1
|
Bhattacharya J, Nitnavare RB, Bhatnagar-Mathur P, Reddy PS. Cytoplasmic male sterility-based hybrids: mechanistic insights. PLANTA 2024; 260:100. [PMID: 39302508 DOI: 10.1007/s00425-024-04532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop. The development of hybrids for achieving heterosis has been well-studied and proven to be robust and efficient. Cytoplasmic male sterility (CMS) has been explored extensively in the production of hybrids. The underlying mechanisms of CMS include the role of cytotoxic proteins, PCD of tapetal cells, and improper RNA editing of restoration factors. On the other hand, the restoration of fertility is caused by the presence of restorer-of-fertility (Rf) genes or restorer genes, which inhibit the effects of sterility-causing genes. The interaction between mitochondria and the nuclear genome is crucial for several regulatory pathways, as observed in the CMS-Rf system and occurs at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These CMS-Rf mechanisms have been validated in several crop systems. This review aims to summarize the nucleo-mitochondrial interaction mechanism of the CMS-Rf system. It also sheds light on biotechnological interventions, such as genetic engineering and genome editing, to achieve CMS-based hybrids.
Collapse
Affiliation(s)
- Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Rahul B Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, LE12 5RD, UK
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory of United Nation, International Atomic Energy Agency, 1400, Vienna, Austria.
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
2
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Zhang J, Zhang L, Liang D, Yang Y, Geng B, Jing P, Qu Y, Huang J. ROS accumulation-induced tapetal PCD timing changes leads to microspore abortion in cotton CMS lines. BMC PLANT BIOLOGY 2023; 23:311. [PMID: 37308826 DOI: 10.1186/s12870-023-04317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is the basis of heterosis exploitation. CMS has been used to hybrid production in cotton, but its molecular mechanism remains unclear. CMS is associated with advanced or delayed tapetal programmed cell death (PCD), and reactive oxygen species (ROS) may mediate this process. In this study, we obtained Jin A and Yamian A, two CMS lines with different cytoplasmic sources. RESULTS Compared with maintainer Jin B, Jin A anthers showed advanced tapetal PCD with DNA fragmentation, producing excessive ROS which accumulated around the cell membrane, intercellular space and mitochondrial membrane. The activities of peroxidase (POD) and catalase (CAT) enzymes which can scavenge ROS were significantly decreased. However, Yamian A tapetal PCD was delayed with lower ROS content, and the activities of superoxide dismutase (SOD) and POD were higher than its maintainer. These differences in ROS scavenging enzyme activities may be caused by isoenzyme gene expressions. In addition, we found the excess ROS generated in Jin A mitochondria and ROS overflow from complex III might be the source in parallel with the reduction of ATP content. CONCLUSION ROS accumulation or abrogation were mainly caused by the joint action of ROS generation and scavenging enzyme activities transformation, which led to the abnormal progression of tapetal PCD, affected the development of microspores, and eventually contributed to male sterility. In Jin A, tapetal PCD in advance might be caused by mitochondrial ROS overproduction, accompanied by energy deficiency. The above studies will provide new insights into the cotton CMS and guide the follow-up research ideas.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dong Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yujie Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Biao Geng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Panpan Jing
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
4
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Wang H, Cheng Q, Zhai Z, Cui X, Li M, Ye R, Sun L, Shen H. Transcriptomic and Proteomic Analyses of Celery Cytoplasmic Male Sterile Line and Its Maintainer Line. Int J Mol Sci 2023; 24:ijms24044194. [PMID: 36835607 PMCID: PMC9967367 DOI: 10.3390/ijms24044194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 02/22/2023] Open
Abstract
Male sterility is a common phenomenon in the plant kingdom and based on the organelles harboring the male-sterility genes, it can be classified into the genic male sterility (GMS) and the cytoplasmic male sterility (CMS). In every generation, CMS can generate 100% male-sterile population, which is very important for the breeders to take advantage of the heterosis and for the seed producers to guarantee the seed purity. Celery is a cross-pollinated plant with the compound umbel type of inflorescence which carries hundreds of small flowers. These characteristics make CMS the only option to produce the commercial hybrid celery seeds. In this study, transcriptomic and proteomic analyses were performed to identify genes and proteins that are associated with celery CMS. A total of 1255 differentially expressed genes (DEGs) and 89 differentially expressed proteins (DEPs) were identified between the CMS and its maintainer line, then 25 genes were found to differentially expressed at both the transcript and protein levels. Ten DEGs involved in the fleece layer and outer pollen wall development were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of which were down-regulated in the sterile line W99A. These DEGs and DEPs were mainly enriched in the pathways of "phenylpropanoid/sporopollenin synthesis/metabolism", "energy metabolism", "redox enzyme activity" and "redox processes". Results obtained in this study laid a foundation for the future investigation of mechanisms of pollen development as well as the reasons for the CMS in celery.
Collapse
Affiliation(s)
- Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ziqi Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Xiangyun Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mingxuan Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ruiquan Ye
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| |
Collapse
|
6
|
Wang D, Wang Y, Zhang L, Yang Y, Wu Q, Hu G, Wang W, Li J, Huang Z. Integrated transcriptomic and proteomic analysis of a cytoplasmic male sterility line and associated maintainer line in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1098125. [PMID: 36818857 PMCID: PMC9933710 DOI: 10.3389/fpls.2023.1098125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Heterosis is a critical phenomenon in crop improvement. Cytoplasmic male sterility (CMS) and Restorer gene (Rf) systems are essential components for heterosis-based breeding. However, the molecular mechanism underlying CMS remains largely unclear in soybean. METHODS We integrated a morphological investigation with comparative analyses of transcriptomic and proteomic changes in pollen from the CMS line W931A and its maintainer line, W931B, at the uninucleate microspore (UM) and binucleate pollen (BP) stages. RESULTS Compared to W931B, which had healthy, oval pollen grains, W931A showed shrunken or degraded pollen grains with an irregularly thickened endothelium and decreased starch accumulation. Transcriptomic comparisons revealed a total of 865 differentially expressed genes (DEGs) in W931A over the two stages. These genes were primarily associated with pentose and glucuronate interconversions, sphingolipid metabolism, and glycerolipid metabolism. Proteomic analysis revealed 343 differentially expressed proteins (DEPs), which were mainly involved in carbon metabolism, glycolysis/gluconeogenesis, and nitrogen metabolism. Consistently, Gene Ontology (GO) biological process terms related to pollen development were enriched among DEGs at the UM and BP stages. Notably, four genes with demonstrated roles in pollen development were differentially expressed, including AGAMOUS-LIKE 104, PROTEIN-TYROSINE-PHOSPHATASE 1, and PHOSPHOLIPASE A2. A total of 53 genes and the corresponding proteins were differentially expressed in W931A at both the UM and BP stages, and many of these were pectinesterases, polygalacturonases, peroxidases, and ATPases. DISCUSSION The results of this study suggest that pollen development in W931A is likely regulated through suppression of the identified DEGs and DEPs. These findings increase our understanding of the molecular mechanism underlying CMS in soybean, aiding future research into soybean fertility and promoting the efficient use of heterosis for soybean improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiekun Li
- *Correspondence: Zhiping Huang, ; Jiekun Li,
| | | |
Collapse
|
7
|
Song X, Hou C, Yang Y, Ai L, Xia Y, Wang G, Yi H, Xiong Z. Effects of different carbon sources on metabolic profiles of carbohydrates in Streptococcus thermophilus during fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4820-4829. [PMID: 35229301 DOI: 10.1002/jsfa.11845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Streptococcus thermophilus is a major starter used in the dairy industry and it could improve the flavor of fermented products. It is necessary to improve biomass of S. thermophilus for its application and industrialization. The utilization of carbon sources directly affects the biomass of S. thermophilus. Therefore, the carbohydrate metabolism of S. thermophilus should be investigated. RESULTS In the present study, metabolic parameters and gene expression of S. thermophilus S-3 with different carbon sources were investigated. The physicochemical results showed that S. thermophilus S-3 had high lactose utilization. Transcriptome analysis found that approximately 104 genes were annotated onto 15 carbohydrate metabolic pathways, of which 15 unigenes were involved in the phosphotransferase system and 75 were involved in the ATP-binding cassette transporter system. In addition, 171 differentially expressed genes related to carbohydrate metabolism were identified. Expression of the galactose metabolism genes lacSZ and galKTEM increased significantly from the lag phase to the mid-exponential growth phase as a result of the global regulator protein, catabolite control protein A (CcpA). The high expression of galK in the mid- to late- phases indicated that the metabolite galactose is re-transported for intracellular utilization. CcpA regulation may also induce high expressions of glycolytic pathway regulated-genes related to lactose utilization, including ldh, fba, eno, pfkA, bglA, pgi, pgm and pyk, producing optimal glycolytic flux and S. thermophilus S-3 growth. CONCLUSION The present study provides new insights into the carbon metabolism regulation and provide theoretical support for high-density fermentation of S. thermophilus S-3. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengjie Hou
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liangzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Xu F, Yang X, Zhao N, Hu Z, Mackenzie SA, Zhang M, Yang J. Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops. HORTICULTURE RESEARCH 2022; 9:uhab039. [PMID: 35039865 PMCID: PMC8807945 DOI: 10.1093/hr/uhab039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/18/2022] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
Cytoplasmic male sterility (CMS) has long been used to economically produce hybrids that harness growth vigor through heterosis. Yet, how CMS systems operate within commercially viable seed production strategies in various economically important vegetable crops, and their underlying molecular mechanisms, are often overlooked details that could expand the utility of CMS as a cost-effective and stable system. We provide here an update on the nature of cytoplasmic-nuclear interplay for pollen sterility and fertility transitions in vegetable crops, based on the discovery of components of nuclear fertility restoration and reversion determinants. Within plant CMS systems, pollen fertility can be rescued by the introduction of nuclear fertility restorer genes (Rfs), which operate by varied mechanisms to countermand the sterility phenotype. By understanding these systems, it is now becoming feasible to achieve fertility restoration with Rfs designed for programmable CMS-associated open reading frames (ORFs). Likewise, new opportunities exist for targeted disruption of CMS-associated ORFs by mito-TALENs in crops where natural Rfs have not been readily identified, providing an alternative approach to recovering fertility of cytoplasmic male sterile lines in crops. Recent findings show that facultative gynodioecy, as a reproductive strategy, can coordinate the sterility and fertility transition in response to environmental cues and/or metabolic signals that reflect ecological conditions of reproductive isolation. This information is important to devising future systems that are more inherently stable.
Collapse
Affiliation(s)
- Fengyuan Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou,
Zhejiang, 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou,
Zhejiang, 310058, China
| |
Collapse
|
9
|
Bohra A, Prasad G, Rathore A, Saxena RK, Naik Sj S, Pareek S, Jha R, Pazhamala L, Datta D, Pandey G, Tiwari A, Maurya AK, Soren KR, Akram M, Varshney RK, Singh NP. Global gene expression analysis of pigeonpea with male sterility conditioned by A 2 cytoplasm. THE PLANT GENOME 2021; 14:e20132. [PMID: 34494714 DOI: 10.1002/tpg2.20132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Cytoplasmic male sterility(CMS), a maternally inherited trait, provides a promising means to harness yield gains associated with hybrid vigor. In pigeonpea [Cajanus cajan (L.) Huth], nine types of sterility-inducing cytoplasm have been reported, of which A2 and A4 have been successfully deployed in hybrid breeding. Unfortunately, molecular mechanism of the CMS trait is poorly understood because of limited research invested. More recently, an association between a mitochondrial gene (nad7) and A4 -CMS has been demonstrated in pigeonpea; however, the mechanism underlying A2 -CMS still remains obscure. The current investigation aimed to analyze the differences in A2 -CMS line (ICPL 88039A) and its isogenic maintainer line (ICPL 88039B) at transcriptome level using next-generation sequencing. Gene expression profiling uncovered a set of 505 genes that showed altered expression in response to CMS, of which, 412 genes were upregulated while 93 were downregulated in the fertile maintainer line vs. the CMS line. Further, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses revealed association of CMS in pigeonpea with four major pathways: glucose and lipid metabolism, ATP production, pollen development and pollen tube growth, and reactive oxygen species (ROS) scavenging. Patterns of digital gene expression were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) of six candidate genes. This study elucidates candidate genes and metabolic pathways having potential associations with pollen development and male sterility in pigeonpea A2 -CMS. New insights on molecular mechanism of CMS trait in pigeonpea will be helpful to accelerate heterosis utilization for enhancing productivity gains in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Gandam Prasad
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Satheesh Naik Sj
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Shalini Pareek
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Lekha Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dibendu Datta
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Gaurav Pandey
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Abha Tiwari
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Mohd Akram
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Narendra P Singh
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| |
Collapse
|
10
|
Ma C, Zhang Q, Lv J, Qiao K, Fan S, Ma Q, Zhang C. Genome-Wide Analysis of the Phospholipase D Family in Five Cotton Species, and Potential Role of GhPLD2 in Fiber Development and Anther Dehiscence. FRONTIERS IN PLANT SCIENCE 2021; 12:728025. [PMID: 34659294 PMCID: PMC8517146 DOI: 10.3389/fpls.2021.728025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Phospholipase D (PLD) and its hydrolysis product phosphatidic acid play an important role in the regulation of several cellular processes, including root growth, pollen tube elongation, and microtubule reorganization. Here, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of PLDs in five species of cotton. The results of the transcriptomic analysis suggested that the evaluated PLD genes showed high expression levels in anther tissue and during the fiber initiation and elongation periods. Quantitative real-time polymerase chain reaction showed differential expression of GhPLD genes in the anthers of photoperiod sensitive male sterility mutant 5 (psm5). Previous research on multiple stable quantitative trait loci also suggests the role of PLD genes in the fiber development. Further analyses showed that GhPLD2 protein is localized to the plasma membrane. The virus-induced gene silencing of GhPLD2 in cotton seedlings repressed its expression by 40-70%, which led to a reduction in reactive oxygen species (ROS) levels, 22% anther indehiscence, and disrupted fiber initiation and elongation. Thus, we inferred that GhPLD2 may promote ROS production, which, in turn, may regulate anther dehiscence and fiber development.
Collapse
Affiliation(s)
- Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Qian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| |
Collapse
|
11
|
Hu J, Lan M, Xu X, Yang H, Zhang L, Lv F, Yang H, Yang D, Li C, He J. Transcriptome Profiling Reveals Molecular Changes during Flower Development between Male Sterile and Fertile Chinese Cabbage ( Brassica rapa ssp. pekinensis) Lines. Life (Basel) 2021; 11:life11060525. [PMID: 34199781 PMCID: PMC8227754 DOI: 10.3390/life11060525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Male sterility exists widely in flowering plants and is used as a fascinating tool by breeders for creating hybrid varieties. Herein, stamen samples from male sterile CCR20000 and male fertile CCR20001 lines during two developmental stages were employed to elucidate the molecular changes during flower development in fertile and sterile Chinese cabbage lines. RNA-seq revealed weak transcriptional activity in the sterile line, which may have led to the abnormal stamen development. The differentially expressed genes were enriched in plant hormone, carbon metabolism, and biosynthesis of amino acid pathways. Important genes with opposite patterns of regulation between the two lines have been associated with the male sterility trait. Members of the transcription factor families such as AP2, MYB, bHLH, and WRKY were highly active in the regulation of structural genes involved in pollen fertility. This study generated important genomic information to support the exploitation of the male sterility trait in Chinese cabbage breeding programs.
Collapse
Affiliation(s)
- Jingfeng Hu
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Mei Lan
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Xuezhong Xu
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Hongli Yang
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Liqin Zhang
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Fengxian Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (F.L.); (D.Y.); (C.L.)
| | - Huiju Yang
- Lijiang Teachers College, Lijiang 674100, China;
| | - Ding Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (F.L.); (D.Y.); (C.L.)
| | - Chongjuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (F.L.); (D.Y.); (C.L.)
| | - Jiangming He
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
- Correspondence:
| |
Collapse
|
12
|
Liu C, Fu W, Xu W, Liu X, Wang S. Genome-wide transcriptome analysis of microspore abortion initiation in radish (Raphanus sativus L.). Gene 2021; 794:145753. [PMID: 34090961 DOI: 10.1016/j.gene.2021.145753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The use of male sterile lines is one of the ideal means in hybrid seed production. Despite the widespread application of Ogura cytoplasmic male sterile (CMS) lines, the molecular mechanisms remain largely unknown. In this study, histological analyses of floral buds from a CMS line 40MA and its corresponding maintainer line 40MB were conducted, which indicate that microspore abortion was initiated shortly after the tetrad stage. RNA sequencing was performed to analyze the transcriptomes of floral buds from the tetrad stage and the early microspore stages of these two lines. More than 39 million clean reads were generated for each library, and the portions mapped to the reference genome were all above 70.60%. To further analyze the differentially expressed genes (DEGs), the samples were grouped into four pairs, of which the pair of 40MA and 40MB at the early microspore stage showed the most DEGs (5100 members). According to the abnormal appearance of the tapetum cells in 40MA, a series of tapetum development related genes were screened and analyzed. In addition, a total of 623 genes with differential expressions in the tetrad stage, but not in the early microspore stage between the two lines were filtered as the microspore abortion initiation related candidates. Twelve genes were selected to validate the sequencing result by quantitative RT-PCR. In this study, we identified a number of candidate genes involved in the initiation of microspore degeneration, which may provide a new perspective to unravel the molecular mechanism of Ogura CMS.
Collapse
Affiliation(s)
- Chen Liu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weimin Fu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenling Xu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianxian Liu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shufen Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|