1
|
Zhao P, Yan X, Qian C, Ma G, Fan X, Yin X, Liao Y, Fang T, Zhou S, Awuku I, Ma XF. Flavonoid Synthesis Pathway Response to Low-Temperature Stress in a Desert Medicinal Plant, Agriophyllum Squarrosum (Sandrice). Genes (Basel) 2024; 15:1228. [PMID: 39336819 PMCID: PMC11431328 DOI: 10.3390/genes15091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives:Agriophyllum squarrosum (L.) Moq. (A. squarrosum), also known as sandrice, is an important medicinal plant widely distributed in dunes across all the deserts of China. Common garden trials have shown content variations in flavonoids among the ecotypes of sandrice, which correlated with temperature heterogeneity in situ. However, there have not been any environmental control experiments to further elucidate whether the accumulation of flavonoids was triggered by cold stress; Methods: This study conducted a four-day ambient 4 °C low-temperature treatment on three ecotypes along with an in situ annual mean temperature gradient (Dulan (DL), Aerxiang (AEX), and Dengkou (DK)); Results: Target metabolomics showed that 12 out of 14 flavonoids in sandrice were driven by cold stress. Among them, several flavonoids were significantly up-regulated, such as naringenin and naringenin chalcone in all three ecotypes; isorhamnetin, quercetin, dihydroquercetin, and kaempferol in DL and AEX; and astragalin in DK. They were accompanied by 19 structural genes of flavonoid synthesis and 33 transcription factors were markedly triggered by cold stress in sandrice. The upstream genes, AsqAEX006535-CHS, AsqAEX016074-C4H, and AsqAEX004011-4CL, were highly correlated with the enrichment of naringenin, which could be fine-tuned by AsqAEX015868-bHLH62, AsqAEX001711-MYB12, and AsqAEX002220-MYB1R1; Conclusions: This study sheds light on how desert plants like sandrice adapt to cold stress by relying on a unique flavonoid biosynthesis mechanism that regulating the accumulation of naringenin. It also supports the precise development of sandrice for the medicinal industry. Specifically, quercetin and isorhamnetin should be targeted for development in DL and AEX, while astragalin should be precisely developed in DK.
Collapse
Affiliation(s)
- Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guorong Ma
- Gulang County Sand Prevention and Control Technology Promotion Center, Wuwei 733100, China
| | - Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoyue Yin
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingzhou Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shanshan Zhou
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ibrahim Awuku
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiao-Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2024:1-26. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
3
|
Tian X, Xiang G, Lv H, Zhu L, Peng J, Li G, Mou C. Transcriptomic and metabolic analysis unveils the mechanism behind leaf color development in Disanthus cercidifolius var. longipes. Front Mol Biosci 2024; 11:1343123. [PMID: 38380429 PMCID: PMC10876866 DOI: 10.3389/fmolb.2024.1343123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction: Leaf coloration in Disanthus cercidifolius var. longipes results from the interplay of various pigments undergoing complex catalytic reactions. Methods: We aimed to elucidate the mechanisms of pigment biosynthesis affecting leaf color transition in D. cercidifolius var. longipes by analyzing variations in pigment accumulation and levels of gene expression. Results: We identified 468, 577, and 215 differential metabolites in green leaves (GL), gradual-color-changing leaves (GCCL), and red leaves (RL), respectively, with 94 metabolites shared across all comparisons. Metabolite accumulation patterns were similar among GL, GCCL, and RL, with flavonoids being the main differential metabolites. Delphinidin, malvidin, and petunidin derivatives were mostly accumulated in GCCL, whereas cyanidin, pelargonidin, and peonidin derivatives accumulated in RL. Transcriptome sequencing was used to identify differentially expressed genes. The expression of anthocyanin biosynthetic pathway genes was associated with anthocyanin accumulation patterns. Discussion: Our findings reveal that the content of delphinidin, malvidin, petunidin, and carotenoids collectively determines the gradual transition of leaf color from green in spring and summer to green, purple, and orange-yellow in early autumn, whereas the content of cyanidin, peonidin, pelargonidin, and carotenoids together causes the autumnal transition to red or orange-red colors as leaves of D. cercidifolius var. longipes age.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cun Mou
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| |
Collapse
|
4
|
Yang C, Tian F, Ma J, Chen M, Shi X, Chen D, Xie Y, Zhou X, Zhou Z, Dai X, Xia T, Gao L. Glycosylation of Secondary Metabolites: A Multifunctional UDP-Glycosyltransferase, CsUGT74Y1, Promotes the Growth of Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18999-19009. [PMID: 37997954 DOI: 10.1021/acs.jafc.3c05843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Camellia sinensis contains numerous glycosylated secondary metabolites that provide various benefits to plants and humans. However, the genes that catalyze the glycosylation of multitype metabolites in tea plants remain unclear. Here, 180 uridine diphosphate-dependent glycosyltransferases that may be involved in the biosynthesis of glycosylated secondary metabolites were identified from the National Center for Biotechnology Information public databases. Subsequently, CsUGT74Y1 was screened through phylogenetic analysis and gene expression profiling. Compositional and induced expression analyses revealed that CsUGT74Y1 was highly expressed in tea tender shoots and was induced under biotic and abiotic stress conditions. In vitro enzymatic assays revealed that rCsUGT74Y1 encoded a multifunctional UGT that catalyzed the glycosylation of flavonoids, phenolic acids, lignins, and auxins. Furthermore, CsUGT74Y1-overexpressing Arabidopsis thaliana exhibited enhanced growth and accumulation of flavonol and auxin glucosides. Our findings provide insights into identifying specific UGTs and demonstrate that CsUGT74Y1 is a multifunctional UGT that promotes plant development.
Collapse
Affiliation(s)
- Changli Yang
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Fengyun Tian
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jie Ma
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mei Chen
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xingxing Shi
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Dingli Chen
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Youshudi Xie
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xingrong Zhou
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
- Hunan Optical Agriculture Engineering Technology Research Center, Changsha 410128, China
| | - Xinlong Dai
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 230036 Hefei, Anhui, China
| |
Collapse
|
5
|
Devate NB, Krishna H, Sunilkumar VP, Manjunath KK, Mishra CN, Jain N, Singh GP, Singh PK. Identification of genomic regions of wheat associated with grain Fe and Zn content under drought and heat stress using genome-wide association study. Front Genet 2022; 13:1034947. [PMID: 36338980 PMCID: PMC9634069 DOI: 10.3389/fgene.2022.1034947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 09/10/2023] Open
Abstract
Wheat is the staple food crop of global importance for its grain nutrient quality. Grain iron and zinc content of the wheat grain is an important quantitatively inherited trait that is influenced by the environmental factors such as drought and heat stress. Phenotypic evaluation of 295 advanced breeding lines from the wheat stress breeding program of IARI was carried out under timely sown irrigated (IR), restricted irrigated, and late-sown conditions at New Delhi during the cropping season of 2020-21, and grain iron (GFeC) and zinc (GZnC) contents were estimated from both control and treatments. A statistically significant increase in GFeC and GZnC was observed under stress conditions compared to that of the control. Genotyping was carried out with the SNPs from the 35K Axiom Breeder's array, and marker-trait association was identified by GWAS analysis. Of the 23 MTAs identified, seven were linked with GFeC and sixteen were linked with GZnC. In silico analysis revealed a few important transcripts involved in various plant metabolism, growth, and development activities such as auxin response factor, root UVB sensitive proteins, potassium transporter, glycosyl transferase, COBRA, and F-box-like domain. The identified MTAs can be used for molecular breeding after validation and also for rapid development of micronutrient-rich varieties of wheat to mitigate hidden hunger.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - C. N. Mishra
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - P. K. Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Wang Z, He Y, Liao L, Zhang Y, Zhao Y, Xiao Y, Jiang X, Qiao F. Forming coumarin C-glycosides via biocatalysis: Characterization of a C-glycosyltransferase from Angelica decursiva. Biochem Biophys Res Commun 2022; 614:85-91. [DOI: 10.1016/j.bbrc.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
|
7
|
High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway. Genes (Basel) 2022; 13:genes13030515. [PMID: 35328069 PMCID: PMC8949966 DOI: 10.3390/genes13030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Echinochloa colona and other species in this genus are a threat to global rice production and food security. Quinclorac, an auxin mimic, is a common herbicide for grass weed control in rice, and Echinochloa spp. have evolved resistance to it. The complete mode of quinclorac action and subsequent evolution of resistance is not fully understood. We analyzed the de novo transcriptome of multiple-herbicide-resistant (ECO-R) and herbicide-susceptible genotypes in response to quinclorac. Several biological processes were constitutively upregulated in ECO-R, including carbon metabolism, photosynthesis, and ureide metabolism, indicating improved metabolic efficiency. The transcriptional change in ECO-R following quinclorac treatment indicates an efficient response, with upregulation of trehalose biosynthesis, which is also known for abiotic stress mitigation. Detoxification-related genes were induced in ECO-R, mainly the UDP-glycosyltransferase (UGT) family, most likely enhancing quinclorac metabolism. The transcriptome data also revealed that many antioxidant defense elements were uniquely elevated in ECO-R to protect against the auxin-mediated oxidative stress. We propose that upon quinclorac treatment, ECO-R detoxifies quinclorac utilizing UGT genes, which modify quinclorac using the sufficient supply of UDP-glucose from the elevated trehalose pathway. Thus, we present the first report of upregulation of trehalose synthesis and its association with the herbicide detoxification pathway as an adaptive mechanism to herbicide stress in Echinochloa, resulting in high resistance.
Collapse
|
8
|
Song Y, Feng J, Liu D, Long C. Different Phenylalanine Pathway Responses to Cold Stress Based on Metabolomics and Transcriptomics in Tartary Buckwheat Landraces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:687-698. [PMID: 34989558 DOI: 10.1021/acs.jafc.1c06915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is strongly adapted to growth in adverse environments. In Liangshan, the Yi people cultivate different Tartary buckwheat landraces in different habitats. In this study, we aimed to understand the molecular differences in transcriptomic and metabolomic responses underlying cold tolerance between two Tartary buckwheat landraces (TM and RG) cultivated at different altitudes. After cold treatment, TM showed normal growth in the seedling stage and had significantly higher total flavonoids (16.53 mg/g, 1.47 times), rutin (5.73 mg/g, 1.32 times), and quercetin (0.08 mg/g, 2.67 times), which were higher than those in RG. In addition, TM showed higher-level changes in carbon and nitrogen metabolism than RG. Combined transcriptome and metabolomic analyses showed that phenylpropanoid biosynthesis was upregulated after cold treatment, and in TM, rutin synthesis was upregulated with a higher-level response to cold stress. RG showed higher expression in anthocyanins in response to cold stress. In addition, 24 structural genes involved in flavonoid synthesis, including 6 PAL, 3 C4H, 2 4CL, 2 CHS, 1 CHI, 3 F3H, 3 DFR, 1 FLS, 1 F3'H, and 4 GTR genes, were identified. These results will provide sufficient information for breeding Tartary buckwheat with high cold tolerance and constructing rutin high-yield varieties based on genetic engineering.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100088, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100088, China
| | - Dongmei Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100088, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
9
|
Zhao J, Li H, Huang J, Shi T, Meng Z, Chen Q, Deng J. Genome-wide analysis of BBX gene family in Tartary buckwheat ( Fagopyrum tataricum). PeerJ 2021; 9:e11939. [PMID: 34447629 PMCID: PMC8364324 DOI: 10.7717/peerj.11939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Hongyou Li
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Ziye Meng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Qingfu Chen
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Jiao Deng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| |
Collapse
|
10
|
Miculan M, Nelissen H, Ben Hassen M, Marroni F, Inzé D, Pè ME, Dell’Acqua M. A forward genetics approach integrating genome-wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (Zea mays). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1056-1071. [PMID: 34087008 PMCID: PMC8519057 DOI: 10.1111/tpj.15364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/31/2021] [Indexed: 05/13/2023]
Abstract
The characterization of the genetic basis of maize (Zea mays) leaf development may support breeding efforts to obtain plants with higher vigor and productivity. In this study, a mapping panel of 197 biparental and multiparental maize recombinant inbred lines (RILs) was analyzed for multiple leaf traits at the seedling stage. RNA sequencing was used to estimate the transcription levels of 29 573 gene models in RILs and to derive 373 769 single nucleotide polymorphisms (SNPs), and a forward genetics approach combining these data was used to pinpoint candidate genes involved in leaf development. First, leaf traits were correlated with gene expression levels to identify transcript-trait correlations. Then, leaf traits were associated with SNPs in a genome-wide association (GWA) study. An expression quantitative trait locus mapping approach was followed to associate SNPs with gene expression levels, prioritizing candidate genes identified based on transcript-trait correlations and GWAs. Finally, a network analysis was conducted to cluster all transcripts in 38 co-expression modules. By integrating forward genetics approaches, we identified 25 candidate genes highly enriched for specific functional categories, providing evidence supporting the role of vacuolar proton pumps, cell wall effectors, and vesicular traffic controllers in leaf growth. These results tackle the complexity of leaf trait determination and may support precision breeding in maize.
Collapse
Affiliation(s)
- Mara Miculan
- Institute of Life SciencesScuola Superiore Sant’AnnaPisa56127Italy
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Manel Ben Hassen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Fabio Marroni
- IGA Technology ServicesUdine33100Italy
- Department of Agricultural, FoodAT, Environmental and Animal Sciences (DI4A)University of UdineUdine33100Italy
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Mario Enrico Pè
- Institute of Life SciencesScuola Superiore Sant’AnnaPisa56127Italy
| | | |
Collapse
|
11
|
Promiscuity and specificity of eukaryotic glycosyltransferases. Biochem Soc Trans 2021; 48:891-900. [PMID: 32539082 PMCID: PMC7329348 DOI: 10.1042/bst20190651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Glycosyltransferases are a large family of enzymes responsible for covalently linking sugar monosaccharides to a variety of organic substrates. These enzymes drive the synthesis of complex oligosaccharides known as glycans, which play key roles in inter-cellular interactions across all the kingdoms of life; they also catalyze sugar attachment during the synthesis of small-molecule metabolites such as plant flavonoids. A given glycosyltransferase enzyme is typically responsible for attaching a specific donor monosaccharide, via a specific glycosidic linkage, to a specific moiety on the acceptor substrate. However these enzymes are often promiscuous, able catalyze linkages between a variety of donors and acceptors. In this review we discuss distinct classes of glycosyltransferase promiscuity, each illustrated by enzymatic examples from small-molecule or glycan synthesis. We highlight the physical causes of promiscuity, and its biochemical consequences. Structural studies of glycosyltransferases involved in glycan synthesis show that they make specific contacts with ‘recognition motifs’ that are much smaller than the full oligosaccharide substrate. There is a wide range in the sizes of glycosyltransferase recognition motifs: highly promiscuous enzymes recognize monosaccharide or disaccharide motifs across multiple oligosaccharides, while highly specific enzymes recognize large, complex motifs found on few oligosaccharides. In eukaryotes, the localization of glycosyltransferases within compartments of the Golgi apparatus may play a role in mitigating the glycan variability caused by enzyme promiscuity.
Collapse
|
12
|
Song Y, Jia Z, Hou Y, Ma X, Li L, Jin X, An L. Roles of DNA Methylation in Cold Priming in Tartary Buckwheat. FRONTIERS IN PLANT SCIENCE 2020; 11:608540. [PMID: 33365044 PMCID: PMC7750358 DOI: 10.3389/fpls.2020.608540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Plants experience a wide array of environmental stimuli, some of which are frequent occurrences of cold weather, which have priming effects on agricultural production and agronomic traits. DNA methylation may act as an epigenetic regulator for the cold response of Tartary buckwheat (Fagopyrum tataricum). Combined with long-term field observation and laboratory experiments, comparative phenome, methylome, and transcriptome analyses were performed to investigate the potential epigenetic contributions for the cold priming of Tartary buckwheat variety Dingku1. Tartary buckwheat cv. Dingku1 exhibited low-temperature resistance. Single-base resolution maps of the DNA methylome were generated, and a global loss of DNA methylation was observed during cold responding in Dingku1. These sites with differential methylation levels were predominant in the intergenic regions. Several hundred genes had different DNA methylation patterns and expressions in different cold treatments (cold memory and cold shock), such as CuAO, RPB1, and DHE1. The application of a DNA methylation inhibitor caused a change of the free lysine content, suggesting that DNA methylation can affect metabolite accumulation for Tartary buckwheat cold responses. The results of the present study suggest important roles of DNA methylation in regulating cold response and forming agronomic traits in Tartary buckwheat.
Collapse
Affiliation(s)
- Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhifeng Jia
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xing Jin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
14
|
Del Valle JC, Alcalde-Eon C, Escribano-Bailón MT, Buide ML, Whittall JB, Narbona E. Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues. BMC PLANT BIOLOGY 2019; 19:496. [PMID: 31726989 PMCID: PMC6854811 DOI: 10.1186/s12870-019-2082-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21 populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues (pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals). RESULTS Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the northern edge of the species range (mean frequency 8-21%). Whereas, individuals lacking anthocyanins in the whole plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were 14-56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize flavones, and this pattern was congruent among all sampled populations. CONCLUSIONS We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant, and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the targets of non-pollinator mediated selection.
Collapse
Affiliation(s)
- José Carlos Del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain.
| | - Cristina Alcalde-Eon
- Grupo de Investigación en Polifenoles (GIP), University of Salamanca, 37007, Salamanca, Spain
| | | | - Mª Luisa Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain
| | - Justen B Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|