1
|
Wijesekara T, Xu B. A critical review on the stability of natural food pigments and stabilization techniques. Food Res Int 2024; 179:114011. [PMID: 38342519 DOI: 10.1016/j.foodres.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Food Science and Technology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Chitchak N, Stewart AB, Traiperm P. Functional Ecology of External Secretory Structures in Rivea ornata (Roxb.) Choisy (Convolvulaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2068. [PMID: 35956546 PMCID: PMC9370475 DOI: 10.3390/plants11152068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
Plants have evolved numerous secretory structures that fulfill diverse roles and shape their interactions with other organisms. Rivea ornata (Roxb.) Choisy (Convolvulaceae) is one species that possesses various external secretory organs hypothesized to be ecologically important. This study, therefore, aimed to investigate five secretory structures (nectary disc, petiolar nectaries, calycinal glands, staminal hairs, and foliar glands) using micromorphology, anatomy, histochemistry, and field observations of plant-animal interactions in order to assess the functional contributions of these structures. Results show that the nectary disc and petiolar nectaries are complex working units consisting of at least epidermis and ground tissue, while the other structures are glandular trichomes. Various groups of metabolites (lipids, phenolic compounds, polysaccharides, terpenoids, flavonoids, and alkaloids) were detected in all structures, while starch grains were only found in the nectary disc, petiolar nectaries, and their adjacent tissues. Integrating preliminary observation of animal visitors with micromorphological, anatomical, and histochemical results, two hypotheses are proposed: (I) nectary disc and staminal hairs are important for pollination as they potentially attract and reward floral visitors, and (II) petiolar nectaries, calycinal glands, and foliar glands contribute to plant defense. Specifically, petiolar nectaries and calycinal glands provide protection from herbivores via guard ants, while calycinal and foliar glands may use plant metabolites to help prevent tissue damage from dehydration and insolation.
Collapse
Affiliation(s)
| | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.743850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flower colour is mainly due to the presence and type of pigments. Pollinator preferences impose selection on flower colour that ultimately acts on flower pigments. Knowing how pollinators perceive flowers with different pigments becomes crucial for a comprehensive understanding of plant-pollinator communication and flower colour evolution. Based on colour space models, we studied whether main groups of pollinators, specifically hymenopterans, dipterans, lepidopterans and birds, differentially perceive flower colours generated by major pigment groups. We obtain reflectance data and conspicuousness to pollinators of flowers containing one of the pigment groups more frequent in flowers: chlorophylls, carotenoids and flavonoids. Flavonoids were subsequently classified in UV-absorbing flavonoids, aurones-chalcones and the anthocyanins cyanidin, pelargonidin, delphinidin, and malvidin derivatives. We found that flower colour loci of chlorophylls, carotenoids, UV-absorbing flavonoids, aurones-chalcones, and anthocyanins occupied different regions of the colour space models of these pollinators. The four groups of anthocyanins produced a unique cluster of colour loci. Interestingly, differences in colour conspicuousness among the pigment groups were almost similar in the bee, fly, butterfly, and bird visual space models. Aurones-chalcones showed the highest chromatic contrast values, carotenoids displayed intermediate values, and chlorophylls, UV-absorbing flavonoids and anthocyanins presented the lowest values. In the visual model of bees, flowers with UV-absorbing flavonoids (i.e., white flowers) generated the highest achromatic contrasts. Ours findings suggest that in spite of the almost omnipresence of floral anthocyanins in angiosperms, carotenoids and aurones-chalcones generates higher colour conspicuousness for main functional groups of pollinators.
Collapse
|
4
|
Torices R, DeSoto L, Narbona E, Gómez JM, Pannell JR. Effects of the Relatedness of Neighbours on Floral Colour. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.589781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reproductive success of plants depends both on their phenotype and the local neighbourhood in which they grow. Animal-pollinated plants may benefit from increased visitation when surrounded by attractive conspecific individuals, via a “magnet effect.” Group attractiveness is thus potentially a public good that can be exploited by individuals, with selfish exploitation predicted to depend on genetic relatedness within the group. Petal colour is a potentially costly trait involved in floral signalling and advertising to pollinators. Here, we assessed whether petal colour was plastically sensitive to the relatedness of neighbours in the annual herb Moricandia moricandioides, which produces purple petals through anthocyanin pigment accumulation. We also tested whether petal colour intensity was related to nectar volume and sugar content in a context-dependent manner. Although both petal colour and petal anthocyanin concentration did not significantly vary with the neighbourhood configuration, plants growing with kin made a significantly higher investment in petal anthocyanin pigments as a result of the greater number and larger size of their flowers. Moreover the genetic relatedness of neighbours significantly modified the relationship between floral signalling and reward quantity: while focal plants growing with non-kin showed a positive relationship between petal colour and nectar production, plants growing with kin showed a positive relationship between number of flowers and nectar volume, and sugar content. The observed plastic response to group relatedness might have important effects on pollinator behaviour and visitation, with direct and indirect effects on plant reproductive success and mating patterns, at least in those plant species with patchy and genetically structured populations.
Collapse
|
5
|
Sobral M, Neylan IP, Narbona E, Dirzo R. Transgenerational Plasticity in Flower Color Induced by Caterpillars. FRONTIERS IN PLANT SCIENCE 2021; 12:617815. [PMID: 33790921 PMCID: PMC8006444 DOI: 10.3389/fpls.2021.617815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
Variation in flower color due to transgenerational plasticity could stem directly from abiotic or biotic environmental conditions. Finding a link between biotic ecological interactions across generations and plasticity in flower color would indicate that transgenerational effects of ecological interactions, such as herbivory, might be involved in flower color evolution. We conducted controlled experiments across four generations of wild radish (Raphanus sativus, Brassicaceae) plants to explore whether flower color is influenced by herbivory, and to determine whether flower color is associated with transgenerational chromatin modifications. We found transgenerational effects of herbivory on flower color, partly related to chromatin modifications. Given the presence of herbivory in plant populations worldwide, our results are of broad significance and contribute to our understanding of flower color evolution.
Collapse
Affiliation(s)
- Mar Sobral
- Departamento de Biología Funcional, Universidade de Santiago de Compostela, USC, Santiago de Compostela, Spain
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Isabelle P. Neylan
- Department of Biology, Stanford University, Stanford, CA, United States
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, Davis, CA, United States
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA, United States
- Woods Institute for the Environment, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Buide ML, Del Valle JC, Prado-Comesaña A, Narbona E. The effects of pollination, herbivory and autonomous selfing on the maintenance of flower colour variation in Silenelittorea. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:275-284. [PMID: 33179369 DOI: 10.1111/plb.13209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/30/2020] [Indexed: 05/23/2023]
Abstract
Intraspecific flower colour variation has been generally proposed to evolve as a result of selection driven by biotic or abiotic agents. In a polymorphic population of Silene littorea with pink- and white-flowered plants, we studied pollinators, analysed flower colour perception and tested for differences in pollinator visitation. We also experimentally analysed pollinator limitation in fruit and seed set, and the degree of autonomous selfing. The incidence of florivory and leaf herbivory was compared over 3-4 years. Silene littorea is mainly pollinated by bees and butterflies. Pollinators preferred pink flowers, which did not show pollinator limitation. On the contrary, white flowers showed pollinator limitation in fruit set. White-flowered plants had less floral display and higher levels of florivory than pink plants. Flower colour morphs of S. littorea can reproduce in the absence of pollinators by autonomous selfing, setting 20% and 12% of fruit and seeds in the pink morph and 27% and 20% in the white morph, respectively. Fruit set of white flowers produced by autonomous selfing did not differ from open-pollinated flowers. In conclusion, S. littorea is pollinated by insects of different orders that more frequently visit pink flowers, which is reflected in pollinator limitation of fruit set in white flowers. Moreover, this species has a mixed mating system in which both colour morphs can reproduce in the absence of pollinators by autonomous selfing, although white flowers mainly produce fruits by autogamy. We suggest that reproductive assurance by autonomous selfing helps to maintain flower colour polymorphism in this population.
Collapse
Affiliation(s)
- M L Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - J C Del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - A Prado-Comesaña
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| | - E Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
7
|
Sapir Y, Gallagher MK, Senden E. What Maintains Flower Colour Variation within Populations? Trends Ecol Evol 2021; 36:507-519. [PMID: 33663870 DOI: 10.1016/j.tree.2021.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Natural selection acts on phenotypic trait variation. Understanding the mechanisms that create and maintain trait variation is fundamental to understanding the breadth of diversity seen on Earth. Flower colour is among the most conspicuous and highly diverse traits in nature. Most flowering plant populations have uniform floral colours, but a minority exhibit within-population colour variation, either discrete (polymorphic) or continuous. Colour variation is commonly maintained by balancing selection through multiple pollinators, opposing selection regimes, or fluctuating selection. Variation can also be maintained by heterozygote advantage or frequency-dependent selection. Neutral processes, or a lack of selection, may maintain variation, although this remains largely untested. We suggest several prospective research directions that may provide insight into the evolutionary drivers of trait variation.
Collapse
Affiliation(s)
- Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - M Kate Gallagher
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Esther Senden
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Rodríguez-Castañeda NL, Ortiz PL, Arista M, Narbona E, Buide ML. Indirect Selection on Flower Color in Silene littorea. FRONTIERS IN PLANT SCIENCE 2020; 11:588383. [PMID: 33424884 PMCID: PMC7785944 DOI: 10.3389/fpls.2020.588383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Flower color, as other floral traits, may suffer conflicting selective pressures mediated by both mutualists and antagonists. The maintenance of intraspecific flower color variability has been usually explained as a result of direct selection by biotic agents. However, flower color might also be under indirect selection through correlated traits, since correlations among flower traits are frequent. In this study, we aimed to find out how flower color variability is maintained in two nearby populations of Silene littorea that consistently differ in the proportions of white-flowered plants. To do that, we assessed natural selection on floral color and correlated traits by means of phenotypic selection analysis and path analysis. Strong directional selection on floral display and flower production was found in both populations through either male or female fitness. Flower color had a negative indirect effect on the total male and female fitness in Melide population, as plants with lighter corollas produced more flowers. In contrast, in Barra population, plants with darker corollas produced more flowers and have darker calices, which in turn were selected. Our results suggest that the prevalence of white-flowered plants in Melide and pink-flowered plants in Barra is a result of indirect selection through correlated flower traits and not a result of direct selection of either pollinators or herbivores on color.
Collapse
Affiliation(s)
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Mª Luisa Buide
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
9
|
Tian Y, Ma Z, Ma H, Gu Y, Li Y, Sun H. Comparative transcriptome analysis of lingonberry (Vaccinium vitis-idaea) provides insights into genes associated with flavonoids metabolism during fruit development. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1803130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Youwen Tian
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Zhili Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Haohao Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Yu Gu
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Haiyue Sun
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| |
Collapse
|
10
|
Del Valle JC, Buide ML, Whittall JB, Valladares F, Narbona E. UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS One 2020; 15:e0231611. [PMID: 32555603 PMCID: PMC7302690 DOI: 10.1371/journal.pone.0231611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Plants respond to changes in ultraviolet (UV) radiation both morphologically and physiologically. Among the variety of plant UV-responses, the synthesis of UV-absorbing flavonoids constitutes an effective non-enzymatic mechanism to mitigate photoinhibitory and photooxidative damage caused by UV stress, either reducing the penetration of incident UV radiation or acting as quenchers of reactive oxygen species (ROS). In this study, we designed a UV-exclusion experiment to investigate the effects of UV radiation in Silene littorea. We spectrophotometrically quantified concentrations of both anthocyanins and UV-absorbing phenolic compounds in petals, calyces, leaves and stems. Furthermore, we analyzed the UV effect on the photosynthetic activity in hours of maximum solar radiation and we tested the impact of UV radiation on male and female reproductive performance. We found that anthocyanin concentrations showed a significant decrease of about 20% with UV-exclusion in petals and stems, and a 30% decrease in calyces. The concentrations of UV-absorbing compounds under UV-exclusion decreased by approximately 25% in calyces and stems, and 12% in leaves. Photochemical efficiency of plants grown under UV decreased at maximum light stress, reaching an inhibition of 58% of photosynthetic activity, but their ability to recover after light-stress was not affected. In addition, exposure to UV radiation did not affect ovule production or seed set per flower, but decreased pollen production and total seed production per plant by 31% and 69%, respectively. Our results demonstrate that UV exposure produced opposing effects on the accumulation of plant phenolic compounds and reproduction. UV radiation increased the concentration of phenolic compounds, suggesting a photoprotective role of plant phenolics against UV light, yet overall reproduction was compromised.
Collapse
Affiliation(s)
- José Carlos Del Valle
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Mª Luisa Buide
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Fernando Valladares
- Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, CSIC, Madrid, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|