1
|
Zhang J, Wang Y, Zhang S, Zhang S, Liu W, Wang N, Fang H, Zhang Z, Chen X. ABIOTIC STRESS GENE 1 mediates aroma volatiles accumulation by activating MdLOX1a in apple. HORTICULTURE RESEARCH 2024; 11:uhae215. [PMID: 39391012 PMCID: PMC11464680 DOI: 10.1093/hr/uhae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/23/2024] [Indexed: 10/12/2024]
Abstract
Fruit aroma is an important organoleptic quality, which influences consumer preference and market competitiveness. Aroma compound synthesis pathways in plants have been widely identified, among the lipoxygenase pathway is crucial for fatty acid catabolism to form esters in apple. However, the regulatory mechanism of this pathway remains elusive. In this study, linear regression analysis and transgene verification revealed that the lipoxygenase MdLOX1a is involved in ester biosynthesis. Yeast one-hybrid library screening indicated that a protein, MdASG1 (ABIOTIC STRESS GENE 1), was a positive regulator of MdLOX1a and ester production based on yeast one-hybrid and dual-luciferase assays, as well as correlation analysis among eight different apple cultivars. Overexpression of MdASG1 in apple and tomato stimulated the lipoxygenase pathway and increased the fatty acid-derived volatile content, whereas the latter was decreased by MdASG1 silencing and CRISPR/Cas9 knockout. Furthermore, MdASG1 overexpression enhanced the salt-stress tolerance of tomato and apple 'Orin' calli accompanied by a higher content of fatty acid-derived volatiles compared to that of non-stressed transgenic tomato fruit, while MdASG1-Cas9 knockdown calli do not respond to salt stress and promote the biosynthesis of fatty acid-derived volatiles. Collectively, these findings indicate that MdASG1 activates MdLOX1a expression and participates in the lipoxygenase pathway, subsequently increasing the accumulation of aroma compounds, especially under moderate salt stress treatment. The results also provide insight into the theory for improving fruit aroma quality in adversity.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Yongxu Wang
- Shandong Institute of Pomology, Shandong Academy Agricultural Sciences, Tai’an, 271000, Shandong, China
| | - Susu Zhang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Shuhui Zhang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Wenjun Liu
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Xuesen Chen
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| |
Collapse
|
2
|
Lu X, Liu Z, Gao Y, Wang K, Sun S, Guo H, Tian W, Wang L, Li Z, Li L, Feng J, Wang D. Analysis of Aroma Characteristics of 'Binzi' and 'Xiangguo' Apple-Ancient Cultivars in China. Foods 2024; 13:2869. [PMID: 39335800 PMCID: PMC11431139 DOI: 10.3390/foods13182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
'Binzi' (BZ) (Malus domestica subsp. chinensis var. binzi Li Y.N.) and 'Xiangguo' (XG) (Malus domestica subsp. chinensis var. xiangguo Li Y.N.) are the ancient cultivars in China. The BZ fruits have a low-fragrant flavor on harvest day but a high-fragrant flavor after storage at room temperature, while the XG fruits have a stronger flavor when mature. 'Starking' (SK) and 'Golden Delicious' (GD) fruits have a rich flavor and are recognized by all countries in the world. However, information on the differences between ancient Chinese cultivars and Western apple cultivars in aroma compounds remains unknown. The apple fruits were collected for continuous two years. Aroma compounds in the skin and pulp of the fruits were detected at room temperature (20 ± 1 °C) during storage. The dynamics of VOCs in BZ and SK fruits were more similarly reflected in esters, while those of XG and GD fruits were reflected in aldehydes and alcohols. Ethyl 2-methylbutyrate, with an extremely low odor threshold, was the main source of typical apple flavor in SK, BZ, and XG fruits, while hexyl acetate was the source of the banana flavor in GD fruits. 6-methyl-5-hepten-2-one and β-damascenone were the important ketones produced in the later stage of storage, derived from the carotenoid metabolism pathway and providing a citrus and rose flavor to the four apple cultivars. SK had the highest number of characteristic aroma components, which were mainly derived from the amino acid metabolism pathway, providing fruits with a sweet and fruity flavor. Although the characteristic aroma components of GD were derived from the fatty acid metabolic pathway, the number of volatile esters was lower. Ethyl butyrate, derived from the saturated fatty acid metabolism, had the highest content in BZ, providing a pineapple flavor; the flavor of XG was mainly derived from ethyl 2-methylbutyrate, 6-methyl-5-hepten-2-one, and β-damascenone. Therefore, we suggest BZ and XG apples as the aroma-breeding material with which to enrich new cultivars' aroma components, derived from the fatty acid metabolism and carotenoid metabolism pathways, respectively.
Collapse
Affiliation(s)
- Xiang Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Zhao Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Simiao Sun
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Hanxin Guo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Wen Tian
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Lin Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Zichen Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Lianwen Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Jianrong Feng
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
| | - Dajiang Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| |
Collapse
|
3
|
Nazir MF, Lou J, Wang Y, Zou S, Huang H. Kiwifruit in the Omics Age: Advances in Genomics, Breeding, and Beyond. PLANTS (BASEL, SWITZERLAND) 2024; 13:2156. [PMID: 39124274 PMCID: PMC11313697 DOI: 10.3390/plants13152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The kiwifruit, Actinidia genus, has emerged as a nutritionally rich and economically significant crop with a history rooted in China. This review paper examines the global journey of the kiwifruit, its genetic diversity, and the role of advanced breeding techniques in its cultivation and improvement. The expansion of kiwifruit cultivation from China to New Zealand, Italy, Chile and beyond, driven by the development of new cultivars and improved agricultural practices, is discussed, highlighting the fruit's high content of vitamins C, E, and K. The genetic resources within the Actinidia genus are reviewed, with emphasis on the potential of this diversity in breeding programs. The review provides extensive coverage to the application of modern omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, which have revolutionized the understanding of the biology of kiwifruit and facilitated targeted breeding efforts. It examines both conventional breeding methods and modern approaches, like marker-assisted selection, genomic selection, mutation breeding, and the potential of CRISPR-Cas9 technology for precise trait enhancement. Special attention is paid to interspecific hybridization and cisgenesis as strategies for incorporating beneficial traits and developing superior kiwifruit varieties. This comprehensive synthesis not only sheds light on the current state of kiwifruit research and breeding, but also outlines the future directions and challenges in the field, underscoring the importance of integrating traditional and omics-based approaches to meet the demands of a changing global climate and market preferences.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Jinpeng Lou
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Yu Wang
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Shuaiyu Zou
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Hongwen Huang
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang L, Zheng X, Ye Z, Su M, Zhang X, Du J, Li X, Zhou H, Huan C. Transcriptome Co-Expression Network Analysis of Peach Fruit with Different Sugar Concentrations Reveals Key Regulators in Sugar Metabolism Involved in Cold Tolerance. Foods 2023; 12:foods12112244. [PMID: 37297487 DOI: 10.3390/foods12112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Peach fruits are known to be highly susceptible to chilling injury (CI) during low-temperature storage, which has been linked to the level of sugar concentration in the fruit. In order to better understand the relationship between sugar metabolism and CI, we conducted a study examining the concentration of sucrose, fructose, and glucose in peach fruit with different sugar concentrations and examined their relationship with CI. Through transcriptome sequencing, we screened the functional genes and transcription factors (TFs) involved in the sugar metabolism pathway that may cause CI in peach fruit. Our results identified five key functional genes (PpSS, PpINV, PpMGAM, PpFRK, and PpHXK) and eight TFs (PpMYB1/3, PpMYB-related1, PpWRKY4, PpbZIP1/2/3, and PpbHLH2) that are associated with sugar metabolism and CI development. The analysis of co-expression network mapping and binding site prediction identified the most likely associations between these TFs and functional genes. This study provides insights into the metabolic and molecular mechanisms regulating sugar changes in peach fruit with different sugar concentrations and presents potential targets for breeding high-sugar and cold-tolerant peach varieties.
Collapse
Affiliation(s)
- Lufan Wang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, China
| |
Collapse
|
5
|
Li R, Yan D, Tan C, Li C, Song M, Zhao Q, Yang Y, Yin W, Liu Z, Ren X, Liu C. Transcriptome and Metabolomics Integrated Analysis Reveals MdMYB94 Associated with Esters Biosynthesis in Apple ( Malus × domestica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7904-7920. [PMID: 37167631 DOI: 10.1021/acs.jafc.2c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Volatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.
Collapse
Affiliation(s)
- Rui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyan Tan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cen Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meijie Song
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaming Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijie Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Liu W, Ren W, Liu X, He L, Qin C, Wang P, Kong L, Li Y, Liu Y, Ma W. Identification and characterization of Dof genes in Cerasus humilis. FRONTIERS IN PLANT SCIENCE 2023; 14:1152685. [PMID: 37077646 PMCID: PMC10106723 DOI: 10.3389/fpls.2023.1152685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Introduction Dof genes encode plant-specific transcription factors, which regulate various biological processes such as growth, development, and secondary metabolite accumulation. Methods We conducted whole-genome analysis of Chinese dwarf cherry (Cerasus humilis) to identify ChDof genes and characterize the structure, motif composition, cis-acting elements, chromosomal distribution, and collinearity of these genes as well as the physical and chemical properties, amino acid sequences, and phylogenetic evolution of the encoded proteins. Results The results revealed the presence of 25 ChDof genes in C. humilis genome. All 25 ChDof genes could be divided into eight groups, and the members of the same group had similar motif arrangement and intron-exon structure. Promoter analysis showed that cis-acting elements responsive to abscisic acid, low temperature stress, and light were dominant. Transcriptome data revealed that most ChDof genes exhibited tissue-specific expression. Then, we performed by qRT-PCR to analyze the expression patterns of all 25 ChDof genes in fruit during storage. The results indicated that these genes exhibited different expression patterns, suggesting that they played an important role in fruit storage. Discussion The results of this study provide a basis for further investigation of the biological function of Dof genes in C. humilis fruit.
Collapse
Affiliation(s)
- Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Li
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Yunwei Liu
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Sharma N, Shivran M, Singh N, Dubey AK, Singh SK, Sharma N, Gupta R, Vittal H, Singh BP, Sevanthi AM, Singh NK. Differential gene expression associated with flower development of mango (Mangifera indica L.) varieties with different shelf-life. Gene Expr Patterns 2023; 47:119301. [PMID: 36526239 DOI: 10.1016/j.gep.2022.119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Mango (Mangifera indica L.) is one of the most important commercial fruit crop grown in many parts of the world. Major challenges affecting mango trade are short shelf-life, high susceptibility to chilling injury, post-harvest diseases and consumer demand for improved fruit quality. The objective of the present study was to reveal the key regulators present in bud and flower tissues during flower development stage, associated with fruit development and affect the shelf-life of the mango fruit. RNA-sequencing of contrasting genotypes having short and long shelf-life, was carried out. Comparative differential expression pathway studies of long shelf-life (Totapuri) and short shelf-life (Bombay Green) mango genotypes revealed a total of 177 highly differentially expressed genes. Out of 177 total genes, 101 genes from endoplasmic reticulum pathway and very few from gibberellins (3) and jasmonic acid (1) pathway were identified. Genes from endoplasmic reticulum pathway like hsp 90, SRC2, DFRA, CHS, BG3 and ASPG1 mainly up regulated in Bombay Green. Uniprotein B9R8D3 also shows up regulation in Bombay Green. Ethylene insensitive pathway gene EIL1 up regulated in Bombay Green. Gene CAD1 from phenylpropanoid pathway mainly up regulated in Bombay Green. A total of 4 SSRs and 227 SNPs were mined from these pathways specific to the shelf-life. Molecular studies of endoplasmic reticulum, phenylpropanoid, ethylene, polygalacturonase and hormone pathways at the time of bud and flower formation revealed key regulators that determine the shelf-life of mango fruit.
Collapse
Affiliation(s)
- Nimisha Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Shivran
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Narendra Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Kumar Dubey
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neha Sharma
- IILM Academy of Higher Learning, College of Engineering and Technology Greater, Noida, Uttar Pradesh, 201310, India
| | - Ruchi Gupta
- NGB Diagnostics Private Limited, Noida, UP, 201301, India
| | - Hatkari Vittal
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | |
Collapse
|
8
|
Lai R, Wu X, Feng X, Gao M, Long Y, Wu R, Cheng C, Chen Y. Identification and Characterization of Long Non-Coding RNAs: Implicating Insights into Their Regulatory Role in Kiwifruit Ripening and Softening during Low-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1070. [PMID: 36903929 PMCID: PMC10005093 DOI: 10.3390/plants12051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are crucial players regulating many biological processes in plants. However, limited knowledge is available regarding their roles in kiwifruit ripening and softening. In this study, using lncRNA-seq technology, 591 differentially expressed (DE) lncRNAs (DELs) and 3107 DE genes (DEGs) were identified from kiwifruit stored at 4 °C for 1, 2, and 3 weeks in comparison with non-treated control fruits. Of note, 645 DEGs were predicted to be targets of DELs (DEGTLs), including some DE protein-coding genes (such as β-amylase and pectinesterase). DEGTL-based GO enrichment analysis revealed that these genes were significantly enriched in cell wall modification and pectinesterase activity in 1 W vs. CK and 3 W vs. CK, which might be closely related to the fruit softening during low-temperature storage. Moreover, KEGG enrichment analysis revealed that DEGTLs were significantly associated with starch and sucrose metabolism. Our study revealed that lncRNAs play critical regulatory roles in kiwifruit ripening and softening under low-temperature storage, mainly by mediating the expression of starch and sucrose metabolism and cell wall modification related genes.
Collapse
Affiliation(s)
- Ruilian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaopei Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minxia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Long
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Rujian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yiting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
9
|
Wang Q, Gao F, Chen X, Wu W, Wang L, Shi J, Huang Y, Shen Y, Wu G, Guo J. Characterization of key aroma compounds and regulation mechanism of aroma formation in local Binzi (Malus pumila × Malus asiatica) fruit. BMC PLANT BIOLOGY 2022; 22:532. [PMID: 36380276 PMCID: PMC9664629 DOI: 10.1186/s12870-022-03896-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Volatile components are important secondary metabolites essential to fruit aroma quality, thus, in the past decades many studies have been extensively performed in clarifying fruit aroma formation. However, aroma components and biosynthesis in the fruit of Binzi (Malus pumila × Malus asiatica), an old local species with attractive aroma remain unknown. RESULTS We investigated two Binzi cultivars, 'Xiangbinzi' (here named high-fragrant Binzi, 'HFBZ') and 'Hulabin' (here named low-fragrant Binzi, 'LFBZ') by monitoring the variation of volatiles and their precursors by Gas Chromatography-Mass Spectrometer (GC-MS), as well as their related genes by RNA-seq during post-harvest ripening. We firstly confirmed that 'HFBZ' and 'LFBZ' fruit showed respiratory climacteric by detecting respiratory rate and ethylene emission during post-harvest; found that esters were the major aroma components in 'HFBZ' fruit, and hexyl 2-methylbutyrate was responsible for the 'fruity' note and most potent aroma component, followed by ethyl acetate, ethyl butanoate, (E)-2-hexenal, and 1-hexanol. Regarding aroma synthesis, fatty acid metabolism seemed to be more important than amino acid metabolism for aroma synthesis in 'HFBZ' fruit. Based on RNA-seq and quantitative reverse transcription PCR (RT-qPCR), LOX2a, LOX5a, ADH1, and AAT1 genes are pointed to the LOX pathway, which may play a vital role in the aroma formation of 'HFBZ' fruit. CONCLUSION Our study firstly investigated the aroma components and related genes of Binzi fruit, and provided an insight into the fragrant nature of Malus species.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Forestry, Henan Agricultural University, 450002, Zhengzhou, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 102206, Beijing, China
| | - Fan Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 102206, Beijing, China
| | - Xuexue Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 102206, Beijing, China
| | - Wenjiang Wu
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, China
| | - Lei Wang
- College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jiangli Shi
- College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Yun Huang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 102206, Beijing, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 102206, Beijing, China
| | - Guoliang Wu
- College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Jiaxuan Guo
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
10
|
Souleyre EJF, Nieuwenhuizen NJ, Wang MY, Winz RA, Matich AJ, Ileperuma NR, Tang H, Baldwin SJ, Wang T, List BW, Hoeata KA, Popowski EA, Atkinson RG. Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit. PLANT PHYSIOLOGY 2022; 190:1100-1116. [PMID: 35916752 PMCID: PMC9516725 DOI: 10.1093/plphys/kiac316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Volatile esters are key compounds contributing to flavor intensity in commonly consumed fruits including apple (Malus domestica), strawberry (Fragaria spp.), and banana (Musa sapientum). In kiwifruit (Actinidia spp.), ethyl butanoate and other esters have been proposed to contribute fruity, sweet notes to commercial cultivars. Here, we investigated the genetic basis for ester production in Actinidia in an A. chinensis mapping population (AcMPO). A major quantitative trait loci for the production of multiple esters was identified at the high-flavor intensity (HiFI) locus on chromosome 20. This locus co-located with eight tandemly arrayed alcohol acyl transferase genes in the Red5 genome that were expressed in a ripening-specific fashion that corresponded with ester production. Biochemical characterization suggested two genes at the HiFI locus, alcohol acyl transferase 16-b/c (AT16-MPb/c), probably contributed most to the production of ethyl butanoate. A third gene, AT16-MPa, probably contributed more to hexyl butanoate and butyl hexanoate production, two esters that segregated in AcMPO. Sensory analysis of AcMPO indicated that fruit from segregating lines with high ester concentrations were more commonly described as being "fruity" as opposed to "beany". The downregulation of AT16-MPa-c by RNAi reduced ester production in ripe "Hort16A" fruit by >90%. Gas chromatography-olfactometry indicated the loss of the major "fruity" notes contributed by ethyl butanoate. A comparison of unimproved Actinidia germplasm with those of commercial cultivars indicated that the selection of fruit with high concentrations of alkyl esters (but not green note aldehydes) was probably an important selection trait in kiwifruit cultivation. Understanding ester production at the HiFI locus is a critical step toward maintaining and improving flavor intensity in kiwifruit.
Collapse
Affiliation(s)
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Robert A Winz
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Adam J Matich
- Plant and Food Research Ltd (PFR), Palmerston North 4442, New Zealand
| | - Nadeesha R Ileperuma
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Haidee Tang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | | | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Blake W List
- Plant and Food Research Ltd (PFR), Lincoln, 7608, New Zealand
| | | | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| |
Collapse
|
11
|
Zhou H, Zhu W, Wang X, Bian Y, Jiang Y, Li J, Wang L, Yin P, Deng XW, Xu D. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. THE NEW PHYTOLOGIST 2022; 233:373-389. [PMID: 34935148 DOI: 10.1111/nph.17618] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mediates various cellular and physiological processes in plants by targeting a large number of substrates for ubiquitination and degradation. In this study, we reveal that a substitution of Pro for Leu at amino acid position 409 in WRKY32 largely suppresses the short hypocotyls and expanded cotyledon phenotypes of cop1-6. WRKY32P409L promotes hypocotyl growth and inhibits the opening of cotyledons in Arabidopsis. Loss of WRKY32 function mutant seedlings display elongated hypocotyls, whereas overexpression of WRKY32 leads to shortened hypocotyls. WRKY32 directly associates with the promoter regions of HY5 to activate its transcription. COP1 interacts with and targets WRKY32 for ubiquitination and degradation in darkness. WRKY32P409L exhibits enhanced DNA binding ability and affects the expression of more genes compared with WRKY32 in Arabidopsis. Our results not only reveal the basic role for WRKY32 in promoting photomorphogenesis, but also provide insights into manipulating plant growth by engineering key components of light signaling.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Yuan Y, Zuo J, Zhang H, Li R, Yu M, Liu S. Integration of Transcriptome and Metabolome Provides New Insights to Flavonoids Biosynthesis in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:850090. [PMID: 35360302 PMCID: PMC8964182 DOI: 10.3389/fpls.2022.850090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium huoshanense is both a traditional herbal medicine and a plant of high ornamental and medicinal value. We used transcriptomics and metabolomics to investigate the effects of growth year on the secondary metabolites of D. huoshanense stems obtained from four different years of cultivation. In this study, a total of 428 differentially accumulated metabolites (DAMs) and 1802 differentially expressed genes (DEGs) were identified. The KEGG enrichment analysis of DEGs and DAMs revealed significant differences in "Flavonoid biosynthesis", "Phenylpropanoid biosynthesis" and "Flavone and flavonol biosynthesis". We summarize the biosynthesis pathway of flavonoids in D. huoshanense, providing new insights into the biosynthesis and regulation mechanisms of flavonoids in D. huoshanense. Additionally, we identified two candidate genes, FLS (LOC110107557) and F3'H (LOC110095936), which are highly involved in flavonoid biosynthesis pathway, by WGCNA analysis. The aim of this study is to investigate the effects of growth year on secondarily metabolites in the plant and provide a theoretical basis for determining a reasonable harvesting period for D. huoshanense.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Yingdan Yuan,
| | - Jiajia Zuo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hanyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Runze Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu’an, China
- Maoyun Yu,
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Liu Y, Lv G, Chai J, Yang Y, Ma F, Liu Z. The Effect of 1-MCP on the Expression of Carotenoid, Chlorophyll Degradation, and Ethylene Response Factors in 'Qihong' Kiwifruit. Foods 2021; 10:foods10123017. [PMID: 34945569 PMCID: PMC8701096 DOI: 10.3390/foods10123017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 μL L−1 of 1-MCP for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β, AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730 and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763 may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage, which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2, AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of ‘Qihong’.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- College of Life Science, Northwest A&F University, Xianyang 712100, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Jiaxin Chai
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- Correspondence:
| |
Collapse
|
14
|
Kaur K, Awasthi P, Tiwari S. Comparative transcriptome analysis of unripe and ripe banana (cv. Nendran) unraveling genes involved in ripening and other related processes. PLoS One 2021; 16:e0254709. [PMID: 34314413 PMCID: PMC8315498 DOI: 10.1371/journal.pone.0254709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Banana is one of the most important fruit crops consumed globally owing to its high nutritional value. Previously, we demonstrated that the ripe pulp of the banana cultivar (cv.) Nendran (AAB) contained a high amount of pro-vitamin A carotenoids. However, the molecular factors involved in the ripening process in Nendran fruit are unexplored. Hence, we commenced a transcriptome study by using the Illumina HiSeq 2500 at two stages i.e. unripe and ripe fruit-pulp of Nendran. Overall, 3474 up and 4727 down-regulated genes were obtained. A large number of identified transcripts were related to genes involved in ripening, cell wall degradation and aroma formation. Gene ontology analysis highlighted differentially expressed genes that play a key role in various pathways. These pathways were mainly linked to cellular, molecular and biological processes. The present transcriptome study also reveals a crucial role of up-regulated carotenoid biosynthesis pathway genes namely, lycopene beta cyclase and geranylgeranyl pyrophosphate synthase at the ripening stage. Genes related to the ripening and other processes like aroma and flavor were highly expressed in the ripe pulp. Expression of numerous transcription factor family genes was also identified. This study lays a path towards understanding the ripening, carotenoid accumulation and other related processes in banana.
Collapse
Affiliation(s)
- Karambir Kaur
- Department of Biotechnology, Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Ministry of Science and Technology (Government of India), Mohali, Punjab, India
| | - Praveen Awasthi
- Department of Biotechnology, Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Ministry of Science and Technology (Government of India), Mohali, Punjab, India
| | - Siddharth Tiwari
- Department of Biotechnology, Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Ministry of Science and Technology (Government of India), Mohali, Punjab, India
- * E-mail: ,
| |
Collapse
|
15
|
Brian L, Warren B, McAtee P, Rodrigues J, Nieuwenhuizen N, Pasha A, David KM, Richardson A, Provart NJ, Allan AC, Varkonyi-Gasic E, Schaffer RJ. A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC PLANT BIOLOGY 2021; 21:121. [PMID: 33639842 PMCID: PMC7913447 DOI: 10.1186/s12870-021-02894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.
Collapse
Affiliation(s)
- Lara Brian
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Jessica Rodrigues
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Asher Pasha
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Karine M David
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Annette Richardson
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 121 Keri Downs Road, Kerikeri, 0294, New Zealand
| | - Nicholas J Provart
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand.
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 55 Old Mill Road, Motueka, 7198, New Zealand.
| |
Collapse
|