1
|
Lee YH, Kim YH, Hong JK. Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria. THE PLANT PATHOLOGY JOURNAL 2024; 40:358-376. [PMID: 39117335 PMCID: PMC11309840 DOI: 10.5423/ppj.oa.03.2024.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.
Collapse
Affiliation(s)
- Young Hee Lee
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Korea
| | - Yun-Hee Kim
- Laboratory of Plant Molecular Physiology, Department of Biology Education, Gyeongsang National University, Jinju 52828, Korea
| | - Jeum Kyu Hong
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Korea
| |
Collapse
|
2
|
Rys M, Saja-Garbarz D, Fodor J, Oliwa J, Gullner G, Juhász C, Kornaś A, Skoczowski A, Gruszka D, Janeczko A, Barna B. Heat Pre-Treatment Modified Host and Non-Host Interactions of Powdery Mildew with Barley Brassinosteroid Mutants and Wild Types. Life (Basel) 2024; 14:160. [PMID: 38276289 PMCID: PMC10817351 DOI: 10.3390/life14010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
High temperatures associated with climate change may increase the severity of plant diseases. This study investigated the effect of heat shock treatment on host and non-host barley powdery mildew interactions using brassinosteroid (BR) mutants of barley. Brassinosteroids are plant steroid hormones, but so far little is known about their role in plant-fungal interactions. Wild type barley cultivar Bowman and its near-isogenic lines with disturbances in BR biosynthesis or signalling showed high compatibility to barley powdery mildew race A6, while cultivar Delisa and its BR-deficient mutants 522DK and 527DK were fully incompatible with this pathogen (host plant-pathogen interactions). On the other hand, Bowman and its mutants were highly resistant to wheat powdery mildew, representing non-host plant-pathogen interactions. Heat pre-treatment induced shifts in these plant-pathogen interactions towards higher susceptibility. In agreement with the more severe disease symptoms, light microscopy showed a decrease in papillae formation and hypersensitive response, characteristic of incompatible interactions, when heat pre-treatment was applied. Mutant 527DK, but not 522DK, maintained high resistance to barley powdery mildew race A6 despite heat pre-treatment. By 10 days after heat treatment and infection, a noticeable shift became apparent in the chlorophyll a fluorescence and in various leaf reflectance parameters at all genotypes.
Collapse
Affiliation(s)
- Magdalena Rys
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Diana Saja-Garbarz
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Jakub Oliwa
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 31-054 Krakow, Poland
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 31-054 Krakow, Poland
| | - Andrzej Skoczowski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 31-054 Krakow, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| |
Collapse
|
3
|
Deblieck M, Ordon F, Serfling A. Mapping of prehaustorial resistance against wheat leaf rust in einkorn ( Triticum monococcum), a progenitor of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1252123. [PMID: 37936932 PMCID: PMC10626456 DOI: 10.3389/fpls.2023.1252123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
Wheat leaf rust (Puccinia triticina) is one of the most significant fungal diseases of wheat, causing substantial yield losses worldwide. Infestation is currently being reduced by fungicide treatments and mostly vertical resistance. However, these measures often break down when the fungal virulence pattern changes, resulting in a breakdown of vertical resistances. In contrast, the prehaustorial resistance (phr) that occurs in the einkorn-wheat leaf rust interaction is race-independent, characterized by an early defense response of plants during the prehaustorial phase of infestation. Einkorn (Triticum monococcum) is closely related to Triticum urartu as a progenitor of wheat and generally shows a high level of resistance against leaf rust of wheat. Hence, einkorn can serve as a valuable source to improve the level of resistance to the pathogen in future wheat lines. In particular, einkorn accession PI272560 is known to exhibit a hypersensitive prehaustorial effector triggered immune reaction, preventing the infection of P. triticina. Remarkably, this effector-triggered immune reaction turned out to be atypical as it is non-race-specific (horizontal). To genetically dissect the prehaustorial resistance (phr) in PI272560, a biparental F2 population of 182 plants was established after crossing PI272560 with the susceptible T. boeoticum accession 36554. Three genetic maps comprising 2,465 DArT-seq markers were constructed, and a major QTL was detected on chromosome 5A. To locate underlying candidate genes, marker sequences flanking the respective QTL were aligned to the T. urartu reference genome and transcriptome data available from the parental accessions were used. Within the QTL interval of approximately 16.13 million base pairs, the expression of genes under inoculated and non-inoculated conditions was analyzed via a massive analysis of cDNA (MACE). Remarkably, a single gene located 3.4 Mbp from the peak marker within the major QTL was upregulated (20- to 95-fold) after the inoculation in the resistant accession in comparison to the susceptible T. boeoticum accession. This gene belongs to a berberine bridge enzyme-like protein that is suspected to interact on the plant surface with glycoside hydrolases (GH) secreted by the fungus and to induce a hypersensitive defense reaction in the plant after fungal infections.
Collapse
|
4
|
Wu Y, Sexton W, Yang B, Xiao S. Genetic approaches to dissect plant nonhost resistance mechanisms. MOLECULAR PLANT PATHOLOGY 2023; 24:272-283. [PMID: 36617319 PMCID: PMC9923397 DOI: 10.1111/mpp.13290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nonhost resistance (NHR) refers to the immunity of most tested genotypes of a plant species to most tested variants of a pathogen species. Thus, NHR is broad spectrum and durable in nature and constitutes a major safety barrier against invasion of a myriad of potentially pathogenic microbes in any plants including domesticated crops. Genetic study of NHR is generally more difficult compared to host resistance mainly because NHR is genetically more complicated and often lacks intraspecific polymorphisms. Nevertheless, substantial progress has been made towards the understanding of the molecular basis of NHR in the past two decades using various approaches. Not surprisingly, molecular mechanisms of NHR revealed so far encompasses pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. In this review, we briefly discuss the inherent difficulty in genetic studies of NHR and summarize the main approaches that have been taken to identify genes contributing to NHR. We also discuss new enabling strategies for dissecting multilayered NHR in model plants with a focus on NHR against filamentous pathogens, especially biotrophic pathogens such as powdery mildew and rust fungi.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - William Sexton
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
5
|
Polturak G, Dippe M, Stephenson MJ, Chandra Misra R, Owen C, Ramirez-Gonzalez RH, Haidoulis JF, Schoonbeek HJ, Chartrain L, Borrill P, Nelson DR, Brown JK, Nicholson P, Uauy C, Osbourn A. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proc Natl Acad Sci U S A 2022; 119:e2123299119. [PMID: 35412884 PMCID: PMC9169793 DOI: 10.1073/pnas.2123299119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds—namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.
Collapse
Affiliation(s)
- Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Martin Dippe
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Michael J. Stephenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rajesh Chandra Misra
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Charlotte Owen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - John F. Haidoulis
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Henk-Jan Schoonbeek
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Laetitia Chartrain
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Philippa Borrill
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163
| | - James K.M. Brown
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
6
|
Xiao X, Wang R, Khaskhali S, Gao Z, Guo W, Wang H, Niu X, He C, Yu X, Chen Y. A Novel Glycerol Kinase Gene OsNHO1 Regulates Resistance to Bacterial Blight and Blast Diseases in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:800625. [PMID: 35126424 PMCID: PMC8811351 DOI: 10.3389/fpls.2021.800625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Glycerol-induced resistance to various pathogens has been reported in different plants. Glycerol kinase (GK), a vital rate-limiting enzyme that catalyzes glycerol conversion to glycerol-3-phosphate (G3P), participates in responses to both abiotic and biotic stresses. However, its physiological importance in rice defenses against pathogens remains unclear. In this research, quantification analysis revealed that GK levels were significantly induced in rice leaves infected by Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99. A typical GK-encoding gene OsNHO1 was cloned in rice. The transcriptional levels of OsNHO1 were significantly induced by salicylic acid, jasmonic acid, and Xoo-PXO99. Ectopic expression of OsNHO1 partially rescued the resistance to P. s. pv. phaseolicola in the Arabidopsis nho1 mutant. In the overexpressing transgenic rice lines (OsNHO1-OE), the content of GK and the transcriptional level of OsNHO1 were increased and the resistance to bacterial blight and blast was improved, while reduced OsNHO1 expression impaired the resistance in OsNHO1-RNAi lines. The wax contents and expression of the wax synthesis regulatory genes were significantly increased in the overexpression lines but decreased in the OsNHO1-RNAi lines. We then confirmed the interaction partner of OsNHO1 using yeast two-hybrid and bimolecular fluorescence complementation assays. The transcription of the interaction partner-encoding genes OsSRC2 and OsPRs in OsNHO1-RNAi lines was downregulated but upregulated in OsNHO1-OE lines. Thus, we concluded that OsNHO1 provided disease resistance by affecting the wax content and modulating the transcription levels of PR genes.
Collapse
Affiliation(s)
- Xiaorong Xiao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
- Cereal Crops Institute, Hainan Academy of Agricultural Sciences/Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Rui Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Shahneela Khaskhali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiliang Gao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Wenya Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
| | - Honggang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Chaoze He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
| |
Collapse
|
7
|
Qian LH, Wang Y, Chen M, Liu J, Lu RS, Zou X, Sun XQ, Zhang YM. Genome-wide Identification and Evolutionary Analysis of NBS-LRR Genes From Secale cereale. Front Genet 2021; 12:771814. [PMID: 34858486 PMCID: PMC8630680 DOI: 10.3389/fgene.2021.771814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Secale cereale is an important crop in the Triticeae tribe of the Poaceae family, and it has unique agronomic characteristics and genome properties. It possesses resistance to many diseases and serves as an important resource for the breeding of other Triticeae crops. We performed a genome-wide study on S. cereale to identify the largest group of plant disease resistance genes (R genes), the nucleotide-binding site-leucine-rich repeat receptor (NBS-LRR) genes. In its genome, 582 NBS-LRR genes were identified, including one from the RNL subclass and 581 from the CNL subclass. The NBS-LRR gene number in the S. cereale genome is greater than that in barley and the diploid wheat genomes. S. cereale chromosome 4 contains the largest number of NBS-LRR genes among the seven chromosomes, which is different from the pattern in barley and the genomes B and D of wheat but similar to that in the genome A of wheat. Further synteny analysis suggests that more NBS-LRR genes on chromosome 4 have been inherited from a common ancestor by S. cereale and the wheat genome A than the wheat genomes B and D. Phylogenetic analysis revealed that at least 740 NBS-LRR lineages are present in the common ancestor of S. cereale, Hordeum vulgare and Triticum urartu. However, most of them have only been inherited by one or two species, with only 65 of them preserved in all three species. The S. cereale genome inherited 382 of these ancestral NBS-LRR lineages, but 120 of them have been lost in both H. vulgare and T. urartu. This study provides the full NBS-LRR profile of the S. cereale genome, which is a resource for S. cereale breeding and indicates that S. cereale can be an important material for the molecular breeding of other Triticeae crops.
Collapse
Affiliation(s)
- Lan-Hua Qian
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xin Zou
- Seed Administrative Station of Suzhou, Suzhou, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
8
|
Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J, Rose LE, Schaffrath U, Zeier J. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6444-6459. [PMID: 32725118 PMCID: PMC7586749 DOI: 10.1093/jxb/eraa317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/02/2020] [Indexed: 05/07/2023]
Abstract
Recent work has provided evidence for the occurrence of N-hydroxypipecolic acid (NHP) in Arabidopsis thaliana, characterized its pathogen-inducible biosynthesis by a three-step metabolic sequence from l-lysine, and established a central role for NHP in the regulation of systemic acquired resistance. Here, we show that NHP is biosynthesized in several other plant species in response to microbial attack, generally together with its direct metabolic precursor pipecolic acid and the phenolic immune signal salicylic acid. For example, NHP accumulates locally in inoculated leaves and systemically in distant leaves of cucumber in response to Pseudomonas syringae attack, in Pseudomonas-challenged tobacco and soybean leaves, in tomato inoculated with the oomycete Phytophthora infestans, in leaves of the monocot Brachypodium distachyon infected with bacterial (Xanthomonas translucens) and fungal (Magnaporthe oryzae) pathogens, and in M. oryzae-inoculated barley. Notably, resistance assays indicate that NHP acts as a potent inducer of acquired resistance to bacterial and fungal infection in distinct monocotyledonous and dicotyledonous species. Pronounced systemic accumulation of NHP in leaf phloem sap of locally inoculated cucumber supports a function for NHP as a phloem-mobile immune signal. Our study thus generalizes the existence and function of an NHP resistance pathway in plant systemic acquired resistance.
Collapse
Affiliation(s)
- Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Jana Malik
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Lisa Brahmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Ipek Yildiz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Janina von Dahlen
- Institute for Population Genetics, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Laura E Rose
- Institute for Population Genetics, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
9
|
Barsoum M, Kusch S, Frantzeskakis L, Schaffrath U, Panstruga R. Ultraviolet Mutagenesis Coupled with Next-Generation Sequencing as a Method for Functional Interrogation of Powdery Mildew Genomes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1008-1021. [PMID: 32370643 DOI: 10.1094/mpmi-02-20-0035-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Powdery mildews are obligate biotrophic fungal pathogens causing important diseases of plants worldwide. Very little is known about the requirements for their pathogenicity at the molecular level. This is largely due to the inability to culture these organisms in vitro or to modify them genetically. Here, we describe a mutagenesis procedure based on ultraviolet (UV) irradiation to accumulate mutations in the haploid genome of the barley powdery mildew pathogen Blumeria graminis f. sp. hordei. Exposure of B. graminis f. sp. hordei conidia to different durations of UV-C radiation (10 s to 12 min) resulted in a reduced number of macroscopically visible fungal colonies. B. graminis f. sp. hordei colony number was negatively correlated with exposure time and the total number of consecutive cycles of UV irradiation. Dark incubation following UV exposure further reduced fungal viability, implying that photoreactivation is an important component of DNA repair in B. graminis f. sp. hordei. After several rounds of UV mutagenesis, we selected two mutant isolates in addition to the parental B. graminis f. sp. hordei K1 isolate for whole-genome resequencing. By combining automated prediction of sequence variants and their manual validation, we identified unique UV-induced mutations in the genomes of the two isolates. Most of these mutations were in the up- or downstream regions of genes or in the intergenic space. Some of the variants detected in genes led to predicted missense mutations. As an additional insight, our bioinformatic analyses revealed a complex population structure within supposedly clonal B. graminis f. sp. hordei isolates.
Collapse
Affiliation(s)
- Mirna Barsoum
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52056 Aachen, Germany
| | - Stefan Kusch
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52056 Aachen, Germany
| | - Lamprinos Frantzeskakis
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52056 Aachen, Germany
| | - Ulrich Schaffrath
- RWTH Aachen University, Institute for Biology III, Worringerweg 1, 52056 Aachen, Germany
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
10
|
Pogoda M, Liu F, Douchkov D, Djamei A, Reif JC, Schweizer P, Schulthess AW. Identification of novel genetic factors underlying the host-pathogen interaction between barley (Hordeum vulgare L.) and powdery mildew (Blumeria graminis f. sp. hordei). PLoS One 2020; 15:e0235565. [PMID: 32614894 PMCID: PMC7332009 DOI: 10.1371/journal.pone.0235565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Powdery mildew is an important foliar disease of barley (Hordeum vulgare L.) caused by the biotrophic fungus Blumeria graminis f. sp. hordei (Bgh). The understanding of the resistance mechanism is essential for future resistance breeding. In particular, the identification of race-nonspecific resistance genes is important because of their regarded durability and broad-spectrum activity. We assessed the severity of powdery mildew infection on detached seedling leaves of 267 barley accessions using two poly-virulent isolates and performed a genome-wide association study exploiting 201 of these accessions. Two-hundred and fourteen markers, located on six barley chromosomes are associated with potential race-nonspecific Bgh resistance or susceptibility. Initial steps for the functional validation of four promising candidates were performed based on phenotype and transcription data. Specific candidate alleles were analyzed via transient gene silencing as well as transient overexpression. Microarray data of the four selected candidates indicate differential regulation of the transcription in response to Bgh infection. Based on our results, all four candidate genes seem to be involved in the responses to powdery mildew attack. In particular, the transient overexpression of specific alleles of two candidate genes, a potential arabinogalactan protein and the barley homolog of Arabidopsis thaliana’s Light-Response Bric-a-Brac/-Tramtrack/-Broad Complex/-POxvirus and Zinc finger (AtLRB1) or AtLRB2, were top candidates of novel powdery mildew susceptibility genes.
Collapse
Affiliation(s)
- Maria Pogoda
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Fang Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Dimitar Douchkov
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Armin Djamei
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jochen C. Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Albert W. Schulthess
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
11
|
The effect of phytoglobin overexpression on the plant proteome during nonhost response of barley (Hordeum vulgare) to wheat powdery mildew (Blumeria graminis f. sp. tritici). Sci Rep 2020; 10:9192. [PMID: 32513937 PMCID: PMC7280273 DOI: 10.1038/s41598-020-65907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system in plants. To increase our understanding of the response of barley plants to infection by powdery mildew, Blumeria graminis f. sp. tritici, we used quantitative proteomic analysis (LC-MS/MS). We compared the response of two genotypes of barley cultivar Golden Promise, wild type (WT) and plants with overexpression of phytoglobin (previously hemoglobin) class 1 (HO), which has previously been shown to significantly weaken nonhost resistance. A total of 8804 proteins were identified and quantified, out of which the abundance of 1044 proteins changed significantly in at least one of the four comparisons ('i' stands for 'inoculated')- HO/WT and HOi/WTi (giving genotype differences), and WTi/WT and HOi/HO (giving treatment differences). Among these differentially abundant proteins (DAP) were proteins related to structural organization, disease/defense, metabolism, transporters, signal transduction and protein synthesis. We demonstrate that quantitative changes in the proteome can explain physiological changes observed during the infection process such as progression of the mildew infection in HO plants that was correlated with changes in proteins taking part in papillae formation and preinvasion resistance. Overexpression of phytoglobins led to modification in signal transduction prominently by dramatically reducing the number of kinases induced, but also in the turnover of other signaling molecules such as phytohormones, polyamines and Ca2+. Thus, quantitative proteomics broaden our understanding of the role NO and phytoglobins play in barley during nonhost resistance against powdery mildew.
Collapse
|
12
|
Evidence for Allele-Specific Levels of Enhanced Susceptibility of Wheat mlo Mutants to the Hemibiotrophic Fungal Pathogen Magnaporthe oryzae pv. Triticum. Genes (Basel) 2020; 11:genes11050517. [PMID: 32392723 PMCID: PMC7720134 DOI: 10.3390/genes11050517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Barley mlo mutants are well known for their profound resistance against powdery mildew disease. Recently, mlo mutant plants were generated in hexaploid bread wheat (Triticum aestivum) with the help of transgenic (transcription-activator-like nuclease, TALEN) and non-transgenic (targeted induced local lesions in genomes, TILLING) biotechnological approaches. While full-gene knockouts in the three wheat Mlo (TaMlo) homoeologs, created via TALEN, confer full resistance to the wheat powdery mildew pathogen (Blumeria graminis f.sp. tritici), the currently available TILLING-derived Tamlo missense mutants provide only partial protection against powdery mildew attack. Here, we studied the infection phenotypes of TALEN- and TILLING-derived Tamlo plants to the two hemibiotrophic pathogens Zymoseptoria tritici, causing Septoria leaf blotch in wheat, and Magnaporthe oryzae pv. Triticum (MoT), the causal agent of wheat blast disease. While Tamlo plants showed unaltered outcomes upon challenge with Z. tritici, we found evidence for allele-specific levels of enhanced susceptibility to MoT, with stronger powdery mildew resistance correlated with more invasive growth by the blast pathogen. Surprisingly, unlike barley mlo mutants, young wheat mlo mutant plants do not show undesired pleiotropic phenotypes such as spontaneous callose deposits in leaf mesophyll cells or signs of early leaf senescence. In conclusion, our study provides evidence for allele-specific levels of enhanced susceptibility of Tamlo plants to the hemibiotrophic wheat pathogen MoT.
Collapse
|
13
|
Xi H, Shen J, Qu Z, Yang D, Liu S, Nie X, Zhu L. Effects of Long-term Cotton Continuous Cropping on Soil Microbiome. Sci Rep 2019; 9:18297. [PMID: 31797982 PMCID: PMC6892916 DOI: 10.1038/s41598-019-54771-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 11/24/2022] Open
Abstract
Verticillium wilt is a severe disease of cotton crops in Xinjiang and affecting yields and quality, due to the continuous cotton cropping in the past decades. The relationship between continuous cropping and the changes induced on soil microbiome remains unclear to date. In this study, the culture types of 15 isolates from Bole (5F), Kuitun (7F), and Shihezi (8F) of north Xinjiang were sclerotium type. Only isolates from field 5F belonged to nondefoliating pathotype, the others belonged to defoliating pathotype. The isolates showed pathogenicity differentiation in cotton. Fungal and bacterial communities in soils had some difference in alpha-diversity, relative abundance, structure and taxonomic composition, but microbial groups showed similarity in the same habitat, despite different sampling sites. The fungal phyla Ascomycota, and the bacterial phyla Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Gemmatimonadetes were strongly enriched. Verticillium abundance was significantly and positively correlated with AN, but negatively correlated with soil OM, AK and pH. Moreover, Verticillium was correlated in abundances with 5 fungal and 6 bacterial genera. Overall, we demonstrate that soil microbiome communities have similar responses to long-term continuous cotton cropping, providing new insights into the effects of continuous cotton cropping on soil microbial communities.
Collapse
Affiliation(s)
- Hui Xi
- College of Agronomy, Shihezi University, Shihezi, 832000, P.R. China
| | - Jili Shen
- College of Agronomy, Shihezi University, Shihezi, 832000, P.R. China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Dingyi Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Xinhui Nie
- College of Agronomy, Shihezi University, Shihezi, 832000, P.R. China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| |
Collapse
|
14
|
Lenk M, Wenig M, Bauer K, Hug F, Knappe C, Lange B, Häußler F, Mengel F, Dey S, Schäffner A, Vlot AC. Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with Elevated Nitric Oxide Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1303-1313. [PMID: 31194615 DOI: 10.1094/mpmi-01-19-0013-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity-inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity-inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Miriam Lenk
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Kornelia Bauer
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Florian Hug
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Lange
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Finni Häußler
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Felicitas Mengel
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sanjukta Dey
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Anton Schäffner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
15
|
Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:104-113. [PMID: 31075541 DOI: 10.1016/j.pbi.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 05/25/2023]
Abstract
Nonhost resistance (NHR) protects plants from a large and diverse array of potential phytopathogens. Each phytopathogen can parasitise some plant species, but most plant species are nonhosts that are innately immune due to a series of physical, chemical and inducible defenses these nonadapted pathogens cannot overcome. New evidence supports the NHR paradigm that posits the inability of potential pathogens to colonise nonhost plants is frequently due to molecular incompatibility between pathogen virulence factors and plant cellular targets. While NHR is durable, it is not insurmountable. Environmental changes can facilitate pathogen host jumps or alternatively result in new encounters between previously isolated plant species and pathogens. Climate change is predicted to substantially alter the current distribution of plants and their pathogens which could result in parasitism of new plant species.
Collapse
Affiliation(s)
- Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia.
| | - Chris K Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| |
Collapse
|
16
|
Prasad P, Savadi S, Bhardwaj SC, Gangwar OP, Kumar S. Rust pathogen effectors: perspectives in resistance breeding. PLANTA 2019; 250:1-22. [PMID: 30980247 DOI: 10.1007/s00425-019-03167-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Identification and functional characterization of plant pathogen effectors promise to ameliorate future research and develop effective and sustainable strategies for controlling or containing crop diseases. Wheat is the second most important food crop of the world after rice. Rust pathogens, one of the major biotic stresses in wheat production, are capable of threatening the world food security. Understanding the molecular basis of plant-pathogen interactions is essential for devising novel strategies for resistance breeding and disease management. Now, it has been established that effectors, the proteins secreted by pathogens, play a key role in plant-pathogen interactions. Therefore, effector biology has emerged as one of the most important research fields in plant biology. Recent advances in genomics and bioinformatics have allowed identification of a large repertoire of candidate effectors, while the evolving high-throughput tools have continued to assist in their functional characterization. The repertoires of effectors have become an important resource for better understanding of effector biology of pathosystems and resistance breeding of crop plants. In recent years, a significant progress has been made in the field of rust effector biology. This review describes the recent advances in effector biology of obligate fungal pathogens, identification and functional analysis of wheat rust pathogens effectors and the potential applications of effectors in molecular plant biology and rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
17
|
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol 2018; 19:116. [PMID: 30111359 PMCID: PMC6092874 DOI: 10.1186/s13059-018-1472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). Results The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. Conclusion The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks. Electronic supplementary material The online version of this article (10.1186/s13059-018-1472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Stefanie Lück
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Maria Pogoda
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Tobias Meitzel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jonathan Brassac
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Caroline Höfle
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ralph Hückelhoven
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Jörn Klinkenberg
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany.,Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Zellbiologie, D-79104, Freiburg, Germany
| | - Eva Bauer
- Technische Universität München, Liesel-Beckmann-Straße 2, D-85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Barbara Lazzari
- Parco Technologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
| | - Nils Stein
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
18
|
Arabidopsis thaliana Immunity-Related Compounds Modulate Disease Susceptibility in Barley. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants are exposed to numerous pathogens and fend off many of these with different phytohormone signalling pathways. Much is known about defence signalling in the dicotyledonous model plant Arabidopsisthaliana, but it is unclear to which extent knowledge from model systems can be transferred to monocotyledonous plants, including cereal crops. Here, we investigated the defence-inducing potential of Arabidopsis resistance-inducing compounds in the cereal crop barley. Salicylic acid (SA), folic acid (Fol), and azelaic acid (AzA), each inducing defence against (hemi-)biotrophic pathogens in Arabidopsis, were applied to barley leaves and the treated and systemic leaves were subsequently inoculated with Xanthomonastranslucens pv. cerealis (Xtc), Blumeria graminis f. sp. hordei (powdery mildew, Bgh), or Pyrenophora teres. Fol and SA reduced Bgh propagation locally and/or systemically, whereas Fol enhanced Xtc growth in barley. AzA reduced Bgh propagation systemically and enhanced Xtc growth locally. Neither SA, Fol, nor AzA influenced lesion sizes caused by the necrotrophic fungus P. teres, suggesting that the tested compounds exclusively affected growth of (hemi-)biotrophic pathogens in barley. In addition to SA, Fol and AzA might thus act as resistance-inducing compounds in barley against Bgh, although adverse effects on the growth of pathogenic bacteria, such as Xtc, are possible.
Collapse
|