated hydrostatic pressure (EHP). However, the molecular mechanism underlying necroptosis induction downstream of RIP3 is still not well understood. Here, we investigated the effects of MLKL during EHP-induced necroptosis, and primarily explored the relationship between MLKL and Ca2+ influx. Immunofluorescence staining showed that the expression of MLKL was increased 12 h after EHP. Western blot analysis demonstrated that the phosphorylated and unphosphorylated forms of both RIP3 and MLKL were up-regulated 12 h after EHP, while inhibition of RIP3 by GSK'872 decreased the expression of phosphorylated MLKL at the same stage. Propidium iodide staining, lactate dehydrogenase release assays, flow cytometry, and electron microscopy revealed the increased necrosis of RGC-5 cells 12 h after EHP, which coincided with elevated cytosolic Ca2+ concentrations. Depletion of extracellular Ca2+ and siRNA-mediated silencing of MLKL significantly reduced EHP-induced necrosis. Both MLKL-specific siRNA and GSK'872 treatment diminished Ca2+ influx. Thus, our findings suggest that MLKL may be the key mediator of necroptosis downstream of RIP3 phosphorylation and may be involved in increasing intracellular Ca2+ concentrations in EHP-induced RGC-5 necroptosis.
Collapse
Affiliation(s)
- Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital, Nanchang University, Nanchang 330006, China
| | - Na Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
31
|
Shen H, Liu C, Zhang D, Yao X, Zhang K, Li H, Chen G. Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis 2017; 8:e2641. [PMID: 28252651 PMCID: PMC5386555 DOI: 10.1038/cddis.2017.58] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023]
Abstract
Cell death is a hallmark of second brain injury after intracerebral hemorrhage (ICH); however, the mechanism still has not been fully illustrated. In this study, we explored whether necroptosis, a type of regulated necrosis, has an essential role in brain injury after ICH. We found that inhibiting receptor-interacting protein 1 (RIP1) – a core element of the necroptotic pathway – by a specific chemical inhibitor or genetic knockdown attenuated brain injury in a rat model of ICH. Furthermore, necroptosis of cultured neurons could be induced by conditioned medium from microglia stimulated with oxygen hemoglobin, and this effect could be inhibited by TNF-α inhibitor, indicating that TNF-α secreted from activated microglia is an important factor in inducing necroptosis of neurons. Undoubtedly, overexpression of RIP1 increased conditioned medium-induced necroptosis in vitro, but this effect was partially diminished in mutation of serine kinase phosphorylation site of RIP1, showing that phosphorylation of RIP1 is the essential molecular mechanism of necroptosis, which was activated in the in vitro model of ICH. Collectively, our investigation identified that necroptosis is an important mechanism of cell death in brain injury after ICH, and inhibition of necroptosis may be a potential therapeutic intervention of ICH.
Collapse
Affiliation(s)
- Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chenglin Liu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dongping Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiyang Yao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Kai Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Chen M, Liu B, Ma J, Ge J, Wang K. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells. Mol Med Rep 2017; 15:2179-2185. [PMID: 28260075 PMCID: PMC5364865 DOI: 10.3892/mmr.2017.6271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/19/2017] [Indexed: 01/06/2023] Open
Abstract
The retina of the human eye is extremely vulnerable to oxidative damage. Previous studies have demonstrated that oxidative stress is the predominant mechanism associated with the pathogenesis of age-related macular degeneration, diabetic retinopathy, glaucoma and retinitis pigmentosa. MTP-131, a novel mitochondria-targeted peptide, has been demonstrated to specifically concentrate in the inner mitochondria membrane and to exhibit remarkable antioxidant effects both in vitro and in animal models. In the present study, the protective effect of MTP-131 was evaluated in response to hydrogen peroxide (H2O2)-induced oxidative damage in a retinal ganglion cell line, RGC-5. Cell viability was measured by lactate dehydrogenase (LDH) assay. Changes of mitochondrial membrane potential and generation of intracellular reactive oxygen species (ROS) were measured by flow cytometry and confocal microscopy, respectively. Annexin V-fluorescein isothiocyanate/propidium iodide staining was used for assessment of apoptosis. Release of cytochrome c was analyzed by confocal microscopy. Pretreatment of cells with MTP-131 inhibited H2O2-induced cytotoxicity and reduced LDH release in a dose-dependent manner, compared with cells treated with H2O2 alone. Mitochondrial depolarization and ROS generation were also prevented by MTP-131 pretreatment. In addition, MTP-131 pretreatment inhibited cytochrome c release from mitochondria to cytoplasm, and significantly reduced apoptosis in RGC-5 cells, compared with cells treated with H2O2 alone. In conclusion, mitochondria-targeted peptide MTP-131 exhibited a protective effect against oxidative stress-induced apoptosis in RGC-5 cells, which may provide a novel approach for the treatment of age-associated retinal diseases.
Collapse
Affiliation(s)
- Min Chen
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang 310009, P.R. China
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jian Ma
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang 310009, P.R. China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaijun Wang
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
33
|
Shang L, Ding W, Li N, Liao L, Chen D, Huang J, Xiong K. The effects and regulatory mechanism of RIP3 on RGC-5 necroptosis following elevated hydrostatic pressure. Acta Biochim Biophys Sin (Shanghai) 2017; 49:128-137. [PMID: 28039150 DOI: 10.1093/abbs/gmw130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 01/04/2023] Open
Abstract
Necroptosis is a type of regulated cell death that has been implicated in various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family, is an important mediator of the necroptotic pathway. Cleavage of RIP3 at Asp328 by caspase-8 abolishes the kinase activity of RIP3, which is critical for necroptosis. Moreover, RIP3 is significantly upregulated during the early stages of acute high intra-ocular pressure and oxygen glucose deprivation. In this study, the effects of RIP3 during elevated hydrostatic pressure (EHP) were investigated and the possible mechanism through which caspase-8 regulated RIP3 cleavage was explored. Flow cytometry analysis revealed that the number of EHP-induced necrotic retinal ganglion cell 5 (RGC-5) cells was reduced after RIP3-knockdown. Furthermore, malondialdehyde (MDA) levels and glycogen phosphorylase (PYGL) activity in normal RGC-5 cells were much higher than those in RIP3-knockdown cells after EHP. EHP-induced RGC-5 necrosis was significantly reduced after treatment with butylated hydroxyanisole (BHA), a reactive oxygen species (ROS) scavenger. MDA levels and PYGL activity were lower in normal RGC-5 cells than those in cells with caspase-8 inhibition after EHP. Western blot analysis demonstrated that the RIP3 cleavage product was upregulated in cells with caspase-8 inhibition. Additionally, flow cytometry analysis revealed that the number of EHP-induced necrotic RGC-5 cells was increased after caspase-8 inhibition. Our results suggested that RGC-5 necroptosis following EHP was mediated by RIP3 through induction of PYGL activity and subsequent ROS accumulation. Thus, caspase-8 may participate in the regulation of RGC-5 necroptosis via RIP3 cleavage.
Collapse
Affiliation(s)
- Lei Shang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Wei Ding
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Na Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
34
|
Chen S, Yan J, Deng HX, Long LL, Hu YJ, Wang M, Shang L, Chen D, Huang JF, Xiong K. Inhibition of calpain on oxygen glucose deprivation-induced RGC-5 necroptosis. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2016; 36:639-645. [PMID: 27752886 DOI: 10.1007/s11596-016-1639-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/01/2016] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5 (RGC-5) necroptosis following oxygen glucose deprivation (OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. The calpain expression was detected by Western blotting and immunofluorescence staining. The calpain activity was tested by activity detection kit. Flow cytometry was used to detect the effect of calpain on RGC-5 necroptosis following OGD with or without N-acetyl-leucyl-leucyl-norleucinal (ALLN) pre-treatment. Western blot was used to detect the protein level of truncated apoptosis inducing factor (tAIF) in RGC-5 cells following OGD. The results showed that there was an up-regulation of the calpain expression and activity following OGD. Upon adding ALLN, the calpain activity was inhibited and tAIF was reduced following OGD along with the decreased number of RGC-5 necroptosis. In conclusion, calpain was involved in OGD-induced RGC-5 necroptosis with the increased expression of its downstream molecule tAIF.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Hai-Xiao Deng
- Five-year Medicine Program, Grade 2013, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ling-Ling Long
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yong-Jun Hu
- Department of Cardiology, People's Hospital of Hunan Province, Changsha, 410008, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, 330006, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, China.
| |
Collapse
|
35
|
The Toxic Effect of ALLN on Primary Rat Retinal Neurons. Neurotox Res 2016; 30:392-406. [DOI: 10.1007/s12640-016-9624-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
|