1
|
Kashyap SN, Fox SN, Wilson KI, Murchison CF, Ambaw YA, Walther TC, Farese RV, Arrant AE, Roberson ED. Carboxy-terminal blockade of sortilin binding enhances progranulin gene therapy, a potential treatment for frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613118. [PMID: 39345608 PMCID: PMC11430072 DOI: 10.1101/2024.09.15.613118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Frontotemporal dementia is commonly caused by loss-of-function mutations in the progranulin gene. Potential therapies for this disorder have entered clinical trials, including progranulin gene therapy and drugs that reduce progranulin interactions with sortilin. Both approaches ameliorate functional and pathological abnormalities in mouse models of progranulin insufficiency. Here we investigated whether modifying the progranulin carboxy terminus to block sortilin interactions would improve the efficacy of progranulin gene therapy. We compared the effects of treating progranulin-deficient mice with gene therapy vectors expressing progranulin with intact sortilin interactions, progranulin with the carboxy terminus blocked to reduce sortilin interactions, or GFP control. We found that expressing carboxy-terminally blocked progranulin generated higher levels of progranulin both at the injection site and in more distant regions. Carboxy-terminally blocked progranulin was also more effective at ameliorating microgliosis, microglial lipofuscinosis, and lipid abnormalities including ganglioside accumulation and loss of bis(monoacylglycero)phosphate lipids. Finally, only carboxy-terminally blocked progranulin reduced plasma neurofilament light chain, a biomarker of neurodegeneration, in progranulin-deficient mice. These results demonstrate that modifying the progranulin cargo to block sortilin interactions may be important for increasing the effectiveness of progranulin gene therapy. One-sentence Summary The effectiveness of progranulin gene therapy in models of FTD is improved by blocking the protein's carboxy terminus, which prevents sortilin binding.
Collapse
|
2
|
Sawatphakdee G, Yostawonkul J, Oontawee S, Rodprasert W, Sawangmake C, Kornsuthisopon C, Yata T, Tabtieang SP, Nowwarote N, Pirarat N. Feasibility of Nanostructured Lipid Carrier Loaded with Alpha-Mangostin and Clove Oil for Canine Periodontal Therapy. Animals (Basel) 2024; 14:2084. [PMID: 39061546 PMCID: PMC11273492 DOI: 10.3390/ani14142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Nanostructured lipid carriers (NLC) represent the second generation of nanoparticles, offering numerous advantages over conventional delivery systems. These include improved stability, enhanced drug-loading capacity, and controlled release profiles, making them highly attractive candidates for a wide range of therapeutic applications. Their suitability for hydrophobic drugs like a traditional medicinal plant of Thailand as clove oil and alpha-mangostin. We investigated into nanostructured lipid carriers loaded with Alpha-Mangostin and clove oil (NLC-AMCO) into the physicochemical and biological characteristics to identify the formulation with the highest efficacy for treatment. The particle size, charge, polydispersity index, and other characterizations were recorded. The realtime ex vivo penetration was explored using canine gingival tissue. Drug sustained release was assessed by HPLC. Moreover, the antibacterial properties were tested by conventional methods. The NLC-AMCO can be stored at up to 40 °C for 60 days without any alterations in particle characteristics. Gingival tissue penetration and sustained drug release were superior compared to unencapsulated counterparts. It exhibited greater effectiveness in inhibiting bacterial growth than the antibiotics tested, particularly against bacteria from the oral cavities of dogs. Therefore, this alternative treatment approach offers cost-effectiveness and ease of administration for pet owners and reduces discomfort for the animals during restraint.
Collapse
Affiliation(s)
- Gotchagorn Sawatphakdee
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jakarwan Yostawonkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand;
| | - Saranyou Oontawee
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.O.); (W.R.); (C.S.)
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.O.); (W.R.); (C.S.)
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.O.); (W.R.); (C.S.)
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand;
| | - Teerapong Yata
- The Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand;
| | - Sirinun Pisamai Tabtieang
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cite, 75006 Paris, France;
| | - Nopadon Pirarat
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
3
|
Arceneaux JS, Brockman AA, Khurana R, Chalkley MBL, Geben LC, Krbanjevic A, Vestal M, Zafar M, Weatherspoon S, Mobley BC, Ess KC, Ihrie RA. Multiparameter quantitative analyses of diagnostic cells in brain tissues from tuberous sclerosis complex. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024:10.1002/cyto.b.22194. [PMID: 38953209 PMCID: PMC11693778 DOI: 10.1002/cyto.b.22194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.
Collapse
Affiliation(s)
- Jerome S. Arceneaux
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College
| | - Asa A. Brockman
- Department of Cell & Developmental Biology, Vanderbilt University
| | - Rohit Khurana
- Department of Cell & Developmental Biology, Vanderbilt University
| | | | | | - Aleksandar Krbanjevic
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center
| | | | | | - Sarah Weatherspoon
- Neuroscience Institute, Le Bonheur Children’s Hospital
- University of Tennessee Health Science Center
| | - Bret C. Mobley
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center
| | - Kevin C. Ess
- Department of Cell & Developmental Biology, Vanderbilt University
- Department of Pediatrics, Vanderbilt University Medical Center
- Department of Neurology, Vanderbilt University Medical Center
- Section of Child Neurology, University of Colorado Anschutz Medical Center
| | - Rebecca A. Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| |
Collapse
|
4
|
Bay S, Digwal CS, Rodilla Martín AM, Sharma S, Stanisavljevic A, Rodina A, Attaran A, Roychowdhury T, Parikh K, Toth E, Panchal P, Rosiek E, Pasala C, Arancio O, Fraser PE, Alldred MJ, Prado MAM, Ginsberg SD, Chiosis G. Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders. Biomedicines 2024; 12:1252. [PMID: 38927459 PMCID: PMC11201208 DOI: 10.3390/biomedicines12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anoosha Attaran
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kamya Parikh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eugene Toth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Wang W, Vikesland PJ. SERS-Active Printable Hydrogel for 3D Cell Culture and Imaging. Anal Chem 2023; 95:18055-18064. [PMID: 37934619 DOI: 10.1021/acs.analchem.3c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hydrogel-based three-dimensional (3D) cell culture systems mimic the salient elements of extracellular matrices and promote native cell function. However, high-resolution 3D cell imaging that can provide biological information about multiple features of individual cells is yet to be realized. In this context, we incorporated plasmonic gold nanoparticles (AuNPs) into an alginate/gelatin hydrogel to produce surface-enhanced Raman spectroscopy (SERS)-active hydrogel inks for the 3D printing and culturing of Vero cells. Dense incorporation of AuNPs enables production of a printed 3D grid structure with 3D SERS performance, but with no measurable adverse effects on cell growth. Label-free SERS spectra were collected within a hydrogel, and a random forest binary classifier was developed to discriminate Vero cell signals from the hydrogel background with an accuracy of 87.5%. The results suggest that SERS signals from cellular components, such as proteins, lipids, and carbohydrates, account for this discrimination. We demonstrate visualization of cell shape, location, and density by combining predicted binary maps with peak feature intensity maps in 2D and 3D. SERS images with a resolution of ≈3 μm match well with the microscopy images and show clear increases in intensity with incubation time. We suggest that 3D SERS cell imaging is a promising means to examine the effect of external cell stimuli on cellular behavior for diagnostic purposes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Stillman JM, Mendes Lopes F, Lin JP, Hu K, Reich DS, Schafer DP. Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment. Nat Commun 2023; 14:7060. [PMID: 37923732 PMCID: PMC10624656 DOI: 10.1038/s41467-023-42809-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.
Collapse
Affiliation(s)
- Jacob M Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Francisco Mendes Lopes
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Ling Z, Han K, Liu W, Hua X, Jia S. Volumetric live-cell autofluorescence imaging using Fourier light-field microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:4237-4245. [PMID: 37799690 PMCID: PMC10549745 DOI: 10.1364/boe.495506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/07/2023]
Abstract
This study introduces a rapid, volumetric live-cell imaging technique for visualizing autofluorescent sub-cellular structures and their dynamics by employing high-resolution Fourier light-field microscopy. We demonstrated this method by capturing lysosomal autofluorescence in fibroblasts and HeLa cells. Additionally, we conducted multicolor imaging to simultaneously observe lysosomal autofluorescence and fluorescently-labeled organelles such as lysosomes and mitochondria. We further analyzed the data to quantify the interactions between lysosomes and mitochondria. This research lays the foundation for future exploration of native cellular states and functions in three-dimensional environments, effectively reducing photodamage and eliminating the necessity for exogenous labels.
Collapse
Affiliation(s)
- Zhi Ling
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Keyi Han
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Wenhao Liu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xuanwen Hua
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shu Jia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Parker M, Annamdevula NS, Pleshinger D, Ijaz Z, Jalkh J, Penn R, Deshpande D, Rich TC, Leavesley SJ. Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy. Bioengineering (Basel) 2023; 10:642. [PMID: 37370573 PMCID: PMC10295298 DOI: 10.3390/bioengineering10060642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI systems have suffered from limited signal strength due to the need to filter or disperse the emitted light across many spectral bands. We have previously demonstrated that sampling the fluorescence excitation spectrum may provide an alternative approach with improved signal strength. Here, we report on the use of excitation-scanning HSI for dynamic cell signaling studies-in this case, the study of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF), and the performances were compared. Results indicate that LU and MF provided similar linear responses to increasing Ca2+ and could both be effectively used for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid in the extraction of quantitative signal traces. These approaches may be especially helpful for cases where the signal of interest is masked by strong cellular autofluorescence or other competing signals.
Collapse
Affiliation(s)
- Marina Parker
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Systems Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
| | - Naga S. Annamdevula
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Donald Pleshinger
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Zara Ijaz
- College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Josephine Jalkh
- College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Raymond Penn
- College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak Deshpande
- College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas C. Rich
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Silas J. Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Systems Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| |
Collapse
|
9
|
Hourani T, Perez-Gonzalez A, Khoshmanesh K, Luwor R, Achuthan AA, Baratchi S, O'Brien-Simpson NM, Al-Hourani A. Label-free macrophage phenotype classification using machine learning methods. Sci Rep 2023; 13:5202. [PMID: 36997576 PMCID: PMC10061362 DOI: 10.1038/s41598-023-32158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Macrophages are heterogeneous innate immune cells that are functionally shaped by their surrounding microenvironment. Diverse macrophage populations have multifaceted differences related to their morphology, metabolism, expressed markers, and functions, where the identification of the different phenotypes is of an utmost importance in modelling immune response. While expressed markers are the most used signature to classify phenotypes, multiple reports indicate that macrophage morphology and autofluorescence are also valuable clues that can be used in the identification process. In this work, we investigated macrophage autofluorescence as a distinct feature for classifying six different macrophage phenotypes, namely: M0, M1, M2a, M2b, M2c, and M2d. The identification was based on extracted signals from multi-channel/multi-wavelength flow cytometer. To achieve the identification, we constructed a dataset containing 152,438 cell events each having a response vector of 45 optical signals fingerprint. Based on this dataset, we applied different supervised machine learning methods to detect phenotype specific fingerprint from the response vector, where the fully connected neural network architecture provided the highest classification accuracy of 75.8% for the six phenotypes compared simultaneously. Furthermore, by restricting the number of phenotypes in the experiment, the proposed framework produces higher classification accuracies, averaging 92.0%, 91.9%, 84.2%, and 80.4% for a pool of two, three, four, five phenotypes, respectively. These results indicate the potential of the intrinsic autofluorescence for classifying macrophage phenotypes, with the proposed method being quick, simple, and cost-effective way to accelerate the discovery of macrophage phenotypical diversity.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Alexis Perez-Gonzalez
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Parkville, VIC, 3010, Australia
| | | | - Rodney Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3010, Australia
| | - Akram Al-Hourani
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
10
|
Stillman JM, Lopes FM, Lin JP, Hu K, Reich DS, Schafer DP. Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530224. [PMID: 36909485 PMCID: PMC10002639 DOI: 10.1101/2023.02.28.530224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF), likely due to lipofuscin and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipofuscin-AF signal accumulates first within microglia and increases with age, but it is not exacerbated by amyloid beta-related neurodegeneration. We further show that this lipofuscin-AF signal within microglia can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. Finally, we implement a robust strategy to quench AF in mouse, marmoset, and human brain tissue.
Collapse
Affiliation(s)
- Jacob M. Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Francisco M. Lopes
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|