1
|
Zhang J, Tang C, Xie J, Li J, Zhang X, Wang C. Exogenous strigolactones alleviate low-temperature stress in peppers seedlings by reducing the degree of photoinhibition. BMC PLANT BIOLOGY 2024; 24:907. [PMID: 39349999 PMCID: PMC11441246 DOI: 10.1186/s12870-024-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The growth and yield of pepper, a typical temperature-loving vegetable, are limited by low-temperature environments. Using low-temperature sensitive 'Hangjiao No. 4' (Capsicum annuum L.) as experimental material, this study analyzed the changes in plant growth and photosynthesis under different treatments: normal control (NT), low-temperature stress alone (LT), low-temperature stress in strigolactone pretreated plants (SL_LT), and low-temperature stress in strigolactone biosynthesis inhibitor pretreated plants (Tis_LT). RESULTS SL pretreatment increased the net photosynthetic rate (Pn) and PSII actual photochemical efficiency (φPSII), reducing the inhibition of LT on the growth of pepper by 17.44% (dry weight of shoot). Due to promoting the accumulation of carotenoids, such as lutein, and the de-epoxidation of the xanthophyll cycle [(Z + A)/(Z + A + V)] by strigolactone after long-term low-temperature stress (120 h), non-photochemical quenching (NPQ) of pepper was increased to reduce the excess excitation energy [(1-qP)/NPQ] and the photoinhibition degree (Fv/Fm) of pepper seedlings under long-term low-temperature stress was alleviated. Twelve cDNA libraries were constructed from pepper leaves by transcriptome sequencing. There were 8776 differentially expressed genes (DEGs), including 4473 (51.0%) upregulated and 4303 (49.0%) downregulated genes. Gene ontology pathway annotation showed that based on LT, the DEGs of SL_LT and Tis_LT were significantly enriched in the cellular component, which is mainly related to the photosystem and thylakoids. Further analysis of the porphyrin and chlorophyll biosynthesis, carotenoid biosynthesis, photosynthesis-antenna protein, and photosynthetic metabolic pathways and the Calvin cycle under low-temperature stress highlighted 18, 15, 21, 29, and 31 DEGs for further study, which were almost all highly expressed under SL_LT treatment and moderately expressed under LT treatment, whereas Tis_LT showed low expression. CONCLUSION The positive regulatory effect of SLs on the low-temperature tolerance of pepper seedlings was confirmed. This study provided new insights for the development of temperature-tolerant pepper lines through breeding programs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| |
Collapse
|
2
|
Tao X, Yang L, Zhang M, Li Y, Xiao H, Yu L, Jiang C, Long Z, Zhang Y. Shallow water seeding cultivation enhances cold tolerance in tobacco seedlings. BMC PLANT BIOLOGY 2024; 24:698. [PMID: 39044176 PMCID: PMC11267769 DOI: 10.1186/s12870-024-05422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cold stress can impact plant biology at both the molecular and morphological levels. We cultivated two different types of tobacco seedlings using distinct seeding methods, observing significant differences in their cold tolerance at 4 °C. After 12 h cold stress, shallow water seeding cultivation treatment demonstrates a relatively good growth state with slight wilting of the leaves. Tobacco grown using the float system exhibited short, thick roots, while those cultivated through shallow water seeding had elongated roots with more tips and forks. After cold stress, the shallow water seeding cultivation treatment demonstrated higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content.Transcriptome analysis was performed on the leaves of these tobacco seedlings at three stages of cold treatment (before cold stress, after cold stress, and after 3 days of recovery). Upon analyzing the raw data, we found that the shallow water seeding cultivation treatment was associated with significant functional enrichment of nicotinamide adenine dinucleotide (NAD) biosynthesis and NAD metabolism before cold stress, enrichment of functions related to the maintenance of cellular structure after cold stress, and substantial functional enrichment related to photosynthesis during the recovery period. Weighted gene co-expression network analysis (WGCNA) was conducted, identifying several hub genes that may contribute to the differences in cold tolerance between the two tobacco seedlings. Hub genes related to energy conversion were predominantly identified in shallow water seeding cultivation treatment during our analysis, surpassing findings in other areas. These include the AS gene, which controls the synthesis of NAD precursors, the PED1 gene, closely associated with fatty acid β-oxidation, and the RROP1 gene, related to ATP production.Overall, our study provides a valuable theoretical basis for exploring improved methods of cultivating tobacco seedlings. Through transcriptome sequencing technology, we have elucidated the differences in gene expression in different tobacco seedlings at three time points, identifying key genes affecting cold tolerance in tobacco and providing possibilities for future gene editing.
Collapse
Affiliation(s)
- Xuan Tao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Lei Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Mingfa Zhang
- Xiangxi Branch of Hunan Provincial Tobacco Corporation, Xiangxi, China
| | - Yangyang Li
- Hunan Research Institute of Tobacco Science, Changsha, China
- Hunan Provincial Tobacco Corporation, Changsha, China
| | - Hanqian Xiao
- Hunan Research Institute of Tobacco Science, Changsha, China
- Hunan Provincial Tobacco Corporation, Changsha, China
| | - Lingyi Yu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Chaowei Jiang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zeyu Long
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yiyang Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Testone G, Lamprillo M, Gonnella M, Arnesi G, Sobolev AP, Aiese Cigliano R, Giannino D. The Chloroplast Genome of Endive ( Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events. Genes (Basel) 2023; 14:1829. [PMID: 37761969 PMCID: PMC10531310 DOI: 10.3390/genes14091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The chloroplast (cp) genome diversity has been used in phylogeny studies, breeding, and variety protection, and its expression has been shown to play a role in stress response. Smooth- and curly-leafed endives (Cichorium endivia var. latifolium and var. crispum) are of nutritional and economic importance and are the target of ever-changing breeding programmes. A reference cp genome sequence was assembled and annotated (cultivar 'Confiance'), which was 152,809 base pairs long, organized into the angiosperm-typical quadripartite structure, harboring two inverted repeats separated by the large- and short- single copy regions. The annotation included 136 genes, 90 protein-coding genes, 38 transfer, and 8 ribosomal RNAs and the sequence generated a distinct phyletic group within Asteraceae with the well-separated C. endivia and intybus species. SSR variants within the reference genome were mostly of tri-nucleotide type, and the cytosine to uracil (C/U) RNA editing recurred. The cp genome was nearly fully transcribed, hence sequence polymorphism was investigated by RNA-Seq of seven cultivars, and the SNP number was higher in smooth- than curly-leafed ones. All cultivars maintained C/U changes in identical positions, suggesting that RNA editing patterns were conserved; most cultivars shared SNPs of moderate impact on protein changes in the ndhD, ndhA, and psbF genes, suggesting that their variability may have a potential role in adaptive response. The cp transcriptome expression was investigated in leaves of plants affected by pre-harvest rainfall and rainfall excess plus waterlogging events characterized by production loss, compared to those of a cycle not affected by extreme rainfall. Overall, the analyses evidenced stress- and cultivar-specific responses, and further revealed that genes of the Cytochrome b6/f, and PSI-PSII systems were commonly affected and likely to be among major targets of extreme rain-related stress.
Collapse
Affiliation(s)
- Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| | - Michele Lamprillo
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| | - Maria Gonnella
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppe Arnesi
- Enza Zaden Italia, Strada Statale Aurelia Km 96.400, Tarquinia, 01016 Viterbo, Italy;
| | - Anatoly Petrovich Sobolev
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| | | | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| |
Collapse
|
4
|
Guo J, Wang H, Liu S, Wang Y, Liu F, Li X. Parental drought priming enhances tolerance to low temperature in wheat ( Triticum aestivum) offspring. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:946-957. [PMID: 35871526 DOI: 10.1071/fp22043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the major environmental stresses that limit crop growth and grain yield in wheat (Triticum aestivum L.). Drought priming at the vegetative stage could enhance wheat tolerance to later cold stress; however, the transgenerational effects of drought priming on wheat offspring's cold stress tolerance remains unclear. Here, the low temperature responses of offspring were tested after the parental drought priming treatment at grain filling stage. The offspring plants from parental drought priming treatment had a higher abscisic acid (ABA) level and lower osmotic potential (Ψo) than the control plants under cold conditions. Moreover, parental drought priming increased the antioxidant enzyme activities and decreased hydrogen peroxide (H2 O2 ) accumulation in offspring. In comparison to control plants, parental drought priming plants had a higher ATP concentration and higher activities of ATPase and the enzymes involved in sucrose biosynthesis and starch metabolism. The results indicated that parental drought priming induced low temperature tolerance in offspring by regulating endogenous ABA levels and maintaining the redox homeostasis and the balance of carbohydrate metabolism, which provided a potential approach for cold resistant cultivation in wheat.
Collapse
Affiliation(s)
- Junhong Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences/State Engineering Laboratory of Maize, Changchun 130033, China
| | - Fulai Liu
- University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegård Allé 13, Tåstrup DK-2630, Denmark
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; and University of Chinese Academy of Sciences, Beijing 100049, China; and CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Science, Changchun 130102, China
| |
Collapse
|
5
|
Li H, Li S, Wang Z, Liu S, Zhou R, Li X. Abscisic acid-mimicking ligand AMF4 induced cold tolerance in wheat by altering the activities of key carbohydrate metabolism enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:284-290. [PMID: 33157420 DOI: 10.1016/j.plaphy.2020.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
AMF4, a recently synthetic ABA-mimicking ligand, has been reported to have long-lasting effects in inducing the expression of stress-responsive genes, hence conferring abiotic tolerance in plants. To test the effect of AMF4 on cold tolerance induction, the wheat plants were firstly foliar sprayed with AMF4 (10 μM), then the AMF4 treated and the control plants were exposed to a 24-h low temperature treatment (2/0 °C). Under low temperature stress, the AMF plants possessed significantly higher relative water content, membrane stability index and ATP concentration in leaf, while lower leaf H2O2 concentration, compared with the control plants. The AMF4 treatment significantly increased the activities of APX, Ca2+-ATPase in the chloroplasts, while decreased SOD activity under low temperature, in relation to the control plants. In addition, the AMF plants showed significantly higher activities of key carbohydrate metabolism enzymes, such as UDP-glucose pyrophorylase, hexokinase, fructokinase, ADP-Glucose pyrophosphorylase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and phosphoglucoisomerase, in relation to the control plants under low temperature. These results demonstrate that AMF4 could be used to induce cold tolerance in wheat, and provide novel insights into the potential ways to enhance abiotic stress tolerance using the synthetic ABA-mimicking ligands.
Collapse
Affiliation(s)
- Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shengqun Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
6
|
Wang Y, Li X, Liu N, Wei S, Wang J, Qin F, Suo B. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC PLANT BIOLOGY 2020; 20:96. [PMID: 32131734 PMCID: PMC7057492 DOI: 10.1186/s12870-020-2297-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUNDS The perturbance of chloroplast proteins is a major cause of photosynthesis inhibition under drought stress. The exogenous application of 5-aminolevulinic acid (ALA) mitigates the damage caused by drought stress, protecting plant growth and development, but the regulatory mechanism behind this process remains obscure. RESULTS Wheat seedlings were drought treated, and the iTRAQ-based proteomic approach was employed to assess the difference in chloroplast protein content caused by exogenous ALA. A total of 9499 peptides, which could be classified into 2442 protein groups, were identified with ≤0.01 FDR. Moreover, the contents of 87 chloroplast proteins was changed by drought stress alone compared to that of the drought-free control, while the contents of 469 was changed by exogenous ALA application under drought stress compared to that of drought stress alone. The Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that the ALA pretreatment adjusted some biological pathways, such as metabolic pathways and pathways involved in photosynthesis and ribosomes, to enhance the drought resistance of chloroplasts. Furthermore, the drought-promoted H2O2 accumulation and O2- production in chloroplasts were alleviated by the exogenous pretreatment of ALA, while peroxidase (POD) and glutathione peroxidase (GPX) activities were upregulated, which agreed with the chloroplast proteomic data. We suggested that ALA promoted reactive oxygen species (ROS) scavenging in chloroplasts by regulating enzymatic processes. CONCLUSIONS Our results from chloroplast proteomics extend the understanding of the mechanisms employed by exogenous ALA to defend against drought stress in wheat.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, 100193 China
| | - Shimei Wei
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Jianan Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908 USA
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| |
Collapse
|
7
|
Zhou J, Wang Z, Mao Y, Wang L, Xiao T, Hu Y, Zhang Y, Ma Y. Proteogenomic analysis of pitaya reveals cold stress-related molecular signature. PeerJ 2020; 8:e8540. [PMID: 32095361 PMCID: PMC7020823 DOI: 10.7717/peerj.8540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
Pitayas (Hylocereus spp.) is an attractive, highly nutritious and commercially valuable tropical fruit. However, low-temperature damage limits crop production. Genome of pitaya has not been sequenced yet. In this study, we sequenced the transcriptome of pitaya as the reference and further investigated the proteome under low temperature. By RNAseq technique, approximately 25.3 million reads were obtained, and further trimmed and assembled into 81,252 unigene sequences. The unigenes were searched against UniProt, NR and COGs at NCBI, Pfam, InterPro and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and 57,905 unigenes were retrieved annotations. Among them, 44,337 coding sequences were predicted by Trandecoder (v2.0.1), which served as the reference database for label-free proteomic analysis study of pitaya. Here, we identified 116 Differentially Abundant Proteins (DAPs) associated with the cold stress in pitaya, of which 18 proteins were up-regulated and 98 proteins were down-regulated. KEGG analysis and other results showed that these DAPs mainly related to chloroplasts and mitochondria metabolism. In summary, chloroplasts and mitochondria metabolism-related proteins may play an important role in response to cold stress in pitayas.
Collapse
Affiliation(s)
- Junliang Zhou
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Zhuang Wang
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yongya Mao
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lijuan Wang
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Tujian Xiao
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yang Hu
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Fudan University, Institutes of Biomedical Sciences, Shanghai, Shanghai, China
| | - Yuhua Ma
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X. Nano-ZnO-Induced Drought Tolerance Is Associated with Melatonin Synthesis and Metabolism in Maize. Int J Mol Sci 2020; 21:ijms21030782. [PMID: 31991760 PMCID: PMC7037681 DOI: 10.3390/ijms21030782] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023] Open
Abstract
The applications of ZnO nanoparticles in agriculture have largely contributed to crop growth regulation, quality enhancement, and induction of stress tolerance, while the underlying mechanisms remain elusive. Herein, the involvement of melatonin synthesis and metabolism in the process of nano-ZnO induced drought tolerance was investigated in maize. Drought stress resulted in the changes of subcellular ultrastructure, the accumulation of malondialdehyde and osmolytes in leaf. The nano-ZnO (100 mg L-1) application promoted the melatonin synthesis and activated the antioxidant enzyme system, which alleviated drought-induced damage to mitochondria and chloroplast. These changes were associated with upregulation of the relative transcript abundance of Fe/Mn SOD, Cu/Zn SOD, APX, CAT, TDC, SNAT, COMT, and ASMT induced by nano-ZnO application. It was suggested that modifications in endogenous melatonin synthesis were involved in the nano-ZnO induced drought tolerance in maize.
Collapse
Affiliation(s)
- Luying Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.S.); (J.G.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbin Song
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.S.); (J.G.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.S.); (X.L.); Tel.: +86-431-8253-6087 (X.L.); Fax: +86-431-8253-6087 (X.L.)
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.S.); (J.G.); (S.L.)
| | - Xiancan Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Shengqun Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.S.); (J.G.); (S.L.)
| | - Fulai Liu
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup 2630, Denmark;
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.S.); (J.G.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.S.); (X.L.); Tel.: +86-431-8253-6087 (X.L.); Fax: +86-431-8253-6087 (X.L.)
| |
Collapse
|
9
|
Si T, Wang X, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Double benefits of mechanical wounding in enhancing chilling tolerance and lodging resistance in wheat plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:813-824. [PMID: 30977948 DOI: 10.1111/plb.12995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Chilling and lodging are major threats to wheat production. However, strategies that can be used to effectively mitigate the adverse effects of these threats are still far from clear. Mechanical wounding is a traditional agronomic measure, whereas information about the role it plays in wheat chilling and lodging is scant. The aim of the present study was to investigate mechanisms underlying the protective roles of mechanical wounding in alleviating damage from chilling at jointing stage and enhancing lodging resistance after anthesis of winter wheat (Triticum aestivum L.). Our data show that net photosynthesis rate, maximum photochemical efficiency of photosystem II, activity of the antioxidant enzymes and osmolytes were significantly increased in the latest fully expanded leaves of wounded plants under chilling. Wounding also reduced hydrogen peroxide accumulation, electrolyte leakage and water loss in wounded plants. Moreover, mechanical wounding significantly reduced the length but increased the diameter and wall thickness of the basal second internode of the main stem. Quantitative and histochemical analysis further indicated that wounding increased lignin accumulation and activity of enzymes involved in lignin synthesis, which resulted in increased mechanical strength and the lodging resistance index in the main stem. We conclude from our data that mechanical wounding confers both cold tolerance by alleviating the damage caused by chilling at jointing stage and lodging resistance after anthesis of wheat plants.
Collapse
Affiliation(s)
- T Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - X Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - M Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - J Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Q Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - T Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - D Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Zhu X, Liu S, Sun L, Song F, Liu F, Li X. Cold Tolerance of Photosynthetic Electron Transport System Is Enhanced in Wheat Plants Grown Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2018; 9:933. [PMID: 30022988 PMCID: PMC6039710 DOI: 10.3389/fpls.2018.00933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/11/2018] [Indexed: 05/03/2023]
Abstract
The effects of CO2 elevation on sensitivity of photosynthetic electron transport system of wheat in relation to low temperature stress are unclear. The performance of photosynthetic electron transport system and antioxidant system in chloroplasts was investigated in a temperature sensitive wheat cultivar Lianmai6 grown under the combination of low temperature (2 days at 2/-1°C in the day/night) and CO2 elevation (800 μmol l-1). It was found that CO2 elevation increased the efficiency of photosynthetic electron transport in wheat exposed to low temperature stress, which was related to the enhanced maximum quantum yield for electron transport beyond QA and the increased quantum yield for reduction of end electron acceptors at the PSI acceptor side in plants under elevated CO2. Also, under low temperature, the activities of ATPases, ascorbate peroxidase, and catalase in chloroplasts were enhanced in wheat under elevated CO2. It suggested that the cold tolerance of photosynthetic electron transport system is enhanced by CO2 elevation.
Collapse
Affiliation(s)
- Xiancan Zhu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Luying Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Fengbin Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
11
|
Cold Priming Induced Tolerance to Subsequent Low Temperature Stress is Enhanced by Melatonin Application during Recovery in Wheat. Molecules 2018; 23:molecules23051091. [PMID: 29734723 PMCID: PMC6100458 DOI: 10.3390/molecules23051091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
Cold priming can alleviate the effects of subsequent cold stress on wheat plant growth. Melatonin plays a key role in cold stress response in plants. In this study, the effects of foliar melatonin application during recovery on the cold tolerance of cold primed wheat plants were investigated. It was found that both melatonin and cold priming increased the photosynthetic rate and stomatal conductance, enhanced the activities of antioxidant enzymes, and altered the related gene expressions in wheat under cold stress. Melatonin application is helpful for the photosynthetic carbon assimilation and membrane stability of the cold primed plants under cold stress. These results suggested that foliar melatonin application during recovery enhanced the cold priming induced tolerance to subsequent low temperature stress in wheat.
Collapse
|
12
|
Li X, Brestic M, Tan DX, Zivcak M, Zhu X, Liu S, Song F, Reiter RJ, Liu F. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO 2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. J Pineal Res 2018; 64. [PMID: 29149482 DOI: 10.1111/jpi.12453] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/27/2017] [Indexed: 12/28/2022]
Abstract
Melatonin is involved in the regulation of carbohydrate metabolism and induction of cold tolerance in plants. The objective of this study was to investigate the roles of melatonin in modulation of carbon assimilation of wild-type wheat and the Chl b-deficient mutant ANK32B in response to elevated CO2 concentration ([CO2 ]) and the transgenerational effects of application of exogenous melatonin (hereafter identified as melatonin priming) on the cold tolerance in offspring. The results showed that the melatonin priming enhanced the carbon assimilation in ANK32B under elevated [CO2 ], via boosting the activities of ATPase and sucrose synthesis and maintaining a relatively higher level of total chlorophyll concentration in leaves. In addition, melatonin priming in maternal plants at grain filling promoted the seed germination in offspring by accelerating the starch degradation and improved the cold tolerance of seedlings through activating the antioxidant enzymes and enhancing the photosynthetic electron transport efficiency. These findings suggest the important roles of melatonin in plant response to future climate change, indicating that the melatonin priming at grain filling in maternal plants could be an effective approach to improve cold tolerance of wheat offspring at seedling stage.
Collapse
Affiliation(s)
- Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Tåstrup, Denmark
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Nitra, Slovakia
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Nitra, Slovakia
| | - Xiancan Zhu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Fengbin Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Tåstrup, Denmark
| |
Collapse
|
13
|
Liu X, Zhou Y, Xiao J, Bao F. Effects of Chilling on the Structure, Function and Development of Chloroplasts. FRONTIERS IN PLANT SCIENCE 2018; 9:1715. [PMID: 30524465 PMCID: PMC6262076 DOI: 10.3389/fpls.2018.01715] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts are the organelles that perform energy transformation in plants. The normal physiological functions of chloroplasts are essential for plant growth and development. Chilling is a common environmental stress in nature that can directly affect the physiological functions of chloroplasts. First, chilling can change the lipid membrane state and enzyme activities in chloroplasts. Then, the efficiency of photosynthesis declines, and excess reactive oxygen species (ROS) are produced. On one hand, excess ROS can damage the chloroplast lipid membrane; on the other hand, ROS also represent a stress signal that can alter gene expression in both the chloroplast and nucleus to help regenerate damaged proteins, regulate lipid homeostasis, and promote plant adaptation to low temperatures. Furthermore, plants assume abnormal morphology, including chlorosis and growth retardation, with some even exhibiting severe necrosis under chilling stress. Here, we review the response of chloroplasts to low temperatures and focus on photosynthesis, redox regulation, lipid homeostasis, and chloroplast development to elucidate the processes involved in plant responses and adaptation to chilling stress.
Collapse
Affiliation(s)
- Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yunlin Zhou
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Fei Bao,
| |
Collapse
|
14
|
Si T, Wang X, Zhao C, Huang M, Cai J, Zhou Q, Dai T, Jiang D. The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:327. [PMID: 29593774 PMCID: PMC5861560 DOI: 10.3389/fpls.2018.00327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Systemic wound response (SWR), a well-characterized systemic signaling response, plays crucial roles in plant defense responses. Progress in understanding of the SWR in abiotic stress has also been aided by the researchers. However, the function of SWR in freezing stress remains elusive. In this study, we showed that local mild mechanical wounding enhanced freezing tolerance in newly occurred systemic leaves of wheat plants (Triticum aestivum L.). Wounding significantly increased the maximal photochemical efficiency of photosystem II, net photosynthetic rate, and the activities of the antioxidant enzymes under freezing stress. Wounding also alleviated freezing-induced chlorophyll decomposition, electrolyte leakage, water lose, and membrane peroxidation. In addition, wounding-induced freezing stress mitigation was closely associated with the ratio between reduced glutathione (GSH) and oxidized glutathione (GSSG), and the ratio between ascorbate (AsA) and dehydroascorbate (DHA), as well as the contents of total soluble sugars and free amino acids. Importantly, pharmacological study showed that wounding-induced freezing tolerance was substantially arrested by pretreatment of wheat leaves with the scavenger of hydrogen peroxide (H2O2) or the inhibitor of NADPH oxidase (RBOH). These results support the hypothesis that local mechanical wounding-induced SWR in newly occurred leaves is largely attributed to RBOH-dependent H2O2 production, which may subsequently induce freezing tolerance in wheat plants. This mechanism may have a potential application to reduce the yield losses of wheat under late spring freezing conditions. Highlights: In our previous research, we found that local mechanical wounding could induce freezing tolerance in the upper systemic leaves of wheat plants. Surprisingly, in this paper, we further demonstrated that local mechanical wounding could also increase freezing resistance in newly occurred leaves of wheat plants. RBOH mediated H2O2 and ascorbate-glutathione cycle participate in this systemic wound response.
Collapse
Affiliation(s)
- Tong Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Chunzhao Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| |
Collapse
|
15
|
Zuo Z, Sun L, Wang T, Miao P, Zhu X, Liu S, Song F, Mao H, Li X. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress. Molecules 2017; 22:E1727. [PMID: 29057793 PMCID: PMC6151777 DOI: 10.3390/molecules22101727] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 11/23/2022] Open
Abstract
The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C) assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.
Collapse
Affiliation(s)
- Zhiyu Zuo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education/High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Luying Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Tianyu Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education/High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Peng Miao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education/High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiancan Zhu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Fengbin Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hanping Mao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education/High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
16
|
Sang Q, Shan X, An Y, Shu S, Sun J, Guo S. Proteomic Analysis Reveals the Positive Effect of Exogenous Spermidine in Tomato Seedlings' Response to High-Temperature Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:120. [PMID: 28220137 PMCID: PMC5292424 DOI: 10.3389/fpls.2017.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 05/02/2023]
Abstract
Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.
Collapse
Affiliation(s)
- Qinqin Sang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xi Shan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yahong An
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Nanjing Agricultural University (Suqian), Academy of Protected HorticultureSuqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Nanjing Agricultural University (Suqian), Academy of Protected HorticultureSuqian, China
| |
Collapse
|
17
|
Si T, Wang X, Wu L, Zhao C, Zhang L, Huang M, Cai J, Zhou Q, Dai T, Zhu JK, Jiang D. Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1284. [PMID: 28769973 PMCID: PMC5515872 DOI: 10.3389/fpls.2017.01284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H2O2) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H2O2 accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H2O2 acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H2O2 acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of "photosynthesis" and "signaling." These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H2O2, and further modifications in photosystem and antioxidant system.
Collapse
Affiliation(s)
- Tong Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, United States
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Lin Wu
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Chunzhao Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, United States
| | - Lini Zhang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, United States
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| |
Collapse
|
18
|
Li X, Tan DX, Jiang D, Liu F. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J Pineal Res 2016; 61:328-39. [PMID: 27299847 DOI: 10.1111/jpi.12350] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley.
Collapse
Affiliation(s)
- Xiangnan Li
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Tåstrup, Denmark
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dong Jiang
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Tåstrup, Denmark.
| |
Collapse
|
19
|
Zhang N, Huo W, Zhang L, Chen F, Cui D. Identification of Winter-Responsive Proteins in Bread Wheat Using Proteomics Analysis and Virus-Induced Gene Silencing (VIGS). Mol Cell Proteomics 2016; 15:2954-69. [PMID: 27402868 DOI: 10.1074/mcp.m115.057232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Proteomic approaches were applied to identify protein spots involved in cold responses in wheat. By comparing the differentially accumulated proteins from two cultivars (UC1110 and PI 610750) and their derivatives, as well as the F10 recombinant inbred line population differing in cold-tolerance, a total of 20 common protein spots representing 16 unique proteins were successfully identified using 2-DE method. Of these, 14 spots had significantly enhanced abundance in the cold-sensitive parental cultivar UC1110 and its 20 descendant lines when compared with the cold-tolerant parental cultivar PI 610750 and its 20 descendant lines. Six protein spots with reduced abundance were also detected. The identified protein spots are involved in stress/defense, carbohydrate metabolism, protein metabolism, nitrogen metabolism, energy metabolism, and photosynthesis. The 20 differentially expressed protein spots were chosen for quantitative real-time polymerase chain reaction (qRT-PCR) to investigate expression changes at the RNA level. The results indicated that the transcriptional expression patterns of 11 genes were consistent with their protein expression models. Among the three unknown proteins, Spot 20 (PAP6-like) showed high sequence similarities with PAP6. qRT-PCR results implied that cold and salt stresses increased the expression of PAP6-like in wheat leaves. Furthermore, VIGS (virus-induced gene silencing)-treated plants generated for PAP6-like were subjected to freezing stress, these plants had more serious droop and wilt, an increased rate of relative electrolyte leakage, reduced relative water content (RWC) and decreased tocopherol levels when compared with viral control plants. However, the plants that were silenced for the other two unknown proteins had no significant differences in comparison to the BSMV0-inoculated plants under freezing conditions. These results indicate that PAP6-like possibly plays an important role in conferring cold tolerance in wheat.
Collapse
Affiliation(s)
- Ning Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Wang Huo
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingran Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Chen
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|