1
|
Zhu Y, Zhou X, Shi J, Xing B, Zheng Y, Wan S, Pan LY, Lv A, Shao Q. ArHDZ19 contributes to drought tolerance by advancing flowering time in Anoectochilus roxburghii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112369. [PMID: 39725165 DOI: 10.1016/j.plantsci.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The homeodomain-leucine zippper gene family encodes plant-specific transcription factors that not only affect growth and development, but also play important roles in the drought response. ArHDZ19, from Anoectochilus roxburghii, encodes a homeodomain-leucine zipper III subfamily protein whose function and molecule ar mechanism remains unclear. Here, we explored the function of ArHDZ19 in regulating growth and the drought response. ArHDZ19 localized in the nucleus and its expression was strongly induced under drought stress. Overexpression of ArHDZ19 in Arabidopsis thaliana (OE-ArHDZ19) not only increased plant height and the length of stamens and pistils, but also resulted in an earlier flowering phenotype. The flowering-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1), CONSTANS (CO), FLOWERING LOCUS C (FLC), and GIGANTEA (GI) were up-regulated in the OE-ArHDZ19 lines. Moreover, under drought conditions, overexpression of ArHDZ19 improved the plant survival rate and advanced the flowering time. Stress-responsive genes such as COLD-REGULATED 47 (COR47), KINESIN 1 (KIN1), and RESPONSE TO DESICCATION (RD29A) were up-regulated by drought treatment; however, their transcript levels were lower in OE-ArHDZ19 plants than in wild-type plants. These results indicate that ArHDZ19 can improve the drought resistance of plants by advancing the flowering time, which may be a drought-avoidance mechanism.
Collapse
Affiliation(s)
- Yanqin Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaohui Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinjing Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lan Ying Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Einollahi F, Khadivi A. Morphological and pomological assessments of seedling-originated walnut (Juglans regia L.) trees to select the promising late-leafing genotypes. BMC PLANT BIOLOGY 2024; 24:253. [PMID: 38589788 PMCID: PMC11000403 DOI: 10.1186/s12870-024-04941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND In many parts of the world, including Iran, walnut (Juglans regia L.) production is limited by late-spring frosts. Therefore, the use of late-leafing walnuts in areas with late-spring frost is the most important method to improve yield. In the present study, the phenotypic diversity of 141 seedling genotypes of walnut available in the Senejan area, Arak region, Markazi province, Iran was studied based on morphological traits to obtain superior late-leafing genotypes in the cropping seasons of 2022 and 2023. RESULTS Based on the results of the analysis of variance, the studied genotypes showed a significant variation in terms of most of the studied morphological and pomological traits. Therefore, it is possible to choose genotypes for different values of a trait. Kernel weight showed positive and significant correlations with leaf length (r = 0.32), leaf width (r = 0.33), petiole length (r = 0.26), terminal leaflet length (r = 0.34), terminal leaflet width (r = 0.21), nut length (r = 0.48), nut width (r = 0.73), nut weight (r = 0.83), kernel length (r = 0.64), and kernel width (r = 0.89). The 46 out of 141 studied genotypes were late-leafing and were analyzed separately. Among late-leafing genotypes, the length of the nut was in the range of 29.33-48.50 mm, the width of the nut was in the range of 27.51-39.89 mm, and nut weight was in the range of 8.18-16.06 g. The thickness of shell was in the range of 1.11-2.60 mm. Also, kernel length ranged from 21.97-34.84 mm, kernel width ranged from 21.10-31.09 mm, and kernel weight ranged from 3.10-7.97 g. CONCLUSIONS Based on important and commercial traits in walnut breeding programs, such as nut weight, kernel weight, kernel percentage, kernel color, and ease of kernel removal from nuts, 15 genotypes, including no. 92, 91, 31, 38, 33, 18, 93, 3, 58, 108, 16, 70, 15, 82, and 32 were superior and could be used in walnut breeding programs in line with the introduction of new cultivars and the revival of traditional walnut orchards to commercialize them.
Collapse
Affiliation(s)
- Fariba Einollahi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Ali Khadivi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
3
|
Zhang X, Peng W, Chen H, Xing H. BnAP2-12 overexpression delays ramie flowering: evidence from AP2/ERF gene expression. FRONTIERS IN PLANT SCIENCE 2024; 15:1367837. [PMID: 38590749 PMCID: PMC10999622 DOI: 10.3389/fpls.2024.1367837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Introduction The APETALA2/ethylene response factor (AP2/ERF) superfamily plays a significant role in regulating plant gene expression in response to growth and development. To date, there have been no studies into whether the ramie AP2/ERF genes are involved in the regulation of flower development. Methods Here, 84 BnAP2/ERF members were identified from the ramie genome database, and various bioinformatics data on the AP2/ERF gene family, structure, replication, promoters and regulatory networks were analysed. BnAP2-12 was transferred into Arabidopsis through the flower-dipping method. Results Phylogenetic analysis classified the 84 BnAP2/ERF members into four subfamilies: AP2 (18), RAV (3), ERF (42), and DREB (21). The functional domain analysis of genes revealed 10 conserved motifs. Genetic mapping localised the 84 members on 14 chromosomes, among which chromosomes 1, 3, 5, and 8 had more members. Collinearity analysis revealed that 43.37% possibly resulted from replication events during the evolution of the ramie genome. Promoter sequence analysis identified classified cis-acting elements associated with plant growth and development, and responses to stress, hormones, and light. Transcriptomic comparison identified 3,635 differentially expressed genes (DEGs) between male and female flowers (1,803 and 1,832 upregulated and downregulated genes, respectively). Kyoto Encyclopaedia of Genes and Genomes pathway analysis categorised DEGs involved in metabolic pathways and biosynthesis of secondary metabolites. Gene Ontology enrichment analysis further identified enriched genes associated with pollen and female gamete formations. Of the 84 BnAP2/ERFs genes, 22 and 8 upregulated and downregulated genes, respectively, were present in female flowers. Co-expression network analysis identified AP2/ERF members associated with flower development, including BnAP2-12. Subcellular localisation analysis showed that the BnAP2-12 protein is localised in the nucleus and cell membrane. Overexpression BnAP2-12 delayed the flowering time of Arabidopsis thaliana. Conclusion These findings provide insights into the mechanism of ramie flower development.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
| | - Wenxian Peng
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Changsha Tobacco Company, Ningxiang, China
| | - Hao Chen
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Hucheng Xing
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Hunan Key Laboratory of Germplasm Resources Innovation and Resource Utilization Crop Breeding Center, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Grass Crop Germplasm Innovation and Utilization, Changsha, China
| |
Collapse
|
4
|
Zhou H, Ma J, Liu H, Zhao P. Genome-Wide Identification of the CBF Gene Family and ICE Transcription Factors in Walnuts and Expression Profiles under Cold Conditions. Int J Mol Sci 2023; 25:25. [PMID: 38203199 PMCID: PMC10778614 DOI: 10.3390/ijms25010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cold stress impacts woody tree growth and perennial production, especially when the temperature rapidly changes in late spring. To address this issue, we conducted the genome-wide identification of two important transcription factors (TFs), CBF (C-repeat binding factors) and ICE (inducers of CBF expression), in three walnut (Juglans) genomes. Although the CBF and ICE gene families have been identified in many crops, very little systematic analysis of these genes has been carried out in J. regia and J. sigillata. In this study, we identified a total of 16 CBF and 12 ICE genes in three Juglans genomes using bioinformatics analysis. Both CBF and ICE had conserved domains, motifs, and gene structures, which suggests that these two TFs were evolutionarily conserved. Most ICE genes are located at both ends of the chromosomes. The promoter cis-regulatory elements of CBF and ICE genes are largely involved in light and phytohormone responses. Based on 36 RNA sequencing of leaves from four walnut cultivars ('Zijing', 'Lvling', 'Hongren', and 'Liao1') under three temperature conditions (8 °C, 22 °C, and 5 °C) conditions in late spring, we found that the ICE genes were expressed more highly than CBFs. Both CBF and ICE proteins interacted with cold-related proteins, and many putative miRNAs had interactions with these two TFs. These results determined that CBF1 and ICE1 play important roles in the tolerance of walnut leaves to rapid temperature changes. Our results provide a useful resource on the function of the CBF and ICE genes related to cold tolerance in walnuts.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China;
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| |
Collapse
|
5
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Wang Z, Song G, Zhang F, Shu X, Wang N. Functional Characterization of AP2/ERF Transcription Factors during Flower Development and Anthocyanin Biosynthesis Related Candidate Genes in Lycoris. Int J Mol Sci 2023; 24:14464. [PMID: 37833913 PMCID: PMC10572147 DOI: 10.3390/ijms241914464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The APETALA2/ethylene-responsive transcription factor (AP2/ERF) family has been extensively investigated because of its significant involvement in plant development, growth, fruit ripening, metabolism, and plant stress responses. To date, there has been little investigation into how the AP2/ERF genes influence flower formation and anthocyanin biosynthesis in Lycoris. Herein, 80 putative LrAP2/ERF transcription factors (TFs) with complete open reading frames (ORFs) were retrieved from the Lycoris transcriptome sequence data, which could be divided into five subfamilies dependent on their complete protein sequences. Furthermore, our findings demonstrated that genes belonging to the same subfamily had structural similarities and conserved motifs. LrAP2/ERF genes were analyzed for playing an important role in plant growth, water deprivation, and flower formation by means of gene ontology (GO) enrichment analysis. The expression pattern of the LrAP2/ERF genes differed across tissues and might be important for Lycoris growth and flower development. In response to methyl jasmonate (MeJA) exposure and drought stress, the expression of each LrAP2/ERF gene varied across tissues and time. Moreover, a total of 20 anthocyanin components were characterized using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis, and pelargonidin-3-O-glucoside-5-O-arabinoside was identified as the major anthocyanin aglycone responsible for the coloration of the red petals in Lycoris. In addition, we mapped the relationships between genes and metabolites and found that LrAP2/ERF16 is strongly linked to pelargonidin accumulation in Lycoris petals. These findings provide the basic conceptual groundwork for future research into the molecular underpinnings and regulation mechanisms of AP2/ERF TFs in anthocyanin accumulation and Lycoris floral development.
Collapse
Affiliation(s)
- Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Lin Z, He Z, Ye D, Deng H, Lin L, Wang J, Lv X, Deng Q, Luo X, Liang D, Xia H. Genome-wide identification of the AcMADS-box family and functional validation of AcMADS32 involved in carotenoid biosynthesis in Actinidia. FRONTIERS IN PLANT SCIENCE 2023; 14:1159942. [PMID: 37404538 PMCID: PMC10315656 DOI: 10.3389/fpls.2023.1159942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
MADS-box is a large transcription factor family in plants and plays a crucial role in various plant developmental processes; however, it has not been systematically analyzed in kiwifruit. In the present study, 74 AcMADS genes were identified in the Red5 kiwifruit genome, including 17 type-I and 57 type-II members according to the conserved domains. The AcMADS genes were randomly distributed across 25 chromosomes and were predicted to be mostly located in the nucleus. A total of 33 fragmental duplications were detected in the AcMADS genes, which might be the main force driving the family expansion. Many hormone-associated cis-acting elements were detected in the promoter region. Expression profile analysis showed that AcMADS members had tissue specificity and different responses to dark, low temperature, drought, and salt stress. Two genes in the AG group, AcMADS32 and AcMADS48, had high expression levels during fruit development, and the role of AcMADS32 was further verified by stable overexpression in kiwifruit seedlings. The content of α-carotene and the ratio of zeaxanthin/β-carotene was increased in transgenic kiwifruit seedlings, and the expression level of AcBCH1/2 was significantly increased, suggesting that AcMADS32 plays an important role in regulating carotenoid accumulation. These results have enriched our understanding of the MADS-box gene family and laid a foundation for further research of the functions of its members during kiwifruit development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hui Xia
- *Correspondence: Dong Liang, ; Hui Xia,
| |
Collapse
|
8
|
Cai J, Jia R, Jiang Y, Fu J, Dong T, Deng J, Zhang L. Functional verification of the JmLFY gene associated with the flowering of Juglans mandshurica Maxim. PeerJ 2023; 11:e14938. [PMID: 36908820 PMCID: PMC10000305 DOI: 10.7717/peerj.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In this study, a pBI121-JmLFY plant expression vector was constructed on the basis of obtaining the full-length sequence of the JmLFY gene from Juglans mandshurica, which was then used for genetic transformation via Agrobacterium inflorescence infection using wild-type Arabidopsis thaliana and lfy mutants as transgenic receptors. Seeds of positive A. thaliana plants with high expression of JmLFY were collected and sowed till the homozygous T3 regeneration plants were obtained. Then the expression of flowering-related genes (AtAP1, AtSOC1, AtFT and AtPI) in T3 generation plants were analyzed and the results showed that JmLFY gene overexpression promoted the expression of flowering-related genes and resulted in earlier flowering in A. thaliana. The A. thaliana plants of JmLFY-transformed and JmLFY-transformed lfy mutants appeared shorter leaves, longer fruit pods, and fewer cauline leaves than those of wild-type and the lfy mutants plants, respectively. In addition, some secondary branches in the transgenic plants converted into inflorescences, which indicated that the overexpression of JmLFY promoted the transition from vegetative growth to reproductive growth, and compensate the phenotypic defects of lfy mutant partially. The results provides a scientific reference for formulating reasonable genetic improvement strategies such as shortening childhood, improving yield and quality, and breeding desirable varieties, which have important guiding significance in production.
Collapse
Affiliation(s)
- Jiayou Cai
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Ruoxue Jia
- Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ying Jiang
- Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jingqi Fu
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Tianyi Dong
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Jifeng Deng
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Lijie Zhang
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Wang J, Ding J. Molecular mechanisms of flowering phenology in trees. FORESTRY RESEARCH 2023; 3:2. [PMID: 39526261 PMCID: PMC11524233 DOI: 10.48130/fr-2023-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/26/2022] [Indexed: 11/16/2024]
Abstract
Flower initiation is a phenological developmental process strictly regulated in all flowering plants. Studies in Arabidopsis thaliana, a model plant organism in plant biology and genetics, and major cereal crops have provided fundamental knowledge and understanding of the underlying molecular mechanisms and regulation in annuals. However, this flowering process and underly molecular mechanisms in perennials are much more complicated than those in annuals and remain poorly understood and documented. In recent years, the increasing availability of perennial plant genomes and advances in biotechnology have allowed the identification and characterization of flowering-associated gene orthologs in perennials. In this review, we compared and summarized the recent progress in regulation of flowering time in perennial trees, with an emphasis on the perennial-specific regulatory mechanisms. Pleiotropic effects on tree growth habits such as juvenility, seasonal activity-dormancy growth, and the applications of tree flowering phenology are discussed.
Collapse
Affiliation(s)
- Jun Wang
- College of Horticulture and Forestry, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihua Ding
- College of Horticulture and Forestry, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Xie XJ, He XH, Yu HX, Fan ZY, Liu Y, Mo X, Xia LM, Zhu JW, Zhang YL, Luo C. Ectopic expression of two CAULIFLOWER genes from mango caused early flowering in Arabidopsis. Gene 2023; 851:146931. [DOI: 10.1016/j.gene.2022.146931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
11
|
Li X, Ping A, Qi X, Li M, Hou L. Cloning, expression and functional analysis of the SOC1 homologous gene in pak choi ( Brassica rapa ssp. Chinensis makino). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2134823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Xuan Li
- Department of Vegetable, College of Horticulture, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taigu, P.R. China
| | - Amin Ping
- Department of Vegetable, College of Horticulture, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taigu, P.R. China
| | - Xianhui Qi
- Department of Vegetable, College of Horticulture, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taigu, P.R. China
| | - Meilan Li
- Department of Vegetable, College of Horticulture, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taigu, P.R. China
| | - Leiping Hou
- Department of Vegetable, College of Horticulture, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taigu, P.R. China
| |
Collapse
|
12
|
Yuan X, Quan S, Liu J, Guo C, Zhang Z, Kang C, Niu J. Evolution of the PEBP gene family in Juglandaceae and their regulation of flowering pathway under the synergistic effect of JrCO and JrNF-Y proteins. Int J Biol Macromol 2022; 223:202-212. [PMID: 36347378 DOI: 10.1016/j.ijbiomac.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Phosphatidyl ethanolamine-binding protein (PEBP) has a conserved PEBP domain and plays an important role in regulating the flowering time and growth of angiosperms. To understand the evolution of PEBP family genes in walnut family and the mechanism of regulating flowering in photoperiod pathway, 53 genes with PEBP domain were identified from 5 Juglandaceae plants. The PEBP gene family of Juglandaceae can be divided into four subgroups, FT-like, TFL-like, MFT-like and PEBP-like subgroups. These genes all show very high homology for motifs and gene structure in Juglandaceae. In addition, the results of gene replication and collinearity analysis showed that the evolution of PEBP genes was mainly purified and selected, and segmental repetition was the main driving force for the evolution of PEBP gene family in walnut family. We found that PEBP gene family played an important role in female flower bud differentiation, and most JrPEBP genes were highly expressed in leaf bud and female flower bud by qRT-PCR. In Arabidopsis, AtCO can not only directly bind to CORE2, but also interact with NF-Y complex to positively regulate the expression of AtFT gene. In this study, we proved that JrCO (the lineal homologue of AtCO) could not directly regulate the expression of JrFT gene, but could enhance the binding of JrNF-YB4/6 protein to the promoter of JrFT gene by forming a heteropolymer with NF-YB4/NF-YB6. We also confirmed that JrNF-YC1/3/7, JrNF-YB4/6 and JrCO can form a trimer structure similar to AtNF-YB-YC-CO of Arabidopsis, and then bind to the promoter of JrFT gene to promote the transcription of JrFT gene. In a word, through identification and analysis of PEBP gene family in Juglandaceae and study on the mechanism of photoperiod pathway regulating flowering in walnut, we have found that nuclear transcription factor NF-YB/YC plays a more important role in the trimer structure of NF-YB-YC-CO in walnut species. Our study has further perfected the flowering regulatory network of walnut species.
Collapse
Affiliation(s)
- Xing Yuan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Jinming Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Caihua Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Zhongrong Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Chao Kang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
13
|
Shemesh-Mayer E, Faigenboim A, Ben Michael TE, Kamenetsky-Goldstein R. Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic. Int J Mol Sci 2022; 23:ijms232213876. [PMID: 36430354 PMCID: PMC9698152 DOI: 10.3390/ijms232213876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 the huge genome of garlic was fully sequenced. We provide conjoint genomic and transcriptome analysis of the regulatory network in flowering garlic genotypes. The genome analysis revealed phosphatidylethanolamine-binding proteins (PEBP) and LEAFY (LFY) genes that were not found at the transcriptome level. Functions of TFL-like genes were reduced and replaced by FT-like homologs, whereas homologs of MFT-like genes were not found. The discovery of three sequences of LFY-like genes in the garlic genome and confirmation of their alternative splicing suggest their role in garlic florogenesis. It is not yet clear whether AsLFY1 acts alone as the "pioneer transcription factor" or AsLFY2 also provides these functions. The presence of several orthologs of flowering genes that differ in their expression and co-expression network advocates ongoing evolution in the garlic genome and diversification of gene functions. We propose that the process of fertility deprivation in garlic cultivars is based on the loss of transcriptional functions of the specific genes.
Collapse
|
14
|
Jiang Q, Wang Z, Hu G, Yao X. Genome-wide identification and characterization of AP2/ERF gene superfamily during flower development in Actinidia eriantha. BMC Genomics 2022; 23:650. [PMID: 36100898 PMCID: PMC9469511 DOI: 10.1186/s12864-022-08871-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As one of the largest transcription factor families in plants, AP2/ERF gene superfamily plays important roles in plant growth, development, fruit ripening and biotic and abiotic stress responses. Despite the great progress has been made in kiwifruit genomic studies, little research has been conducted on the AP2/ERF genes of kiwifruit. The increasing kiwifruit genome resources allowed us to reveal the tissue expression profiles of AP2/ERF genes in kiwifruit on a genome-wide basis. RESULTS In present study, a total of 158 AP2/ERF genes in A. eriantha were identified. All genes can be mapped on the 29 chromosomes. Phylogenetic analysis divided them into four main subfamilies based on the complete protein sequences. Additionally, our results revealed that the same subfamilies contained similar gene structures and conserved motifs. Ka/Ks calculation indicated that AP2/ERF gene family was undergoing a strong purifying selection and the evolutionary rates were slow. RNA-seq showed that the AP2/ERF genes were expressed differently in different flower development stages and 56 genes were considered as DEGs among three contrasts. Moreover, qRT-PCR suggested partial genes showed significant expressions as well, suggesting they could be key regulators in flower development in A. eriantha. In addition, two genes (AeAP2/ERF061, AeAP2/ERF067) had abundant transcription level based on transcriptomes, implying that they may play a crucial role in plant flower development regulation and flower tissue forming. CONCLUSIONS We identified AP2/ERF genes and demonstrated their gene structures, conserved motifs, and phylogeny relationships of AP2/ERF genes in two related species of kiwifruit, A. eriantha and A. chinensis, and their potential roles in flower development in A. eriantha. Such information would lay the foundation for further functional identification of AP2/ERF genes involved in kiwifruit flower development.
Collapse
Affiliation(s)
- Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guangming Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
15
|
Identification and Comparative Analysis of Genes and MicroRNAs Involved in the Floral Transition of the Xinjiang Early-Flowering Walnut (Juglans regia L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For tree crops, shortening the juvenile phase is a vital strategy to advance fruit bearing and enhance the breeding efficiency. Walnut (Juglans regia L.) seedlings usually take at least eight to 10 years to flower, but early-flowering (EF) types can flower one or two years after planting. In this study, RNA sequencing (RNA-Seq) and microRNA sequencing (miRNA-Seq) were used for a transcriptome-wide analysis of gene and miRNA expression in hybrids of the Xinjiang EF walnut variety ‘Xinwen 81’ and later-flowering (LF) walnut. Based on a high-quality chromosome-scale reference genome, a total of 3009 differentially expressed genes (DEGs) were identified, of which 933 were upregulated (accounting for 31%) and 2076 were downregulated (accounting for 69%). DEGs were functionally annotated, and the flowering-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and LEAFY (LFY) showed remarkable upregulation in EF compared with in the LF walnut. In addition, miRNAs associated with floral transition were screened as candidates for flowering time regulation in the walnut. This work provides new insights into walnut floral transition, which may ultimately contribute to genetic improvement of the walnut.
Collapse
|
16
|
Zhao J, Shi M, Yu J, Guo C. SPL9 mediates freezing tolerance by directly regulating the expression of CBF2 in Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:59. [PMID: 35109794 PMCID: PMC8809014 DOI: 10.1186/s12870-022-03445-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/26/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Freezing stress inhibits plant development and causes significant damage to plants. Plants therefore have evolved a large amount of sophisticated mechanisms to counteract freezing stress by adjusting their growth and development correspondingly. Plant ontogenetic defense against drought, high salt, and heat stresses, has been extensively studied. However, whether the freezing tolerance is associated with ontogenetic development and how the freezing signals are delivered remain unclear. RESULTS In this study, we found that the freezing tolerance was increased with plant age at the vegetative stage. The expressions of microRNA156 (miR156) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9), playing roles in regulation of ontogenetic development, were induced by cold stress. Overexpression of SPL9 (rSPL9) promoted the expression of C-REPEAT BINDING FACTOR 2 (CBF2) and hereafter enhanced the freezing tolerance. Genetic analysis indicated that the effect of rSPL9 on freezing tolerance is partially restored by cbf2 mutant. Further analysis confirmed that SPL9 directly binds to the promoter of CBF2 to activate the expression of CBF2, and thereafter increased the freezing tolerance. CONCLUSIONS Therefore, our study uncovers a new role of SPL9 in fine-tuning CBF2 expression and thus mediating freezing tolerance in plants, and implies a role of miR156-SPL pathway in balancing the vegetative development and freezing response in Arabidopsis.
Collapse
Affiliation(s)
- Junli Zhao
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Min Shi
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Jing Yu
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
17
|
Ma K, Luo X, Han L, Zhao Y, Mamat A, Li N, Mei C, Yan P, Zhang R, Hu J, Wang J. Transcriptome profiling based on Illumina- and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS One 2021; 16:e0260017. [PMID: 34793486 PMCID: PMC8601540 DOI: 10.1371/journal.pone.0260017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Flower bud development is a defining feature of walnut, which contributes to the kernel yield, yield stability, fruit quality and commodity value. However, little is known about the mechanism of the flower bud development in walnut. Here, the stages of walnut female flower bud development were divided into five period (P01-05) by using histological observation. They were further studied through PacBio Iso-Seq and RNA-seq analysis. Accordingly, we obtained 52,875 full-length transcripts, where 4,579 were new transcripts, 3,065 were novel genes, 1,437 were consensus lncRNAs and 20,813 were alternatively spliced isoforms. These transcripts greatly improved the current genome annotation and enhanced our understanding of the walnut transcriptome. Next, RNA sequencing of female flower buds at five periods revealed that circadian rhythm-plant was commonly enriched along with the flower bud developmental gradient. A total of 14 differentially expressed genes (DEGs) were identified, and six of them were confirmed by real-time quantitative analysis. Additionally, six and two differentially expressed clock genes were detected to be regulated by AS events and lncRNAs, respectively. All these detected plant circadian genes form a complex interconnected network to regulate the flower bud development. Thus, investigation of key genes associated with the circadian clock could clarify the process of flower bud development in walnut.
Collapse
Affiliation(s)
- Kai Ma
- College of Horticulture, China Agricultural University, Beijing, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiang Luo
- State Key Laboratory of Crop Stress Adaption and Improvement, Henan University, Kaifeng, China
| | - Liqun Han
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuang Mei
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Peng Yan
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Rui Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, China
- * E-mail: (JH); (JW)
| | - Jixun Wang
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail: (JH); (JW)
| |
Collapse
|