1
|
Xu M, Zhang Z, Jiao Y, Tu Y, Zhang X. Genome-Wide Identification of Vascular Plant One-Zinc-Finger Gene Family in Six Cucurbitaceae Species and the Role of CmoVOZ2 in Salt and Drought Stress Tolerance. Genes (Basel) 2024; 15:307. [PMID: 38540365 PMCID: PMC10969924 DOI: 10.3390/genes15030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 06/14/2024] Open
Abstract
As a plant-specific transcription factor, the vascular plant one-zinc-finger (VOZ) plays a crucial role in regulating various biological processes. In this study, a total of 17 VOZ genes in the Cucurbitaceae family were investigated using various bioinformatics methods. The 17 VOZ genes in Cucurbitaceae are distributed across 16 chromosomes. Based on the affinity of VOZ proteins to AtVOZ proteins, these 17 proteins were categorized into two groups: group I encompassed eight VOZ members, while group II comprised nine VOZ members. The expression profiles of CmoVOZs under various hormonal and abiotic stresses indicated that these genes were induced differentially by JA, ABA, GA, salt, and drought stress. Subsequently, CmoVOZ1 and CmoVOZ2 were found to be transcriptionally active, with the CmoVOZ2 protein being located mainly in the nucleus. Further experiments revealed that yeast cells expressing CmoVOZ2 gene showed increased tolerance to salt stress and drought stress. These results suggest that the VOZ gene family is not only important for plant growth and development but also that this mechanism may be universal across yeast and plants.
Collapse
Affiliation(s)
| | | | | | | | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Teng K, Guo Q, Liu L, Guo Y, Xu Y, Hou X, Teng W, Zhang H, Zhao C, Yue Y, Wen H, Wu J, Fan X. Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides. FRONTIERS IN PLANT SCIENCE 2023; 14:1195479. [PMID: 37680353 PMCID: PMC10481962 DOI: 10.3389/fpls.2023.1195479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Pennisetum alopecuroides is an important forage grass resource, which plays a vital role in ecological environment improvement. Therefore, the acquisition of P. alopecuroides genome resources is conducive to the study of the adaptability of Pennisetum species in ecological remediation and forage breeding development. Here we assembled a P. alopecuroides cv. 'Liqiu' genome at the chromosome level with a size of approximately 845.71 Mb, contig N50 of 84.83Mb, and genome integrity of 99.13% as assessed by CEGMA. A total of 833.41-Mb sequences were mounted on nine chromosomes by Hi-C technology. In total, 60.66% of the repetitive sequences and 34,312 genes were predicted. The genomic evolution analysis showed that P. alopecuroides cv. 'Liqiu' was isolated from Setaria 7.53-13.80 million years ago and from Cenchrus 5.33-8.99 million years ago, respectively. The whole-genome event analysis showed that P. alopecuroides cv. 'Liqiu' underwent two whole-genome duplication (WGD) events in the evolution process, and the duplication events occurred at a similar time to that of Oryza sativa and Setaria viridis. The completion of the genome sequencing of P. alopecuroides cv. 'Liqiu' provides data support for mining high-quality genetic resources of P. alopecuroides and provides a theoretical basis for the origin and evolutionary characteristics of Pennisetum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | | | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
3
|
Hasan N, Tokuhara N, Noda T, Kotoda N. Molecular characterization of Satsuma mandarin ( Citrus unshiu Marc.) VASCULAR PLANT ONE-ZINC FINGER2 (CuVOZ2) interacting with CuFT1 and CuFT3. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:51-62. [PMID: 38213920 PMCID: PMC10777139 DOI: 10.5511/plantbiotechnology.23.0122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/22/2023] [Indexed: 01/13/2024]
Abstract
Shortening the juvenility is a burning issue in breeding fruit trees such as Satsuma mandarin (Citrus unshiu Marc.). Decreasing the breeding period requires a comprehensive understanding of the flowering process in woody plants. Throughout the Arabidopsis flowering system, FLOWERING LOCUS T (FT) interacts with other transcription factors (TFs) and functions as a transmissible floral inducer. In a previous study, a VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1)-like TF from the Satsuma mandarin, CuVOZ1, showed protein-protein interaction with two citrus FTs in a yeast two-hybrid (Y2H) system and precocious flowering in Arabidopsis. In this study, another VOZ, CuVOZ2, was isolated from the Satsuma mandarin 'Aoshima' and protein-protein interaction was confirmed between CuVOZ2 and CuFTs. No apical meristem (NAM) and zinc coordination motifs were identified within the N-terminal of CuVOZ2. Docking simulation predicted that interactions between CuVOZ2 and CuFTs might occur in domain B of CuVOZ2, which contains a zinc finger motif. According to docking predictions, the distances between the amino acid residues involved ranged from 1.09 to 4.37 Å, indicating weak Van der Waals forces in the interaction. Cys216, Cys221, Cys235, and His239 in CuVOZ2 were suggested to bond with a Zn2+ in the Zn coordination motif. Ectopic expression of 35SΩ:CuVOZ2 in Arabidopsis affected the flowering time, length of inflorescence and internode, and number of siliques, suggesting that CuVOZ2 might regulate both vegetative and reproductive development, act as a trigger for early flowering, and be involved in the elongation of inflorescence possibly in a slightly different way than CuVOZ1.
Collapse
Affiliation(s)
- Nazmul Hasan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Naoki Tokuhara
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
| | - Takayuki Noda
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| | - Nobuhiro Kotoda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
4
|
McLay TGB, Murphy DJ, Holmes GD, Mathews S, Brown GK, Cantrill DJ, Udovicic F, Allnutt TR, Jackson CJ. A genome resource for Acacia, Australia's largest plant genus. PLoS One 2022; 17:e0274267. [PMID: 36240205 PMCID: PMC9565413 DOI: 10.1371/journal.pone.0274267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022] Open
Abstract
Acacia (Leguminosae, Caesalpinioideae, mimosoid clade) is the largest and most widespread genus of plants in the Australian flora, occupying and dominating a diverse range of environments, with an equally diverse range of forms. For a genus of its size and importance, Acacia currently has surprisingly few genomic resources. Acacia pycnantha, the golden wattle, is a woody shrub or tree occurring in south-eastern Australia and is the country's floral emblem. To assemble a genome for A. pycnantha, we generated long-read sequences using Oxford Nanopore Technology, 10x Genomics Chromium linked reads, and short-read Illumina sequences, and produced an assembly spanning 814 Mb, with a scaffold N50 of 2.8 Mb, and 98.3% of complete Embryophyta BUSCOs. Genome annotation predicted 47,624 protein-coding genes, with 62.3% of the genome predicted to comprise transposable elements. Evolutionary analyses indicated a shared genome duplication event in the Caesalpinioideae, and conflict in the relationships between Cercis (subfamily Cercidoideae) and subfamilies Caesalpinioideae and Papilionoideae (pea-flowered legumes). Comparative genomics identified a suite of expanded and contracted gene families in A. pycnantha, and these were annotated with both GO terms and KEGG functional categories. One expanded gene family of particular interest is involved in flowering time and may be associated with the characteristic synchronous flowering of Acacia. This genome assembly and annotation will be a valuable resource for all studies involving Acacia, including the evolution, conservation, breeding, invasiveness, and physiology of the genus, and for comparative studies of legumes.
Collapse
Affiliation(s)
- Todd G. B. McLay
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Australian Biodiversity Research, CSIRO, Black Mountain, Australian Capital Territory, Australia
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| | - Gareth D. Holmes
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| | - Sarah Mathews
- Centre for Australian Biodiversity Research, CSIRO, Black Mountain, Australian Capital Territory, Australia
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gillian K. Brown
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Frank Udovicic
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| | | | - Chris J. Jackson
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| |
Collapse
|
5
|
Shi P, Jiang R, Li B, Wang D, Fang D, Yin M, Yin M, Gu M. Genome-Wide Analysis and Expression Profiles of the VOZ Gene Family in Quinoa ( Chenopodium quinoa). Genes (Basel) 2022; 13:1695. [PMID: 36292580 PMCID: PMC9601790 DOI: 10.3390/genes13101695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2023] Open
Abstract
Vascular plant one zinc-finger (VOZ) proteins are a plant-specific transcription factor family and play important roles in plant development and stress responses. However, little is known about the VOZ genes in quinoa. In the present study, a genome-wide investigation of the VOZ gene family in quinoa was performed, including gene structures, conserved motifs, phylogeny, and expression profiles. A total of four quinoa VOZ genes distributed on three chromosomes were identified. Based on phylogenetic analysis, CqVOZ1 and CqVOZ3 belong to subfamily II, and CqVOZ2 and CqVOZ4 belong to subfamily III. Furthermore, the VOZ transcription factors of quinoa and sugarbeet were more closely related than other species. Except for CqVOZ3, all the other three CqVOZs have four exons and four introns. Analysis of conserved motifs indicated that each CqVOZ member contained seven common motifs. Multiple sequence alignment showed that the CqVOZ genes were highly conserved with consensus sequences, which might be plausibly significant for the preservation of structural integrity of the family proteins. Tissue expression analysis revealed that four CqVOZ genes were highly expressed in inflorescence and relatively low in leaves and stems, suggesting that these genes had obvious tissue expression specificity. The expression profiles of the quinoa CqVOZs under various abiotic stresses demonstrated that these genes were differentially induced by cold stress, salt stress, and drought stress. The transcript level of CqVOZ1 and CqVOZ4 were down-regulated by salt stress and drought stress, while CqVOZ2 and CqVOZ3 were up-regulated by cold, salt, and drought stress, which could be used as abiotic stress resistance candidate genes. This study systematically identifies the CqVOZ genes at the genome-wide level, contributing to a better understanding of the quinoa VOZ transcription factor family and laying a foundation for further exploring the molecular mechanism of development and stress resistance of quinoa.
Collapse
Affiliation(s)
- Pibiao Shi
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Runzhi Jiang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Bin Li
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Deling Wang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Di Fang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Min Yin
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Mingming Yin
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| |
Collapse
|
6
|
Rehman SU, Qanmber G, Tahir MHN, Irshad A, Fiaz S, Ahmad F, Ali Z, Sajjad M, Shees M, Usman M, Geng Z. Characterization of Vascular plant One-Zinc finger (VOZ) in soybean (Glycine max and Glycine soja) and their expression analyses under drought condition. PLoS One 2021; 16:e0253836. [PMID: 34214130 PMCID: PMC8253436 DOI: 10.1371/journal.pone.0253836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Vascular plant one-zinc-finger (VOZ) transcription factors regulate plant growth and development under drought conditions. Six VOZ transcription factors encoding genes exist in soybean genome (both in Glycine max and Glycine soja). Herein, GmVOZs and GsVOZs were identified through in silico analysis and characterized with different bioinformatics tools and expression analysis. Phylogenetic analysis classified VOZ genes in four groups. Sequence logos analysis among G. max and G. soja amino acid residues revealed higher conservation. Presence of stress related cis-elements in the upstream regions of GmVOZs and GsVOZs highlights their role in tolerance against abiotic stresses. The collinearity analysis identified 14 paralogous/orthologous gene pairs within and between G. max and G. soja. The Ka/Ks values showed that soybean VOZ genes underwent selection pressure with limited functional deviation arising from whole genome and segmental duplication. The GmVOZs and GsVOZs were found to express in roots and leaves at seedling stage. The qRT-PCR revealed that GmVOZs and GsVOZs transcripts can be regulated by abiotic stresses such as polyethylene glycol (PEG). The findings of this study will provide a reference to decipher physiological and molecular functions of VOZ genes in soybean.
Collapse
Affiliation(s)
- Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ahsan Irshad
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Furqan Ahmad
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Shees
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Muhammad Usman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Zhide Geng
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
7
|
Gao B, Wang L, Oliver M, Chen M, Zhang J. Phylogenomic synteny network analyses reveal ancestral transpositions of auxin response factor genes in plants. PLANT METHODS 2020; 16:70. [PMID: 32467718 PMCID: PMC7226935 DOI: 10.1186/s13007-020-00609-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Auxin response factors (ARFs) have long been a research focus and represent a class of key regulators of plant growth and development. Integrated phylogenomic synteny network analyses were able to provide novel insights into the evolution of the ARF gene family. RESULTS Here, more than 3500 ARFs collected from plant genomes and transcriptomes covering major streptophyte lineages were used to reconstruct the broad-scale family phylogeny, where the early origin and diversification of ARF in charophytes was delineated. Based on the family phylogeny, we proposed a unified six-group classification system for angiosperm ARFs. Phylogenomic synteny network analyses revealed the deeply conserved genomic syntenies within each of the six ARF groups and the interlocking syntenic relationships connecting distinct groups. Recurrent duplication events, such as those that occurred in seed plants, angiosperms, core eudicots and grasses contributed to the expansion of ARF genes which facilitated functional diversification. Ancestral transposition activities in important plant families, including crucifers, legumes and grasses, were unveiled by synteny network analyses. Ancestral gene duplications along with transpositions have profound evolutionary significance which may have accelerated the functional diversification process of paralogues. CONCLUSIONS The broad-scale family phylogeny in combination with the state-of-art phylogenomic synteny network analyses not only allowed us to infer the evolutionary trajectory of ARF genes across distinct plant lineages, but also facilitated to generate a more robust classification regime for this transcription factor family. Our study provides insights into the evolution of ARFs which will enhance our current understanding of this important transcription factor family.
Collapse
Affiliation(s)
- Bei Gao
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liuqiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Melvin Oliver
- USDA-ARS, Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211 USA
| | - Moxian Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
8
|
Li B, Zheng JC, Wang TT, Min DH, Wei WL, Chen J, Zhou YB, Chen M, Xu ZS, Ma YZ. Expression Analyses of Soybean VOZ Transcription Factors and the Role of GmVOZ1G in Drought and Salt Stress Tolerance. Int J Mol Sci 2020; 21:E2177. [PMID: 32245276 PMCID: PMC7139294 DOI: 10.3390/ijms21062177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/31/2023] Open
Abstract
Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.
Collapse
Affiliation(s)
- Bo Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, Fengyang 233100, China;
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University; Hubei Collaborative Innovation Center for Grain Industry; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China; (T.-T.W.); (W.-L.W.)
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China;
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University; Hubei Collaborative Innovation Center for Grain Industry; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China; (T.-T.W.); (W.-L.W.)
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| |
Collapse
|
9
|
Gao B, Chen M, Li X, Zhang J. Ancient duplications and grass-specific transposition influenced the evolution of LEAFY transcription factor genes. Commun Biol 2019; 2:237. [PMID: 31263781 PMCID: PMC6588583 DOI: 10.1038/s42003-019-0469-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
The LFY transcription factor gene family are important in the promotion of cell proliferation and floral development. Understanding their evolution offers an insight into floral development in plant evolution. Though a promiscuous transition intermediate and a gene duplication event within the LFY family had been identified previously, the early evolutionary path of this family remained elusive. Here, we reconstructed the LFY family phylogeny using maximum-likelihood and Bayesian inference methods incorporating LFY genes from all major lineages of streptophytes. The well-resolved phylogeny unveiled a high-confidence duplication event before the functional divergence of types I and II LFY genes in the ancestry of liverworts, mosses and tracheophytes, supporting sub-functionalization of an ancestral promiscuous gene. The identification of promiscuous genes in Osmunda suggested promiscuous LFY genes experienced an ancient transient duplication. Genomic synteny comparisons demonstrated a deep genomic positional conservation of LFY genes and an ancestral lineage-specific transposition activity in grasses.
Collapse
Affiliation(s)
- Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|