1
|
Fauvel D, Daniel O, Struber L, Palluel E. Attentional management of cognitive-motor interference in adults during walking: Insights from an EEG study. Neuroscience 2024; 561:144-156. [PMID: 39424262 DOI: 10.1016/j.neuroscience.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Dual-task paradigms, which involve performing cognitive and motor tasks simultaneously, are commonly used to study how attentional resources are allocated and managed under varying task demands. This study aimed to investigate cognitive-motor interferences (CMI) under different levels of cognitive and motor task difficulty without instruction on task prioritization. 17 healthy young adults performed an auditory oddball task with increasing cognitive and motor (walking vs. sitting) difficulty. Cognitive and motor performances, along with P3 (P3a and P3b) brainwave components, were analysed. Increasing cognitive difficulty resulted in more errors and increased P3a amplitude, reflecting enhanced attentional demand, while P3b remained unaffected. This suggests a threshold effect on attentional resources. Motor complexity lengthened P3a and P3b latencies without affecting amplitude, indicating delayed attentional resource recruitment. Additionally, walking with the most difficult cognitive task increased cognitive error, suggesting attentional resource limits. With increased motor and cognitive complexity, CMI emerged, leading to cognitive error increase and improved gait stability without amplitude changes in P3a and P3b. Two hypotheses were proposed: motor prioritization and motor facilitation. Our study suggests managing attentional resources to balance cognitive and motor tasks rather than linearly increasing task complexity. Viewing dual tasks as a new, integrated task is proposed, supported by previous neural network integration studies. Thus, understanding how the brain organizes tasks in response to constraints is crucial for comprehending complex task execution.
Collapse
Affiliation(s)
- Delphine Fauvel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Olivier Daniel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Lucas Struber
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Estelle Palluel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| |
Collapse
|
2
|
Criel Y, Depuydt E, Miatton M, Santens P, van Mierlo P, De Letter M. Cortical Generators and Connections Underlying Phoneme Perception: A Mismatch Negativity and P300 Investigation. Brain Topogr 2024; 37:1089-1117. [PMID: 38958833 DOI: 10.1007/s10548-024-01065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The cortical generators of the pure tone MMN and P300 have been thoroughly studied. Their nature and interaction with respect to phoneme perception, however, is poorly understood. Accordingly, the cortical sources and functional connections that underlie the MMN and P300 in relation to passive and active speech sound perception were identified. An inattentive and attentive phonemic oddball paradigm, eliciting a MMN and P300 respectively, were administered in 60 healthy adults during simultaneous high-density EEG recording. For both the MMN and P300, eLORETA source reconstruction was performed. The maximal cross-correlation was calculated between ROI-pairs to investigate inter-regional functional connectivity specific to passive and active deviant processing. MMN activation clusters were identified in the temporal (insula, superior temporal gyrus and temporal pole), frontal (rostral middle frontal and pars opercularis) and parietal (postcentral and supramarginal gyrus) cortex. Passive discrimination of deviant phonemes was aided by a network connecting right temporoparietal cortices to left frontal areas. For the P300, clusters with significantly higher activity were found in the frontal (caudal middle frontal and precentral), parietal (precuneus) and cingulate (posterior and isthmus) cortex. Significant intra- and interhemispheric connections between parietal, cingulate and occipital regions constituted the network governing active phonemic target detection. A predominantly bilateral network was found to underly both the MMN and P300. While passive phoneme discrimination is aided by a fronto-temporo-parietal network, active categorization calls on a network entailing fronto-parieto-cingulate cortices. Neural processing of phonemic contrasts, as reflected by the MMN and P300, does not appear to show pronounced lateralization to the language-dominant hemisphere.
Collapse
Affiliation(s)
- Yana Criel
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
| | - Emma Depuydt
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Marijke Miatton
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Pieter van Mierlo
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Kouti M, Ansari-Asl K, Namjoo E. EEG dynamic source imaging using a regularized optimization with spatio-temporal constraints. Med Biol Eng Comput 2024; 62:3073-3088. [PMID: 38771431 DOI: 10.1007/s11517-024-03125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
One of the most important needs in neuroimaging is brain dynamic source imaging with high spatial and temporal resolution. EEG source imaging estimates the underlying sources from EEG recordings, which provides enhanced spatial resolution with intrinsically high temporal resolution. To ensure identifiability in the underdetermined source reconstruction problem, constraints on EEG sources are essential. This paper introduces a novel method for estimating source activities based on spatio-temporal constraints and a dynamic source imaging algorithm. The method enhances time resolution by incorporating temporal evolution of neural activity into a regularization function. Additionally, two spatial regularization constraints based on L 1 and L 2 norms are applied in the transformed domain to address both focal and spread neural activities, achieved through spatial gradient and Laplacian transform. Performance evaluation, conducted quantitatively using synthetic datasets, discusses the influence of parameters such as source extent, number of sources, correlation level, and SNR level on temporal and spatial metrics. Results demonstrate that the proposed method provides superior spatial and temporal reconstructions compared to state-of-the-art inverse solutions including STRAPS, sLORETA, SBL, dSPM, and MxNE. This improvement is attributed to the simultaneous integration of transformed spatial and temporal constraints. When applied to a real auditory ERP dataset, our algorithm accurately reconstructs brain source time series and locations, effectively identifying the origins of auditory evoked potentials. In conclusion, our proposed method with spatio-temporal constraints outperforms the state-of-the-art algorithms in estimating source distribution and time courses.
Collapse
Affiliation(s)
- Mayadeh Kouti
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Electrical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Karim Ansari-Asl
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ehsan Namjoo
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Jaquerod ME, Knight RS, Lintas A, Villa AEP. A Dual Role for the Dorsolateral Prefrontal Cortex (DLPFC) in Auditory Deviance Detection. Brain Sci 2024; 14:994. [PMID: 39452008 PMCID: PMC11505713 DOI: 10.3390/brainsci14100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In the oddball paradigm, the dorsolateral prefrontal cortex (DLPFC) is often associated with active cognitive responses, such as maintaining information in working memory or adapting response strategies. While some evidence points to the DLPFC's role in passive auditory deviance perception, a detailed understanding of the spatiotemporal neurodynamics involved remains unclear. METHODS In this study, event-related optical signals (EROS) and event-related potentials (ERPs) were simultaneously recorded for the first time over the prefrontal cortex using a 64-channel electroencephalography (EEG) system, during passive auditory deviance perception in 12 right-handed young adults (7 women and 5 men). In this oddball paradigm, deviant stimuli (a 1500 Hz pure tone) elicited a negative shift in the N1 ERP component, related to mismatch negativity (MMN), and a significant positive deflection associated with the P300, compared to standard stimuli (a 1000 Hz tone). RESULTS We hypothesize that the DLPFC not only participates in active tasks but also plays a critical role in processing deviant stimuli in passive conditions, shifting from pre-attentive to attentive processing. We detected enhanced neural activity in the left middle frontal gyrus (MFG), at the same timing of the MMN component, followed by later activation at the timing of the P3a ERP component in the right MFG. CONCLUSIONS Understanding these dynamics will provide deeper insights into the DLPFC's role in evaluating the novelty or unexpectedness of the deviant stimulus, updating its cognitive value, and adjusting future predictions accordingly. However, the small number of subjects could limit the generalizability of the observations, in particular with respect to the effect of handedness, and additional studies with larger and more diverse samples are necessary to validate our conclusions.
Collapse
Affiliation(s)
- Manon E. Jaquerod
- NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland (A.L.)
| | - Ramisha S. Knight
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Ave., Urbana, IL 61801, USA
- Aptima, Inc., 2555 University Blvd, Fairborn, OH 45324, USA
| | - Alessandra Lintas
- NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland (A.L.)
- LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland
| | - Alessandro E. P. Villa
- NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland (A.L.)
| |
Collapse
|
5
|
Savalle E, Pillette L, Won K, Argelaguet F, Lécuyer A, J-M Macé M. Towards electrophysiological measurement of presence in virtual reality through auditory oddball stimuli. J Neural Eng 2024; 21:046015. [PMID: 38936392 DOI: 10.1088/1741-2552/ad5cc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Objective.Presence is an important aspect of user experience in virtual reality (VR). It corresponds to the illusion of being physically located in a virtual environment (VE). This feeling is usually measured through questionnaires that disrupt presence, are subjective and do not allow for real-time measurement. Electroencephalography (EEG), which measures brain activity, is increasingly used to monitor the state of users, especially while immersed in VR.Approach.In this paper, we present a way of evaluating presence, through the measure of the attention dedicated to the real environment via an EEG oddball paradigm. Using breaks in presence, this experimental protocol constitutes an ecological method for the study of presence, as different levels of presence are experienced in an identical VE.Main results.Through analysing the EEG data of 18 participants, a significant increase in the neurophysiological reaction to the oddball, i.e. the P300 amplitude, was found in low presence condition compared to high presence condition. This amplitude was significantly correlated with the self-reported measure of presence. Using Riemannian geometry to perform single-trial classification, we present a classification algorithm with 79% accuracy in detecting between two presence conditions.Significance.Taken together our results promote the use of EEG and oddball stimuli to monitor presence offline or in real-time without interrupting the user in the VE.
Collapse
Affiliation(s)
- Emile Savalle
- Univ. Rennes, Inria, CNRS, IRISA, F35000 Rennes, France
| | - Léa Pillette
- Univ. Rennes, Inria, CNRS, IRISA, F35000 Rennes, France
| | - Kyungho Won
- Inria, Univ. Rennes, IRISA, CNRS, F35000 Rennes, France
| | | | | | - Marc J-M Macé
- Univ. Rennes, Inria, CNRS, IRISA, F35000 Rennes, France
| |
Collapse
|
6
|
Ghosh P, Talwar S, Banerjee A. Unsupervised Characterization of Prediction Error Markers in Unisensory and Multisensory Streams Reveal the Spatiotemporal Hierarchy of Cortical Information Processing. eNeuro 2024; 11:ENEURO.0251-23.2024. [PMID: 38702194 PMCID: PMC11069433 DOI: 10.1523/eneuro.0251-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024] Open
Abstract
Elicited upon violation of regularity in stimulus presentation, mismatch negativity (MMN) reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory error detection whereas P300 is associated with cognitive processes such as updating of the working memory. To date, there has been extensive research on the roles of MMN and P300 individually, because of their potential to be used as clinical markers of consciousness and attention, respectively. Here, we intend to explore with an unsupervised and rigorous source estimation approach, the underlying cortical generators of MMN and P300, in the context of prediction error propagation along the hierarchies of brain information processing in healthy human participants. The existing methods of characterizing the two ERPs involve only approximate estimations of their amplitudes and latencies based on specific sensors of interest. Our objective is twofold: first, we introduce a novel data-driven unsupervised approach to compute latencies and amplitude of ERP components accurately on an individual-subject basis and reconfirm earlier findings. Second, we demonstrate that in multisensory environments, MMN generators seem to reflect a significant overlap of "modality-specific" and "modality-independent" information processing while P300 generators mark a shift toward completely "modality-independent" processing. Advancing earlier understanding that multisensory contexts speed up early sensory processing, our study reveals that temporal facilitation extends to even the later components of prediction error processing, using EEG experiments. Such knowledge can be of value to clinical research for characterizing the key developmental stages of lifespan aging, schizophrenia, and depression.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Siddharth Talwar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon 122052, India
| |
Collapse
|
7
|
Park M, Jang JH, Yoo SY, Choi A, Kim H, Choi JS. Regional brain activity of resting-state fMRI and auditory oddball ERP with multimodal approach in individuals with internet gaming disorder. J Behav Addict 2023; 12:895-906. [PMID: 37987778 PMCID: PMC10786222 DOI: 10.1556/2006.2023.00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/08/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Background and aims Resting-state brain activity may be associated with the ability to perform tasks; however, a multimodal approach involving resting-state functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) has not been widely used to investigate addictive disorders. Methods We explored resting-state fMRI and auditory oddball ERP values from 26 with internet gaming disorder (IGD) patients and 27 age- and intelligence quotient-matched healthy controls (HCs). To assess the characteristics of resting-state fMRI, we calculated regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional amplitude of low-frequency fluctuation (fALFF); we also calculated the P3 component of the ERPs. Results Compared with HCs, the individuals with IGD exhibited significant decreases in ReHo and fALFF values in the left inferior occipital gyrus, increased ReHo and ALFF values in the right precuneus, increased ALFF in the left superior frontal gyrus, and lower P3 amplitudes in the midline centro-parietal area during the auditory ERP task. Furthermore, the regional activity of resting-state fMRI in the right inferior temporal gyrus and the occipital regions were positively correlated with the P3 amplitudes in IGD patients, whereas ReHo values of the left hippocampus and the right amygdala were negatively correlated with P3. Discussion and conclusions Our results suggest that IGD patients have difficulty interacting effectively with cognitive function and sensory processing, although its interpretations need some cautions. The findings in this study will broaden the overall understanding of the neurobiological mechanisms that underlie IGD pathophysiology.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University Health Service Center, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - So Young Yoo
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Areum Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejung Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Goena J, Alústiza I, Vidal-Adroher C, Garcés MS, Fernández M, Molero P, García-Eulate R, Fernández-Seara M, Ortuño F. Time discrimination and change detection could share a common brain network: findings of a task-based fMRI study. Front Psychol 2023; 14:1110972. [PMID: 37529319 PMCID: PMC10390230 DOI: 10.3389/fpsyg.2023.1110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/05/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Over the past few years, several studies have described the brain activation pattern related to both time discrimination (TD) and change detection processes. We hypothesize that both processes share a common brain network which may play a significant role in more complex cognitive processes. The main goal of this proof-of-concept study is to describe the pattern of brain activity involved in TD and oddball detection (OD) paradigms, and in processes requiring higher cognitive effort. Methods We designed an experimental task, including an auditory test tool to assess TD and OD paradigms, which was conducted under functional magnetic resonance imaging (fMRI) in 14 healthy participants. We added a cognitive control component into both paradigms in our test tool. We used the general linear model (GLM) to analyze the individual fMRI data images and the random effects model for group inference. Results We defined the areas of brain activation related to TD and OD paradigms. We performed a conjunction analysis of contrast TD (task > control) and OD (task > control) patterns, finding both similarities and significant differences between them. Discussion We conclude that change detection and other cognitive processes requiring an increase in cognitive effort require participation of overlapping functional and neuroanatomical components, suggesting the presence of a common time and change detection network. This is of particular relevance for future research on normal cognitive functioning in the healthy population, as well as for the study of cognitive impairment and clinical manifestations associated with various neuropsychiatric conditions such as schizophrenia.
Collapse
Affiliation(s)
- Javier Goena
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Psychiatry, Basurto University Hospital, Bilbao, Spain
| | - Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Cristina Vidal-Adroher
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Sol Garcés
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain
- Colegio de Ciencias Sociales y Humanidades, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Neurociencias, Universidad San Francisco de Quito, Quito, Ecuador
| | - Miguel Fernández
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Patricio Molero
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Reyes García-Eulate
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María Fernández-Seara
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
9
|
Efficacy and auditory biomarker analysis of fronto-temporal transcranial direct current stimulation (tDCS) in targeting cognitive impairment associated with recent-onset schizophrenia: study protocol for a multicenter randomized double-blind sham-controlled trial. Trials 2023; 24:141. [PMID: 36829240 PMCID: PMC9951427 DOI: 10.1186/s13063-023-07160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND In parallel to the traditional symptomatology, deficits in cognition (memory, attention, reasoning, social functioning) contribute significantly to disability and suffering in individuals with schizophrenia. Cognitive deficits have been closely linked to alterations in early auditory processes (EAP) that occur in auditory cortical areas. Preliminary evidence indicates that cognitive deficits in schizophrenia can be improved with a reliable and safe non-invasive brain stimulation technique called tDCS (transcranial direct current stimulation). However, a significant proportion of patients derive no cognitive benefits after tDCS treatment. Furthermore, the neurobiological mechanisms of cognitive changes after tDCS have been poorly explored in trials and are thus still unclear. METHOD The study is designed as a randomized, double-blind, 2-arm parallel-group, sham-controlled, multicenter trial. Sixty participants with recent-onset schizophrenia and cognitive impairment will be randomly allocated to receive either active (n=30) or sham (n=30) tDCS (20-min, 2-mA, 10 sessions during 5 consecutive weekdays). The anode will be placed over the left dorsolateral prefrontal cortex and the cathode over the left auditory cortex. Cognition, tolerance, symptoms, general outcome and EAP (measured with EEG and multimodal MRI) will be assessed prior to tDCS (baseline), after the 10 sessions, and at 1- and 3-month follow-up. The primary outcome will be the number of responders, defined as participants demonstrating a cognitive improvement ≥Z=0.5 from baseline on the MATRICS Consensus Cognitive Battery total score at 1-month follow-up. Additionally, we will measure how differences in EAP modulate individual cognitive benefits from active tDCS and whether there are changes in EAP measures in responders after active tDCS. DISCUSSION Besides proposing a new fronto-temporal tDCS protocol by targeting the auditory cortical areas, we aim to conduct a randomized controlled trial (RCT) with follow-up assessments up to 3 months. In addition, this study will allow identifying and assessing the value of a wide range of neurobiological EAP measures for predicting and explaining cognitive deficit improvement after tDCS. The results of this trial will constitute a step toward the use of tDCS as a therapeutic tool for the treatment of cognitive impairment in recent-onset schizophrenia. TRIAL REGISTRATION ClinicalTrials.gov NCT05440955. Prospectively registered on July 1st, 2022.
Collapse
|
10
|
Tarawneh HY, Jayakody DMP, Verma S, Doré V, Xia Y, Mulders WHAM, Martins RN, Sohrabi HR. Auditory Event-Related Potentials in Older Adults with Subjective Memory Complaints. J Alzheimers Dis 2023; 92:1093-1109. [PMID: 36847006 DOI: 10.3233/jad-221119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Auditory event-related potentials (AERPs) have been suggested as possible biomarkers for the early diagnosis of Alzheimer's disease (AD). However, no study has investigated AERP measures in individuals with subjective memory complaints (SMCs), who have been suggested to be at a pre-clinical stage of AD. OBJECTIVE This study investigated whether AERPs in older adults with SMC can be used to objectively identify those at high risk of developing AD. METHODS AERPs were measured in older adults. Presence of SMC was determined using the Memory Assessment Clinics Questionnaire (MAC-Q). Hearing thresholds using pure-tone audiometry, neuropsychological data, levels of amyloid-β burden and Apolipoprotein E (APOE)ɛ genotype were also obtained A classic two-tone discrimination (oddball) paradigm was used to elicit AERPs (i.e., P50, N100, P200, N200, and P300). RESULTS Sixty-two individuals (14 male, mean age 71.9±5.2 years) participated in this study, of which, 43 (11 male, mean age 72.4±5.5 years) were SMC and 19 (3 male, mean age 70.8±4.3 years) were non-SMC (controls). P50 latency was weakly but significantly correlated with MAC-Q scores. In addition, P50 latencies were significantly longer in Aβ+ individuals compared to Aβ- individuals. CONCLUSION Results suggest that P50 latencies may be a useful tool to identify individuals at higher risk (i.e., participants with high Aβ burden) of developing measurable cognitive decline. Further longitudinal and cross-sectional studies in a larger cohort on SMC individuals are warranted to determine if AERP measures could be of significance for the detection of pre-clinical AD.
Collapse
Affiliation(s)
- Hadeel Y Tarawneh
- School of Human Sciences, The University of Western Australia, Perth, Australia.,Ear Science Institute Australia, Perth, Australia
| | - Dona M P Jayakody
- Ear Science Institute Australia, Perth, Australia.,Ear Science Centre, School of Surgery, The University of Western Australia, Perth, Australia
| | - Shipra Verma
- Department of Geriatric Medicine, Fiona Stanley and Fremantle Hospital, Perth, Australia.,Department of Nuclear Medicine, Fiona Stanley and Royal Perth Hospital, Perth, Australia
| | - Vincent Doré
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Melbourne, Victoria, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | | | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Hamid R Sohrabi
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Centre for Healthy Ageing, The Health Futures Institute, Murdoch University, Perth, Australia
| |
Collapse
|
11
|
Oeur RA, Palaniswamy M, Ha M, Fernandez-Corazza M, Margulies SS. Regional variations distinguish auditory from visual evoked potentials in healthy 4 week old piglets. Physiol Meas 2023; 44:025006. [PMID: 36657178 PMCID: PMC9972182 DOI: 10.1088/1361-6579/acb4da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Objective.Evoked potentials (EP), measured using electroencephalographic (EEG) recordings provide an opportunity to monitor cognitive dysfunctions after neurological diseases or traumatic brain injury (TBI). The 4 week old piglet is an established model of paediatric TBI; therefore, healthy piglets were studied to establish feasibility of obtaining responses to auditory and visual stimuli. A secondary aim was to input the EEG data into a piglet computational model to localize the brain sources related to processing. We tested the hypotheses: (1) visual, auditory-standard, and auditory-target stimuli elicit responses, (2) there is an effect of stimulus type, day tested, and electrode region on EPs from EEG, (3) there is an effect of stimulus type, day tested, and brain region on localized sources from a computational model.Approach.Eleven 4 week old female piglets were fitted with a 32-electrode net and presented with a simple white light stimulus and an auditory oddball click train (70 standard; 30 target tones).Main results.N1 andP2 amplitudes were consistently observed for all stimulus types. Significant interaction effects between brain region and stimulus for EP and current density demonstrate that cognitive responses are specific to each modality with auditory localizing to the temporal region and visual to the occipital regions. There was a day effect where larger responses were found on the first day than day 2 and 3 and may be due to the novelty of the stimulus on the first day. Visual stimuli had largerP1 amplitudes and earlier latencies (P1,N1) than auditory which coincides with current density results at 50 ms where larger activations were observed for visual. At 85 ms, auditory had significantly larger current densities coincident with larger and longerN1 amplitudes and latencies than visual.Significance.Auditory and visual processing were successfully and consistently obtained in a porcine model and can be evaluated as a diagnostic assessment for TBI.
Collapse
Affiliation(s)
- R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Maduran Palaniswamy
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Matthew Ha
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mariano Fernandez-Corazza
- LEICI Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales, Facultad de Ingeniería, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America,Author to whom any correspondence should be addressed
| |
Collapse
|
12
|
Fear memory in humans is consolidated over time independently of sleep. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:100-113. [PMID: 36241964 PMCID: PMC9925495 DOI: 10.3758/s13415-022-01037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 02/15/2023]
Abstract
Fear memories can be altered after acquisition by processes, such as fear memory consolidation or fear extinction, even without further exposure to the fear-eliciting stimuli, but factors contributing to these processes are not well understood. Sleep is known to consolidate, strengthen, and change newly acquired declarative and procedural memories. However, evidence on the role of time and sleep in the consolidation of fear memories is inconclusive. We used highly sensitive electrophysiological measures to examine the development of fear-conditioned responses over time and sleep in humans. We assessed event-related brain potentials (ERP) in 18 healthy, young individuals during fear conditioning before and after a 2-hour afternoon nap or a corresponding wake interval in a counterbalanced within-subject design. The procedure involved pairing a neutral tone (CS+) with a highly unpleasant sound. As a control, another neutral tone (CS-) was paired with a neutral sound. Fear responses were examined before the interval during a habituation phase and an acquisition phase as well as after the interval during an extinction phase and a reacquisition phase. Differential fear conditioning during acquisition was evidenced by a more negative slow ERP component (stimulus-preceding negativity) developing before the unconditioned stimulus (loud noise). This differential fear response was even stronger after the interval during reacquisition compared with initial acquisition, but this effect was similarly pronounced after sleep and wakefulness. These findings suggest that fear memories are consolidated over time, with this effect being independent of intervening sleep.
Collapse
|
13
|
Ignatiadis K, Barumerli R, Tóth B, Baumgartner R. Effects of individualized brain anatomies and EEG electrode positions on inferred activity of the primary auditory cortex. Front Neuroinform 2022; 16:970372. [PMID: 36313125 PMCID: PMC9606706 DOI: 10.3389/fninf.2022.970372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 09/07/2024] Open
Abstract
Due to its high temporal resolution and non-invasive nature, electroencephalography (EEG) is considered a method of great value for the field of auditory cognitive neuroscience. In performing source space analyses, localization accuracy poses a bottleneck, which precise forward models based on individualized attributes such as subject anatomy or electrode locations aim to overcome. Yet acquiring anatomical images or localizing EEG electrodes requires significant additional funds and processing time, making it an oftentimes inaccessible asset. Neuroscientific software offers template solutions, on which analyses can be based. For localizing the source of auditory evoked responses, we here compared the results of employing such template anatomies and electrode positions versus the subject-specific ones, as well as combinations of the two. All considered cases represented approaches commonly used in electrophysiological studies. We considered differences between two commonly used inverse solutions (dSPM, sLORETA) and targeted the primary auditory cortex; a notoriously small cortical region that is located within the lateral sulcus, thus particularly prone to errors in localization. Through systematical comparison of early evoked component metrics and spatial leakage, we assessed how the individualization steps impacted the analyses outcomes. Both electrode locations as well as subject anatomies were found to have an effect, which though varied based on the configuration considered. When comparing the inverse solutions, we moreover found that dSPM more consistently benefited from individualization of subject morphologies compared to sLORETA, suggesting it to be the better choice for auditory cortex localization.
Collapse
Affiliation(s)
| | - Roberto Barumerli
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Robert Baumgartner
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
14
|
McLinden J, Borgheai B, Hosni S, Kumar C, Rahimi N, Shao M, Spencer KM, Shahriari Y. Individual-Specific Characterization of Event-Related Hemodynamic Responses during an Auditory Task: An Exploratory Study. Behav Brain Res 2022; 436:114074. [PMID: 36028001 DOI: 10.1016/j.bbr.2022.114074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been established as an informative modality for understanding the hemodynamic-metabolic correlates of cortical auditory processing. To date, such knowledge has shown broad clinical applications in the diagnosis, treatment, and intervention procedures in disorders affecting auditory processing; however, exploration of the hemodynamic response to auditory tasks is yet incomplete. This holds particularly true in the context of auditory event-related fNIRS experiments, where preliminary work has shown the presence of valid responses while leaving the need for more comprehensive explorations of the hemodynamic correlates of event-related auditory processing. In this study, we apply an individual-specific approach to characterize fNIRS-based hemodynamic changes during an auditory task in healthy adults. Oxygenated hemoglobin (HbO2) concentration change time courses were acquired from eight participants. Independent component analysis (ICA) was then applied to isolate individual-specific class discriminative spatial filters, which were then applied to HbO2 time courses to extract auditory-related hemodynamic features. While six of eight participants produced significant class discriminative features before ICA-based spatial filtering, the proposed method identified significant auditory hemodynamic features in all participants. Furthermore, ICA-based filtering improved correlation between trial labels and extracted features in every participant. For the first time, this study demonstrates hemodynamic features important in experiments exploring auditory processing as well as the utility of individual-specific ICA-based spatial filtering in fNIRS-based feature extraction techniques in auditory experiments. These outcomes provide insights for future studies exploring auditory hemodynamic characteristics and may eventually provide a baseline framework for better understanding auditory response dysfunctions in clinical populations.
Collapse
Affiliation(s)
- J McLinden
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - B Borgheai
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - S Hosni
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - C Kumar
- Department of Computer and Information Science, University of Massachusetts Dartmouth, MA
| | - N Rahimi
- Department of Computer and Information Science, University of Massachusetts Dartmouth, MA
| | - M Shao
- Department of Computer and Information Science, University of Massachusetts Dartmouth, MA
| | - K M Spencer
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Jamaica Plain, Boston, MA, USA
| | - Y Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
15
|
Li W, Ma X, Wang Q, He X, Qu X, Zhang L, Chen L, Liu Z. Intrinsic Network Changes in Bilateral Tinnitus Patients with Cognitive Impairment: A Resting-State Functional MRI Study. Brain Sci 2022; 12:brainsci12081049. [PMID: 36009112 PMCID: PMC9405767 DOI: 10.3390/brainsci12081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have found a link between tinnitus and cognitive impairment, even leading to dementia. However, the mechanisms underlying this association are not clear. The purpose of this study was to explore intrinsic network changes in tinnitus and hearing loss patients with cognitive disorders. We included 17 individuals with bilateral idiopathic tinnitus, hearing loss, and cognitive impairment (PA) and 21 healthy controls. We identified resting-state networks (RSNs) and measured intra-network functional connectivity (FC) values via independent component analysis (ICA). We also evaluated correlations between RSNs and clinical characteristics. Compared with the healthy controls, the PA group showed decreased connectivity within the ventral attention network, dorsal attention network (DAN), visual network, left frontoparietal network, right frontoparietal network, sensorimotor network, and increased connectivity within the executive control network. MoCA (Montreal Cognitive Assessment) scores were negatively correlated with the FC values for left calcarine within the DAN. We identified abnormal intrinsic connectivity in several brain networks, mainly involving cognitive control, vision, sensorimotor function, and the cerebellum, in tinnitus patients with cognitive impairment. It may be possible to use the FC strength of the left calcarine within the DAN as an imaging marker to predict cognitive impairment in tinnitus patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Xiaobo Ma
- Department of Otolaryngology Head and Neck Surgery, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Qian Wang
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Xueying He
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
- Department of Radiology, Medical School of Nanjing University, Afliated Drum Tower Hospital, Nanjing 210008, China
| | - Xiaoxia Qu
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Lirong Zhang
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Lanyue Chen
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Zhaohui Liu
- Department of Radiology, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
- Correspondence: ; Tel.: +86-10-582-680-34
| |
Collapse
|
16
|
Di Dona G, Scaltritti M, Sulpizio S. Formant-invariant voice and pitch representations are pre-attentively formed from constantly varying speech and non-speech stimuli. Eur J Neurosci 2022; 56:4086-4106. [PMID: 35673798 PMCID: PMC9545905 DOI: 10.1111/ejn.15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
The present study investigated whether listeners can form abstract voice representations while ignoring constantly changing phonological information and if they can use the resulting information to facilitate voice change detection. Further, the study aimed at understanding whether the use of abstraction is restricted to the speech domain or can be deployed also in non‐speech contexts. We ran an electroencephalogram (EEG) experiment including one passive and one active oddball task, each featuring a speech and a rotated speech condition. In the speech condition, participants heard constantly changing vowels uttered by a male speaker (standard stimuli) which were infrequently replaced by vowels uttered by a female speaker with higher pitch (deviant stimuli). In the rotated speech condition, participants heard rotated vowels, in which the natural formant structure of speech was disrupted. In the passive task, the mismatch negativity was elicited after the presentation of the deviant voice in both conditions, indicating that listeners could successfully group together different stimuli into a formant‐invariant voice representation. In the active task, participants showed shorter reaction times (RTs), higher accuracy and a larger P3b in the speech condition with respect to the rotated speech condition. Results showed that whereas at a pre‐attentive level the cognitive system can track pitch regularities while presumably ignoring constantly changing formant information both in speech and in rotated speech, at an attentive level the use of such information is facilitated for speech. This facilitation was also testified by a stronger synchronisation in the theta band (4–7 Hz), potentially pointing towards differences in encoding/retrieval processes.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Dipartimento di Psicologia e Scienze Cognitive, Università degli Studi di Trento, Trento, Italy
| | - Michele Scaltritti
- Dipartimento di Psicologia e Scienze Cognitive, Università degli Studi di Trento, Trento, Italy
| | - Simone Sulpizio
- Dipartimento di Psicologia, Università degli Studi di Milano-Bicocca, Milano, Italy.,Milan Center for Neuroscience (NeuroMi), Università degli Studi di Milano-Bicocca, Milano, Italy
| |
Collapse
|
17
|
Reconfiguration of Cortical Brain Network from Searching to Spotting for Dynamic Visual Targets. J Neurosci Methods 2022; 375:109577. [PMID: 35339507 DOI: 10.1016/j.jneumeth.2022.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/28/2021] [Accepted: 03/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Detecting dynamic targets from complex visual scenes is an important problem in real world. However, the cognitive mechanism accounting for dynamic visual target detection remains unclear. NEW METHOD Herein, we aim to explore the cognitive process of dynamic visual target detection from searching to spotting and provide more concrete evidence for cognitive studies related to target detection. Cortical source responses with high spatiotemporal resolution were reconstructed from scalp EEG signals. Then, time-varying cortical networks were built using adaptive directed transfer function to explore the cognitive processes while detecting the dynamic visual target. RESULTS The experimental results demonstrated that the dynamic visual target detection enhanced the activation in both the visual and attention networks. Specially, the information flow from the middle occipital gyrus (MOG) mainly contributed to the position function, whereas the activation of the prefrontal cortex (PFC) reflected spatial attention maintenance. CONCLUSION The left "frontal-central-parietal" network played as a leading information source in dynamic target detection tasks. These findings provide new insights into cognitive processes of dynamic visual target detection. DATA AVAILABILITY STATEMENT The datasets in this study are available on request to the corresponding author.
Collapse
|
18
|
Wicht CA, De Pretto M, Mouthon M, Spierer L. Neural correlates of expectations-induced effects of caffeine intake on executive functions. Cortex 2022; 150:61-84. [DOI: 10.1016/j.cortex.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
|
19
|
Somon B, Giebeler Y, Darmet L, Dehais F. Benchmarking cEEGrid and Solid Gel-Based Electrodes to Classify Inattentional Deafness in a Flight Simulator. FRONTIERS IN NEUROERGONOMICS 2022; 2:802486. [PMID: 38235232 PMCID: PMC10790867 DOI: 10.3389/fnrgo.2021.802486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2024]
Abstract
Transfer from experiments in the laboratory to real-life tasks is challenging due notably to the inability to reproduce the complexity of multitasking dynamic everyday life situations in a standardized lab condition and to the bulkiness and invasiveness of recording systems preventing participants from moving freely and disturbing the environment. In this study, we used a motion flight simulator to induce inattentional deafness to auditory alarms, a cognitive difficulty arising in complex environments. In addition, we assessed the possibility of two low-density EEG systems a solid gel-based electrode Enobio (Neuroelectrics, Barcelona, Spain) and a gel-based cEEGrid (TMSi, Oldenzaal, Netherlands) to record and classify brain activity associated with inattentional deafness (misses vs. hits to odd sounds) with a small pool of expert participants. In addition to inducing inattentional deafness (missing auditory alarms) at much higher rates than with usual lab tasks (34.7% compared to the usual 5%), we observed typical inattentional deafness-related activity in the time domain but also in the frequency and time-frequency domains with both systems. Finally, a classifier based on Riemannian Geometry principles allowed us to obtain more than 70% of single-trial classification accuracy for both mobile EEG, and up to 71.5% for the cEEGrid (TMSi, Oldenzaal, Netherlands). These results open promising avenues toward detecting cognitive failures in real-life situations, such as real flight.
Collapse
Affiliation(s)
- Bertille Somon
- Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse, Toulouse, France
- Department for Aerospace Vehicles Design and Control, ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | - Yasmina Giebeler
- Department for Aerospace Vehicles Design and Control, ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- Department of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Ludovic Darmet
- Department for Aerospace Vehicles Design and Control, ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | - Frédéric Dehais
- Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse, Toulouse, France
- Department for Aerospace Vehicles Design and Control, ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Eberhard-Moscicka AK, Jost LB, Daum MM, Maurer U. Predicting Reading From Behavioral and Neural Measures - A Longitudinal Event-Related Potential Study. Front Psychol 2021; 12:733494. [PMID: 34916991 PMCID: PMC8669350 DOI: 10.3389/fpsyg.2021.733494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Fluent reading is characterized by fast and effortless decoding of visual and phonological information. Here we used event-related potentials (ERPs) and neuropsychological testing to probe the neurocognitive basis of reading in a sample of children with a wide range of reading skills. We report data of 51 children who were measured at two time points, i.e., at the end of first grade (mean age 7.6 years) and at the end of fourth grade (mean age 10.5 years). The aim of this study was to clarify whether next to behavioral measures also basic unimodal and bimodal neural measures help explaining the variance in the later reading outcome. Specifically, we addressed the question of whether next to the so far investigated unimodal measures of N1 print tuning and mismatch negativity (MMN), a bimodal measure of audiovisual integration (AV) contributes and possibly enhances prediction of the later reading outcome. We found that the largest variance in reading was explained by the behavioral measures of rapid automatized naming (RAN), block design and vocabulary (46%). Furthermore, we demonstrated that both unimodal measures of N1 print tuning (16%) and filtered MMN (7%) predicted reading, suggesting that N1 print tuning at the early stage of reading acquisition is a particularly good predictor of the later reading outcome. Beyond the behavioral measures, the two unimodal neural measures explained 7.2% additional variance in reading, indicating that basic neural measures can improve prediction of the later reading outcome over behavioral measures alone. In this study, the AV congruency effect did not significantly predict reading. It is therefore possible that audiovisual congruency effects reflect higher levels of multisensory integration that may be less important for reading acquisition in the first year of learning to read, and that they may potentially gain on relevance later on.
Collapse
Affiliation(s)
- Aleksandra K. Eberhard-Moscicka
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Perception and Eye Movement Laboratory, Department of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lea B. Jost
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Moritz M. Daum
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Urs Maurer
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
21
|
Karagiorgis AT, Chalas N, Karagianni M, Papadelis G, Vivas AB, Bamidis P, Paraskevopoulos E. Computerized Music-Reading Intervention Improves Resistance to Unisensory Distraction Within a Multisensory Task, in Young and Older Adults. Front Hum Neurosci 2021; 15:742607. [PMID: 34566611 PMCID: PMC8461100 DOI: 10.3389/fnhum.2021.742607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Incoming information from multiple sensory channels compete for attention. Processing the relevant ones and ignoring distractors, while at the same time monitoring the environment for potential threats, is crucial for survival, throughout the lifespan. However, sensory and cognitive mechanisms often decline in aging populations, making them more susceptible to distraction. Previous interventions in older adults have successfully improved resistance to distraction, but the inclusion of multisensory integration, with its unique properties in attentional capture, in the training protocol is underexplored. Here, we studied whether, and how, a 4-week intervention, which targets audiovisual integration, affects the ability to deal with task-irrelevant unisensory deviants within a multisensory task. Musically naïve participants engaged in a computerized music reading game and were asked to detect audiovisual incongruences between the pitch of a song's melody and the position of a disk on the screen, similar to a simplistic music staff. The effects of the intervention were evaluated via behavioral and EEG measurements in young and older adults. Behavioral findings include the absence of age-related differences in distraction and the indirect improvement of performance due to the intervention, seen as an amelioration of response bias. An asymmetry between the effects of auditory and visual deviants was identified and attributed to modality dominance. The electroencephalographic results showed that both groups shared an increase in activation strength after training, when processing auditory deviants, located in the left dorsolateral prefrontal cortex. A functional connectivity analysis revealed that only young adults improved flow of information, in a network comprised of a fronto-parietal subnetwork and a multisensory temporal area. Overall, both behavioral measures and neurophysiological findings suggest that the intervention was indirectly successful, driving a shift in response strategy in the cognitive domain and higher-level or multisensory brain areas, and leaving lower level unisensory processing unaffected.
Collapse
Affiliation(s)
- Alexandros T Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolas Chalas
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ana B Vivas
- Department of Psychology, CITY College, University of York Europe Campus, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
22
|
Proverbio AM, Broido V, De Benedetto F, Zani A. Scalp-recorded N40 visual evoked potential: Sensory and attentional properties. Eur J Neurosci 2021; 54:6553-6574. [PMID: 34486754 PMCID: PMC9293152 DOI: 10.1111/ejn.15443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022]
Abstract
N40 is a well-known component of evoked potentials with respect to the auditory and somatosensory modality but not much recognized with regard to the visual modality. To be detected with event-related potentials (ERPs), it requires an optimal signal-to-noise ratio. To investigate the nature of visual N40, we recorded EEG/ERP signals from 20 participants. Each of them was presented with 1800 spatial frequency gratings of 0.75, 1.5, 3 and 6 c/deg. Data were collected from 128 sites while participants were engaged in both passive viewing and attention conditions. N40 (30-55 ms) was modulated by alertness and selective attention; in fact, it was larger to targets than irrelevant and passively viewed spatial frequency gratings. Its strongest intracranial sources were the bilateral thalamic nuclei of pulvinar, according to swLORETA. The active network included precuneus, insula and inferior parietal lobule. An N80 component (60-90 ms) was also identified, which was larger to targets than irrelevant/passive stimuli and more negative to high than low spatial frequencies. In contrast, N40 was not sensitive to spatial frequency per se, nor did it show a polarity inversion as a function of spatial frequency. Attention, alertness and spatial frequency effects were also found for the later components P1, N2 and P300. The attentional effects increased in magnitude over time. The data showed that ERPs can pick up the earliest synchronized activity, deriving in part from thalamic nuclei, before the visual information has actually reached the occipital cortex.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Veronica Broido
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Alberto Zani
- School of Psychology, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Borra D, Fantozzi S, Magosso E. A Lightweight Multi-Scale Convolutional Neural Network for P300 Decoding: Analysis of Training Strategies and Uncovering of Network Decision. Front Hum Neurosci 2021; 15:655840. [PMID: 34305550 PMCID: PMC8295472 DOI: 10.3389/fnhum.2021.655840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Convolutional neural networks (CNNs), which automatically learn features from raw data to approximate functions, are being increasingly applied to the end-to-end analysis of electroencephalographic (EEG) signals, especially for decoding brain states in brain-computer interfaces (BCIs). Nevertheless, CNNs introduce a large number of trainable parameters, may require long training times, and lack in interpretability of learned features. The aim of this study is to propose a CNN design for P300 decoding with emphasis on its lightweight design while guaranteeing high performance, on the effects of different training strategies, and on the use of post-hoc techniques to explain network decisions. The proposed design, named MS-EEGNet, learned temporal features in two different timescales (i.e., multi-scale, MS) in an efficient and optimized (in terms of trainable parameters) way, and was validated on three P300 datasets. The CNN was trained using different strategies (within-participant and within-session, within-participant and cross-session, leave-one-subject-out, transfer learning) and was compared with several state-of-the-art (SOA) algorithms. Furthermore, variants of the baseline MS-EEGNet were analyzed to evaluate the impact of different hyper-parameters on performance. Lastly, saliency maps were used to derive representations of the relevant spatio-temporal features that drove CNN decisions. MS-EEGNet was the lightest CNN compared with the tested SOA CNNs, despite its multiple timescales, and significantly outperformed the SOA algorithms. Post-hoc hyper-parameter analysis confirmed the benefits of the innovative aspects of MS-EEGNet. Furthermore, MS-EEGNet did benefit from transfer learning, especially using a low number of training examples, suggesting that the proposed approach could be used in BCIs to accurately decode the P300 event while reducing calibration times. Representations derived from the saliency maps matched the P300 spatio-temporal distribution, further validating the proposed decoding approach. This study, by specifically addressing the aspects of lightweight design, transfer learning, and interpretability, can contribute to advance the development of deep learning algorithms for P300-based BCIs.
Collapse
Affiliation(s)
- Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena, Italy
| | - Silvia Fantozzi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena, Italy.,Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, Bologna, Italy
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena, Italy.,Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, Bologna, Italy.,Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Memorisation and implicit perceptual learning are enhanced for preferred musical intervals and chords. Psychon Bull Rev 2021; 28:1623-1637. [PMID: 33945127 PMCID: PMC8500890 DOI: 10.3758/s13423-021-01922-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Is it true that we learn better what we like? Current neuroaesthetic and neurocomputational models of aesthetic appreciation postulate the existence of a correlation between aesthetic appreciation and learning. However, even though aesthetic appreciation has been associated with attentional enhancements, systematic evidence demonstrating its influence on learning processes is still lacking. Here, in two experiments, we investigated the relationship between aesthetic preferences for consonance versus dissonance and the memorisation of musical intervals and chords. In Experiment 1, 60 participants were first asked to memorise and evaluate arpeggiated triad chords (memorisation phase), then, following a distraction task, chords’ memorisation accuracy was measured (recognition phase). Memorisation resulted to be significantly enhanced for subjectively preferred as compared with non-preferred chords. To explore the possible neural mechanisms underlying these results, we performed an EEG study, directed to investigate implicit perceptual learning dynamics (Experiment 2). Through an auditory mismatch detection paradigm, electrophysiological responses to standard/deviant intervals were recorded, while participants were asked to evaluate the beauty of the intervals. We found a significant trial-by-trial correlation between subjective aesthetic judgements and single trial amplitude fluctuations of the ERP attention-related N1 component. Moreover, implicit perceptual learning, expressed by larger mismatch detection responses, was enhanced for more appreciated intervals. Altogether, our results showed the existence of a relationship between aesthetic appreciation and implicit learning dynamics as well as higher-order learning processes, such as memorisation. This finding might suggest possible future applications in different research domains such as teaching and rehabilitation of memory and attentional deficits.
Collapse
|
25
|
Sciaraffa N, Borghini G, Di Flumeri G, Cincotti F, Babiloni F, Aricò P. Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task. Brain Sci 2021; 11:brainsci11050562. [PMID: 33925209 PMCID: PMC8146019 DOI: 10.3390/brainsci11050562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
In several fields, the need for a joint analysis of brain activity and eye activity to investigate the association between brain mechanisms and manifest behavior has been felt. In this work, two levels of attentional demand, elicited through a conjunction search task, have been modelled in terms of eye blinks, brain activity, and brain network features. Moreover, the association between endogenous neural mechanisms underlying attentional demand and eye blinks, without imposing a time-locked structure to the analysis, has been investigated. The analysis revealed statistically significant spatial and spectral modulations of the recorded brain activity according to the different levels of attentional demand, and a significant reduction in the number of eye blinks when a higher amount of attentional investment was required. Besides, the integration of information coming from high-density electroencephalography (EEG), brain source localization, and connectivity estimation allowed us to merge spectral and causal information between brain areas, characterizing a comprehensive model of neurophysiological processes behind attentional demand. The analysis of the association between eye and brain-related parameters revealed a statistically significant high correlation (R > 0.7) of eye blink rate with anterofrontal brain activity at 8 Hz, centroparietal brain activity at 12 Hz, and a significant moderate correlation with the participation of right Intra Parietal Sulcus in alpha band (R = -0.62). Due to these findings, this work suggests the possibility of using eye blinks measured from one sensor placed on the forehead as an unobtrusive measure correlating with neural mechanisms underpinning attentional demand.
Collapse
Affiliation(s)
- Nicolina Sciaraffa
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- Correspondence:
| | - Gianluca Borghini
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
- IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Via Ardeatina 306, 00179 Rome, Italy;
| | - Gianluca Di Flumeri
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
| | - Febo Cincotti
- IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Via Ardeatina 306, 00179 Rome, Italy;
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, China
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
| |
Collapse
|
26
|
Damestani NL, O'Daly O, Solana AB, Wiesinger F, Lythgoe DJ, Hill S, de Lara Rubio A, Makovac E, Williams SCR, Zelaya F. Revealing the mechanisms behind novel auditory stimuli discrimination: An evaluation of silent functional MRI using looping star. Hum Brain Mapp 2021; 42:2833-2850. [PMID: 33729637 PMCID: PMC8127154 DOI: 10.1002/hbm.25407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Looping Star is a near‐silent, multi‐echo, 3D functional magnetic resonance imaging (fMRI) technique. It reduces acoustic noise by at least 25dBA, with respect to gradient‐recalled echo echo‐planar imaging (GRE‐EPI)‐based fMRI. Looping Star has successfully demonstrated sensitivity to the cerebral blood‐oxygen‐level‐dependent (BOLD) response during block design paradigms but has not been applied to event‐related auditory perception tasks. Demonstrating Looping Star's sensitivity to such tasks could (a) provide new insights into auditory processing studies, (b) minimise the need for invasive ear protection, and (c) facilitate the translation of numerous fMRI studies to investigations in sound‐averse patients. We aimed to demonstrate, for the first time, that multi‐echo Looping Star has sufficient sensitivity to the BOLD response, compared to that of GRE‐EPI, during a well‐established event‐related auditory discrimination paradigm: the “oddball” task. We also present the first quantitative evaluation of Looping Star's test–retest reliability using the intra‐class correlation coefficient. Twelve participants were scanned using single‐echo GRE‐EPI and multi‐echo Looping Star fMRI in two sessions. Random‐effects analyses were performed, evaluating the overall response to tones and differential tone recognition, and intermodality analyses were computed. We found that multi‐echo Looping Star exhibited consistent sensitivity to auditory stimulation relative to GRE‐EPI. However, Looping Star demonstrated lower test–retest reliability in comparison with GRE‐EPI. This could reflect differences in functional sensitivity between the techniques, though further study is necessary with additional cognitive paradigms as varying cognitive strategies between sessions may arise from elimination of acoustic scanner noise.
Collapse
Affiliation(s)
| | - Owen O'Daly
- Department of Neuroimaging, King's College London, London, UK
| | | | - Florian Wiesinger
- Department of Neuroimaging, King's College London, London, UK.,ASL Europe, GE Healthcare, Munich, Germany
| | - David J Lythgoe
- Department of Neuroimaging, King's College London, London, UK
| | - Simon Hill
- Department of Neuroimaging, King's College London, London, UK
| | | | - Elena Makovac
- Department of Neuroimaging, King's College London, London, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, King's College London, London, UK
| |
Collapse
|
27
|
Suwazono S, Arao H, Ueda Y, Maedou S. Event-related potentials using the auditory novel paradigm in patients with myotonic dystrophy. J Neurol 2021; 268:2900-2907. [PMID: 33609153 DOI: 10.1007/s00415-021-10465-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Many neuropsychological disorders, especially attentional abnormality, are present in patients with myotonic dystrophy type 1 (DM1), but the underlying mechanisms remain unclear. This study aimed to evaluate attention function by auditory event-related potential (ERP) P3a (novelty paradigm) in DM1 patients. A total of 10 young DM1 patients (mean age 30.4 years) and 14 age-matched normal controls participated in this study. ERPs were recorded using an auditory novel paradigm, consisting of three types of stimuli, i.e., standard sound (70%), target sound (20%), and various novel sounds (10%), and participants pressed buttons to the target sounds. ERP components P3b after the target stimuli and P3a following the novel stimuli were analyzed. Correlations of neuropsychological evaluations with the amplitudes and latencies of P3b and P3a were analyzed in DM1 patients. We found that P3a latency was significantly delayed in patients with DM1 compared with normal controls, although the latency and amplitude of P3b in DM1 patients were comparable with those in normal controls. The achievement rates of both the Symbol Digit Modality Test and the Paced Auditory Serial Addition Test were significantly correlated with P3a amplitude, as well as P3b amplitude. These results suggest that ERPs, including P3a and P3b, provide important insights into the physiological basis of neuropsychological abnormalities in patients with DM1, especially from the viewpoint of the frontal lobe and attention function.
Collapse
Affiliation(s)
- Shugo Suwazono
- Department of Neurology and Center for Clinical Neuroscience, National Hospital Organization Okinawa National Hospital, 3-20-14 Ganeko, Ginowan, 901-2214, Japan.
| | - Hiroshi Arao
- Department of Human Sciences, Taisho University, Tokyo, Japan
| | - Yukihiko Ueda
- Department of Human Welfare, Okinawa International University, Ginowan, Japan
| | - Shino Maedou
- Department of Human Welfare, Okinawa International University, Ginowan, Japan
| |
Collapse
|
28
|
Oeur RA, Margulies SS. Target detection in healthy 4-week old piglets from a passive two-tone auditory oddball paradigm. BMC Neurosci 2020; 21:52. [PMID: 33287727 PMCID: PMC7720395 DOI: 10.1186/s12868-020-00601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Passive auditory oddball tests are effort independent assessments that evaluate auditory processing and are suitable for paediatric patient groups. Our goal was to develop a two-tone auditory oddball test protocol and use this clinical assessment in an immature large animal model. Event-related potentials captured middle latency P1, N1, and P2 responses in 4-week old (N = 16, female) piglets using a custom piglet 32- electrode array on 3 non-consecutive days. The effect of target tone frequency (250 Hz and 4000 Hz) on middle latency responses were tested in a subset of animals. RESULTS Results show that infrequent target tone pulses elicit greater N1 amplitudes than frequent standard tone pulses. There was no effect of day. Electrodes covering the front of the head tend to elicit greater waveform responses. P2 amplitudes increased for higher frequency target tones (4000 Hz) than the regular 1000 Hz target tones (p < 0.05). CONCLUSIONS Two-tone auditory oddball tests produced consistent responses day-to-day. This clinical assessment was successful in the immature large animal model.
Collapse
Affiliation(s)
- R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, 615 Michael St. Suite 655, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, 615 Michael St. Suite 655, Atlanta, GA, USA.
- Emory University, Health Sciences Research Building 1760 Haygood Drive, Suite W242, 30322, Atlanta, Georgia.
| |
Collapse
|
29
|
Charpentier J, Latinus M, Andersson F, Saby A, Cottier JP, Bonnet-Brilhault F, Houy-Durand E, Gomot M. Brain correlates of emotional prosodic change detection in autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 28:102512. [PMID: 33395999 PMCID: PMC8481911 DOI: 10.1016/j.nicl.2020.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
We used an oddball paradigm with vocal stimuli to record hemodynamic responses. Brain processing of vocal change relies on STG, insula and lingual area. Activity of the change processing network can be modulated by saliency and emotion. Brain processing of vocal deviancy/novelty appears typical in adults with autism.
Autism Spectrum Disorder (ASD) is currently diagnosed by the joint presence of social impairments and restrictive, repetitive patterns of behaviors. While the co-occurrence of these two categories of symptoms is at the core of the pathology, most studies investigated only one dimension to understand underlying physiopathology. In this study, we analyzed brain hemodynamic responses in neurotypical adults (CTRL) and adults with autism spectrum disorder during an oddball paradigm allowing to explore brain responses to vocal changes with different levels of saliency (deviancy or novelty) and different emotional content (neutral, angry). Change detection relies on activation of the supratemporal gyrus and insula and on deactivation of the lingual area. The activity of these brain areas involved in the processing of deviancy with vocal stimuli was modulated by saliency and emotion. No group difference between CTRL and ASD was reported for vocal stimuli processing or for deviancy/novelty processing, regardless of emotional content. Findings highlight that brain processing of voices and of neutral/ emotional vocal changes is typical in adults with ASD. Yet, at the behavioral level, persons with ASD still experience difficulties with those cues. This might indicate impairments at latter processing stages or simply show that alterations present in childhood might have repercussions at adult age.
Collapse
Affiliation(s)
| | | | | | - Agathe Saby
- Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | | | | | - Emmanuelle Houy-Durand
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | - Marie Gomot
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France.
| |
Collapse
|
30
|
Perkins DO, Jeffries CD, Do KQ. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol Psychiatry 2020; 88:326-336. [PMID: 32560962 PMCID: PMC7395886 DOI: 10.1016/j.biopsych.2020.03.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Converging evidence implicates redox dysregulation as a pathological mechanism driving the emergence of psychosis. Increased oxidative damage and decreased capacity of intracellular redox modulatory systems are consistent findings in persons with schizophrenia as well as in persons at clinical high risk who subsequently developed frank psychosis. Levels of glutathione, a key regulator of cellular redox status, are reduced in the medial prefrontal cortex, striatum, and thalamus in schizophrenia. In humans with schizophrenia and in rodent models recapitulating various features of schizophrenia, redox dysregulation is linked to reductions of parvalbumin containing gamma-aminobutyric acid (GABA) interneurons and volumes of their perineuronal nets, white matter abnormalities, and microglia activation. Importantly, the activity of transcription factors, kinases, and phosphatases regulating diverse aspects of neurodevelopment and synaptic plasticity varies according to cellular redox state. Molecules regulating interneuron function under redox control include NMDA receptor subunits GluN1 and GluN2A as well as KEAP1 (regulator of transcription factor NRF2). In a rodent schizophrenia model characterized by impaired glutathione synthesis, the Gclm knockout mouse, oxidative stress activated MMP9 (matrix metalloprotease 9) via its redox-responsive regulatory sites, causing a cascade of molecular events leading to microglia activation, perineural net degradation, and impaired NMDA receptor function. Molecular pathways under redox control are implicated in the etiopathology of schizophrenia and are attractive drug targets for individualized drug therapy trials in the contexts of prevention and treatment of psychosis.
Collapse
Affiliation(s)
- Diana O. Perkins
- corresponding author: CB 7160, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, Office: 919-962-1401, Cell: 919-360-1602,
| | - Clark D. Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill NC
| | - Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| |
Collapse
|
31
|
Heugel N, Liebenthal E, Beardsley SA. Method for spatial overlap estimation of electroencephalography and functional magnetic resonance imaging responses. J Neurosci Methods 2019; 328:108401. [PMID: 31445115 DOI: 10.1016/j.jneumeth.2019.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Simultaneous functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) measurements may represent activity from partially divergent neural sources, but this factor is seldom modeled in fMRI-EEG data integration. NEW METHOD This paper proposes an approach to estimate the spatial overlap between sources of activity measured simultaneously with fMRI and EEG. Following the extraction of task-related activity, the key steps include, 1) distributed source reconstruction of the task-related ERP activity (ERP source model), 2) transformation of fMRI activity to the ERP spatial scale by forward modelling of the scalp potential field distribution and backward source reconstruction (fMRI source simulation), and 3) optimization of fMRI and ERP thresholds to maximize spatial overlap without a priori constraints of coupling (overlap calculation). RESULTS FMRI and ERP responses were recorded simultaneously in 15 subjects performing an auditory oddball task. A high degree of spatial overlap between sources of fMRI and ERP responses (in 9 or more of 15 subjects) was found specifically within temporoparietal areas associated with the task. Areas of non-overlap in fMRI and ERP sources were relatively small and inconsistent across subjects. COMPARISON WITH EXISTING METHOD The ERP and fMRI sources estimated with solely jICA overlapped in just 4 of 15 subjects, and strictly in the parietal cortex. CONCLUSION The study demonstrates that the new fMRI-ERP spatial overlap estimation method provides greater spatiotemporal detail of the cortical dynamics than solely jICA. As such, we propose that it is a superior method for the integration of fMRI and EEG to study brain function.
Collapse
Affiliation(s)
- N Heugel
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - E Liebenthal
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Clinical Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
32
|
Yakunina N, Tae WS, Kim SS, Nam EC. Functional MRI evidence of the cortico-olivary efferent pathway during active auditory target processing in humans. Hear Res 2019; 379:1-11. [DOI: 10.1016/j.heares.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023]
|
33
|
Wollseiffen P, Klein T, Vogt T, Abeln V, Strüder HK, Stuckenschneider T, Sanders M, Claassen JAHR, Askew CD, Carnahan H, Schneider S. Neurocognitive performance is enhanced during short periods of microgravity-Part 2. Physiol Behav 2019; 207:48-54. [PMID: 31029651 DOI: 10.1016/j.physbeh.2019.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/06/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
Previous studies showed a decrease in reaction time during the weightlessness phase of a parabolic flight. This effect was found to be stronger with increasing task complexity and was independent of previous experience of weightlessness as well as anti-nausea medication. Analysis of event related potentials showed a decreased amplitude of the N100-P200 complex in weightlessness but was not able to distinguish a possible effect of task complexity. The present study aimed to extend this previous work, by comparing behavioral (reaction time) and neurological (event related potentials analysis) performance to a simple (oddball) and a complex (mental arithmetic + oddball) task during weightlessness. 28 participants participated in two experiments. 11 participants performed a simple oddball experiment in the 1G and 0G phases of a parabolic flight. 17 participants were presented a complex arithmetic task in combination with an oddball task during the 1G and 0G phases of a parabolic flight. Reaction time as well as event related potentials (ERP) were assessed. Results revealed a reduced reaction time (p < .05) for the complex task during 0G. No gravity effects on reaction time were found for the simple task. In both experiments a reduction of typical ERP amplitudes was noticeable in weightlessness. It is assumed that the weightlessness induced fluid shift to the brain is positively affecting neuro-behavioral performance.
Collapse
Affiliation(s)
- Petra Wollseiffen
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Timo Klein
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany; School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | - Tobias Vogt
- Institute of Professional Sport Education and Sport Qualifications, German Sport University Cologne, Germany
| | - Vera Abeln
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Heiko K Strüder
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Tim Stuckenschneider
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Marit Sanders
- Department of Geriatric Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Christopher D Askew
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | - Heather Carnahan
- School of Maritime Studies, Offshore Safety and Survival Centre, Marine Institute, Memorial University of Newfoundland, Canada
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany; School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia; School of Maritime Studies, Offshore Safety and Survival Centre, Marine Institute, Memorial University of Newfoundland, Canada.
| |
Collapse
|
34
|
Kotchoubey B, Pavlov YG. A Signature of Passivity? An Explorative Study of the N3 Event- Related Potential Component in Passive Oddball Tasks. Front Neurosci 2019; 13:365. [PMID: 31068776 PMCID: PMC6491624 DOI: 10.3389/fnins.2019.00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/29/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Many passive oddball experiments show a sharp negative deflection N3 after P3b, peaking between 400 and 500 ms, but this wave has never been analyzed properly. We conducted five passive oddball experiments, in which the number of deviants (i.e., one or two), their alleged meaning, and their distinctiveness varied. RESULTS Mastoid- or common-referenced waveforms showed a fronto-central N3 in all experiments. The data were CSD (Current Source Density) transformed and underwent a Principal Component Analysis (PCA). The PCA revealed N3 containing two subcomponents with very stable peak latencies of about 415 and 455 ms, respectively. Both topography of the subcomponents and their variation with experimental conditions were very similar, indicating a midfrontal sink and a posterior temporal source. An analysis of P3a and P3b components replicated previously known effects. CONCLUSION We discuss the similarities and differences between the passive N3 and other components including the MMN, N1, late positive Slow Wave, and reorienting negativity. We also make general hypotheses about a possible functional meaning of N3; on this basis, specific hypotheses are formulated and further experiments are suggested to test these hypotheses.
Collapse
Affiliation(s)
- Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Yuri G. Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
35
|
Fogarty JS, Barry RJ, Steiner GZ. Sequential processing in the classic oddball task: ERP components, probability, and behavior. Psychophysiology 2018; 56:e13300. [PMID: 30456921 DOI: 10.1111/psyp.13300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/18/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022]
Abstract
This study compared the ERP components and behavior associated with the auditory equiprobable and classic oddball tasks, to relate the cognitive processing stages in those paradigms and continue the development of the sequential processing schema. Target and nontarget ERP data were acquired from 66 healthy young adults (Mage = 20.1, SD = 2.4 years, 14 male) who completed both equiprobable (target p = 0.5) and oddball tasks (target p = 0.3). Separate temporal PCAs were used to decompose the ERP data in each task and condition, and the similarity of the components identified in each condition was examined between tasks. Probability effects on component amplitudes and behavior were also analyzed to identify task differences in cognitive demands. A highly similar series of components was identified in each task, closely matching the schema: targets elicited N1-3, N1-1, PN, N2c, P3b, SW1, SW2; whereas nontargets elicited N1-3, N1-1, PN, N2b, P3a, SW1, SW2. N1-1 and PN amplitudes increased as stimulus probability decreased, irrespective of the condition. N2b, P3b, SW1, and SW2 amplitudes also varied between tasks, illustrating task-specific demands on those processing stages. These findings complemented the behavioral outcomes, which demonstrated greater accuracy and control in the classic oddball task. Overall, this study demonstrated comparable processing in the auditory equiprobable and classic oddball tasks, extending the generalizability of the schema and enabling further integration of the ERP theory associated with these tasks. This study also clarifies stimulus probability effects on the schema, providing important insight into the functionality of common ERP components.
Collapse
Affiliation(s)
- Jack S Fogarty
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Robert J Barry
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Genevieve Z Steiner
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|