1
|
Rempfer C, Hoernstein SN, van Gessel N, Graf AW, Spiegelhalder RP, Bertolini A, Bohlender LL, Parsons J, Decker EL, Reski R. Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. Comput Struct Biotechnol J 2024; 23:2580-2594. [PMID: 39021582 PMCID: PMC11252719 DOI: 10.1016/j.csbj.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently O-glycosylated. While both modifications are important, e.g. for cell wall stability, they are undesired in plant-made pharmaceuticals. Sequence motifs for prolyl-hydroxylation were proposed but did not include data from mosses, such as Physcomitrella. We identified six moss P4Hs by phylogenetic reconstruction. Our analysis of 73 Hyps in 24 secretory proteins from multiple mass spectrometry datasets revealed that prolines near other prolines, alanine, serine, threonine and valine were preferentially hydroxylated. About 95 % of Hyps were predictable with combined established methods. In our data, AOV was the most frequent pattern. A combination of 443 AlphaFold models and MS data with 3000 prolines found Hyps mainly on protein surfaces in disordered regions. Moss-produced human erythropoietin (EPO) exhibited O-glycosylation with arabinose chains on two Hyps. This modification was significantly reduced in a p4h1 knock-out (KO) Physcomitrella mutant. Quantitative proteomics with different p4h mutants revealed specific changes in protein amounts, and a modified prolyl-hydroxylation pattern, suggesting a differential function of the Physcomitrella P4Hs. Quantitative RT-PCR revealed a differential effect of single p4h KOs on the expression of the other five p4h genes, suggesting a partial compensation of the mutation. AlphaFold-Multimer models for Physcomitrella P4H1 and its target EPO peptide superposed with the crystal structure of Chlamydomonas P4H1 suggested significant amino acids in the active centre of the enzyme and revealed differences between P4H1 and the other Physcomitrella P4Hs.
Collapse
Affiliation(s)
- Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Sebastian N.W. Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas W. Graf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roxane P. Spiegelhalder
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Anne Bertolini
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104, Germany
| |
Collapse
|
2
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
3
|
Tomasiak A, Piński A, Milewska-Hendel A, Andreu Godall I, Borowska-Żuchowska N, Morończyk J, Moreno-Romero J, Betekhtin A. H3K4me3 changes occur in cell wall genes during the development of Fagopyrum tataricum morphogenic and non-morphogenic calli. FRONTIERS IN PLANT SCIENCE 2024; 15:1465514. [PMID: 39385990 PMCID: PMC11461221 DOI: 10.3389/fpls.2024.1465514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Epigenetic changes accompany the dynamic changes in the cell wall composition during the development of callus cells. H3K4me3 is responsible for active gene expression and reaction to environmental cues. Chromatin immunoprecipitation (ChIP) is a powerful technique for studying the interplay between epigenetic modifications and the DNA regions of interest. In combination with sequencing, it can provide the genome-wide enrichment of the specific epigenetic mark, providing vital information on its involvement in the plethora of cellular processes. Here, we describe the genome-wide distribution of H3K4me3 in morphogenic and non-morphogenic callus of Fagopyrum tataricum. Levels of H3K4me3 were higher around the transcription start site, in agreement with the role of this mark in transcriptional activation. The global levels of methylation were higher in the non-morphogenic callus, which indicated increased gene activation compared to the morphogenic callus. We also employed ChIP to analyse the changes in the enrichment of this epigenetic mark on the cell wall-related genes in both calli types during the course of the passage. Enrichment of H3K4me3 on cell wall genes was specific for callus type, suggesting that the role of this mark in cell-wall remodelling is complex and involved in many processes related to dedifferentiation and redifferentiation. This intricacy of the cell wall composition was supported by the immunohistochemical analysis of the cell wall epitopes' distribution of pectins and extensins. Together, these data give a novel insight into the involvement of H3K4me3 in the regeneration processes in F. tataricum in vitro callus tissue culture.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ignasi Andreu Godall
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalia Borowska-Żuchowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Lin YJ, Yao BT, Zhang Q, Feng YX, Xiang L. Biochemical insights into proline metabolism and its contribution to the endurant cell wall structure under metal stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116725. [PMID: 39002377 DOI: 10.1016/j.ecoenv.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The cell wall serves as the primary barrier against the entry of heavy metal ions into cells. However, excessive accumulation of heavy metals within plants can lead to alterations in the spatial structure and physical properties of the cell wall, thereby affecting the capacity of plants to capture heavy metals. Proline (Pro) is involved in the synthesis of the cell wall, modulating the stability and integrity of its structure. Extensins, core proteins that maintain the cell wall structure, are proline/hydroxyproline-rich glycoproteins that contain the characteristic sequence Ser-[Pro]3-5. They act as intermediates in the regulation of biological processes such as cell wall synthesis, assembly, and signal transduction, typically forming a network structure of cell wall proteins through cross-linking with pectin. This network is essential for the self-assembly expansion of the plant cell wall and plays an indispensable role in cell wall stress signal transduction through its interaction with intracellular signalling molecules. However, the mechanisms by which Pro affects the synthesis of cell wall structural proteins, cell wall assembly, and the sensing of cell wall stress under heavy metal stress remain unclear. This review, from the perspectives of biochemistry and molecular biology, comprehensively elaborates on the impact of Pro and Pro-rich proteins on the structure and function of the cell wall. These findings emphasize the mechanism by which Pro enhances the ability of the cell wall to capture heavy metals, providing new research ideas for the use of genetic engineering to manipulate cell wall synthesis and repair, thereby reducing the phytotoxicity of heavy metals.
Collapse
Affiliation(s)
- Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541006, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Ben-Tao Yao
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541006, China
| | - Qin Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541006, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541006, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong Province 529199, China.
| | - Lei Xiang
- College of Life Science and Technology, Guangzhou, Jinan University 510632, China
| |
Collapse
|
5
|
Mizukami AG, Kusano S, Matsuura-Tokita K, Hagihara S, Higashiyama T. Cluster effect through the oligomerisation of bioactive disaccharide AMOR on pollen tube capacitation in Torenia fournieri. RSC Chem Biol 2024; 5:745-750. [PMID: 39092441 PMCID: PMC11289873 DOI: 10.1039/d4cb00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Arabinogalactan proteins (AGPs) are plant-specific glycoproteins involved in cellular mechanics and signal transduction. There has been major progress in understanding the structure, synthesis, and molecular functions of their carbohydrate chains; however, the mechanisms by which they function as signalling molecules remain unclear. Here, methyl-glucuronosyl arabinogalactan (AMOR; Me-GlcA-β(1,6)-Gal), a disaccharide structure at the end of AGP carbohydrate chains, was oligomerised via chemical synthesis. The biological activity of AMOR oligomers was enhanced via clustering of the carbohydrate chains. Furthermore, AMOR oligomers yielded a pollen tube morphology (i.e., callose plug formation) similar to that when cultured with native AMOR, suggesting it may be functionally similar to native AMOR.
Collapse
Affiliation(s)
- Akane G Mizukami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Kumi Matsuura-Tokita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
6
|
Kutyrieva-Nowak N, Leszczuk A, Denic D, Bellaidi S, Blazakis K, Gemeliari P, Lis M, Kalaitzis P, Zdunek A. In vivo and ex vivo study on cell wall components as part of the network in tomato fruit during the ripening process. HORTICULTURE RESEARCH 2024; 11:uhae145. [PMID: 38988613 PMCID: PMC11233857 DOI: 10.1093/hr/uhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Ripening is a process involving various morphological, physiological, and biochemical changes in fruits. This process is affected by modifications in the cell wall structure, particularly in the composition of polysaccharides and proteins. The cell wall assembly is a network of polysaccharides and proteoglycans named the arabinoxylan pectin arabinogalactan protein1 (APAP1). The complex consists of the arabinogalactan protein (AGP) core with the pectin domain including arabinogalactan (AG) type II, homogalacturonan (HG), and rhamnogalacturonan I (RG-I). The present paper aims to determine the impact of a disturbance in the synthesis of one constituent on the integrity of the cell wall. Therefore, in the current work, we have tested the impact of modified expression of the SlP4H3 gene connected with proline hydroxylase (P4H) activity on AGP presence in the fruit matrix. Using an immunolabelling technique (CLSM), an immunogold method (TEM), molecular tools, and calcium mapping (SEM-EDS), we have demonstrated that disturbances in AGP synthesis affect the entire cell wall structure. Changes in the spatio-temporal AGP distribution may be related to the formation of a network between AGPs with other cell wall components. Moreover, the modified structure of the cell wall assembly induces morphological changes visible at the cellular level during the progression of the ripening process. These results support the hypothesis that AGPs and pectins are required for the proper progression of the physiological processes occurring in fruits.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Dusan Denic
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Samia Bellaidi
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Konstantinos Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Petroula Gemeliari
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| |
Collapse
|
7
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Do Arabinogalactan Proteins Occur in the Transfer Cells of Utricularia dichotoma? Int J Mol Sci 2024; 25:6623. [PMID: 38928328 PMCID: PMC11204157 DOI: 10.3390/ijms25126623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Species in the genus Utricularia are carnivorous plants that prey on invertebrates using traps of leaf origin. The traps are equipped with numerous different glandular trichomes. Trichomes (quadrifids) produce digestive enzymes and absorb the products of prey digestion. The main aim of this study was to determine whether arabinogalactan proteins (AGPs) occur in the cell wall ingrowths in the quadrifid cells. Antibodies (JIM8, JIM13, JIM14, MAC207, and JIM4) that act against various groups of AGPs were used. AGP localization was determined using immunohistochemistry techniques and immunogold labeling. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of the pedestal cell, which may be related to the fact that AGPs regulate the formation of wall ingrowths but also, due to the patterning of the cell wall structure, affect symplastic transport. The presence of AGPs in the cell wall of terminal cells may be related to the presence of wall ingrowths, but processes also involve vesicle trafficking and membrane recycling, in which these proteins participate.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
8
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int J Mol Sci 2024; 25:6089. [PMID: 38892273 PMCID: PMC11173196 DOI: 10.3390/ijms25116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer wall is differentiated into several layers, and even cell wall ingrowths are covered by new cell wall layers. Due to changes in the cell wall, these glands are excellent models for studying the specialization of cell walls (microdomains). The main aim of this study was to check if different cell wall layers have a different composition. Antibodies against arabinogalactan proteins (AGPs) were used, including JIM8, JIM13, JIM14, MAC207, and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. Differences in composition were found between the primary cell wall and the cell secondary wall in terminal gland cells. The outermost layer of the cell wall of the terminal cell, which was cuticularized, was devoid of AGPs (JIM8, JIM14). In contrast, the secondary cell wall in terminal cells was rich in AGPs. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of pedestal cells. Our research supports the hypothesis of water secretion by the external glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
9
|
Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. MOLECULAR PLANT 2024; 17:699-724. [PMID: 38594902 DOI: 10.1016/j.molp.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Elena Gómez-Rubio
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Kalenborn S, Zühlke D, Riedel K, Amann RI, Harder J. Proteomic insight into arabinogalactan utilization by particle-associated Maribacter sp. MAR_2009_72. FEMS Microbiol Ecol 2024; 100:fiae045. [PMID: 38569650 PMCID: PMC11036162 DOI: 10.1093/femsec/fiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
Arabinose and galactose are major, rapidly metabolized components of marine particulate and dissolved organic matter. In this study, we observed for the first time large microbiomes for the degradation of arabinogalactan and report a detailed investigation of arabinogalactan utilization by the flavobacterium Maribacter sp. MAR_2009_72. Cellular extracts hydrolysed arabinogalactan in vitro. Comparative proteomic analyses of cells grown on arabinogalactan, arabinose, galactose, and glucose revealed the expression of specific proteins in the presence of arabinogalactan, mainly glycoside hydrolases (GH). Extracellular glycan hydrolysis involved five alpha-l-arabinofuranosidases affiliating with glycoside hydrolase families 43 and 51, four unsaturated rhamnogalacturonylhydrolases (GH105) and a protein with a glycoside hydrolase family-like domain. We detected expression of three induced TonB-dependent SusC/D transporter systems, one SusC, and nine glycoside hydrolases with a predicted periplasmatic location. These are affiliated with the families GH3, GH10, GH29, GH31, GH67, GH78, and GH115. The genes are located outside of and within canonical polysaccharide utilization loci classified as specific for arabinogalactan, for galactose-containing glycans, and for arabinose-containing glycans. The breadth of enzymatic functions expressed in Maribacter sp. MAR_2009_72 as response to arabinogalactan from the terrestrial plant larch suggests that Flavobacteriia are main catalysts of the rapid turnover of arabinogalactans in the marine environment.
Collapse
Affiliation(s)
- Saskia Kalenborn
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, D-17489 Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, D-17489 Greifswald, Germany
| | - Rudolf I Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
12
|
Kutyrieva-Nowak N, Leszczuk A, Ezzat L, Kaloudas D, Zając A, Szymańska-Chargot M, Skrzypek T, Krokida A, Mekkaoui K, Lampropoulou E, Kalaitzis P, Zdunek A. The modified activity of prolyl 4 hydroxylases reveals the effect of arabinogalactan proteins on changes in the cell wall during the tomato ripening process. FRONTIERS IN PLANT SCIENCE 2024; 15:1365490. [PMID: 38571716 PMCID: PMC10987753 DOI: 10.3389/fpls.2024.1365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Lamia Ezzat
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Dimitris Kaloudas
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Afroditi Krokida
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Evangelia Lampropoulou
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
13
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P. Do Cuticular Gaps Make It Possible to Study the Composition of the Cell Walls in the Glands of Drosophyllum lusitanicum? Int J Mol Sci 2024; 25:1320. [PMID: 38279320 PMCID: PMC10816202 DOI: 10.3390/ijms25021320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Carnivorous plants can survive in poor habitats because they have the ability to attract, capture, and digest prey and absorb animal nutrients using modified organs that are equipped with glands. These glands have terminal cells with permeable cuticles. Cuticular discontinuities allow both secretion and endocytosis. In Drosophyllum lusitanicum, these emergences have glandular cells with cuticular discontinuities in the form of cuticular gaps. In this study, we determined whether these specific cuticular discontinuities were permeable enough to antibodies to show the occurrence of the cell wall polymers in the glands. Scanning transmission electron microscopy was used to show the structure of the cuticle. Fluorescence microscopy revealed the localization of the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. We showed that Drosophyllum leaf epidermal cells have a continuous and well-developed cuticle, which helps the plant inhibit water loss and live in a dry environment. The cuticular gaps only partially allow us to study the composition of cell walls in the glands of Drosophyllum. We recoded arabinogalactan proteins, some homogalacturonans, and hemicelluloses. However, antibody penetration was only limited to the cell wall surface. The localization of the wall components in the cell wall ingrowths was missing. The use of enzymatic digestion improves the labeling of hemicelluloses in Drosophyllum glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
14
|
Gabarayeva NI, Britski DA, Grigorjeva VV. Pollen wall development in Impatiens glandulifera: exine substructure and underlying mechanisms. PROTOPLASMA 2024; 261:111-124. [PMID: 37542569 DOI: 10.1007/s00709-023-01887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
The aim of this study was to investigate in detail the pollen wall ontogeny in Impatiens glandulifera, with emphasis on the substructure and the underlying mechanisms of development. Sporopollenin-containing pollen wall, the exine, consists of two parts, ectexine and endexine. By determining the sequence of developing substructures with TEM, we have in mind to understand in which way the exine substructure is connected with function. We have shown earlier that physical processes of self-assembly and phase separation are universally involved in ectexine development; currently, we try to clear up whether these processes participate in endexine development. The data received were compared with those on other species. The ectexine ontogeny of I. glandulifera followed the main stages observed in many other species, including the late tetrad stage named "Golden gates". It turned out that the same physico-chemical processes act in endexine development, especially expressed in aperture sites. Another peculiar phenomenon observed in exine development was the recurrency of micellar sequence at near-aperture and aperture sites where the periplasmic space is widened. It should be noted that, in the whole, the developmental substructures observed during the tetrad and early post-tetrad period are similar in species with columellate exines. Evidently, these basic physical processes proceed, reiterating again and again in different species, resulting in an enormous variety of exine structures on the base of a relatively modest number of genes. Granular and alveolar exines emerge on the base of the same basic processes but are arrested at spherical and cylindrical micelle mesophases correspondingly.
Collapse
|
15
|
Ma Y, Ratcliffe J, Bacic A, Johnson KL. Promoter and domain structures regulate FLA12 function during Arabidopsis secondary wall development. FRONTIERS IN PLANT SCIENCE 2023; 14:1275983. [PMID: 38034570 PMCID: PMC10687482 DOI: 10.3389/fpls.2023.1275983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Introduction Fasciclin-like arabinogalactan-proteins (FLAs) are a family of multi-domain glycoproteins present at the cell surface and walls of plants. Arabidopsis thaliana FLA12 and homologs in cotton, Populus, and flax have been shown to play important functions regulating secondary cell wall (SCW) development. FLA12 has been shown to have distinct roles from the closely related FLA11 that also functions during SCW development. The promoter and domain features of FLA12 that regulate functional specificity have not been well characterized. Methods In this study, promoter swap experiments of FLA11 and FLA12 were investigated. Mutation of proposed functional regions within FLA12 were used to investigate the role of post-translational modifications on sub-cellular location and trafficking. Domain swap experiments between FLA11 and FLA12 were performed to identify regions of functional specificity. Results Promote swap experiments showed that FLA12 is differentially expressed in both stem and rosette leaves compared to FLA11. Post-translational modifications, in particular addition of the glycosylphosphatidylinositol-anchor (GPI-anchor), were shown to be important for FLA12 location at the plasma membrane (PM)/cell wall interface. Domain swap experiments between FLA11 and FLA12 showed that the C-terminal arabinogalactan (AG) glycan motif acts as a key regulatory region differentiating FLA12 functions from FLA11. Discussion Understanding of FLA12 promoter and functional domains has provided new insights into the regulation of SCW development and functional specificity of FLAs for plant growth and development.
Collapse
Affiliation(s)
- Yingxuan Ma
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
16
|
Kutyrieva-Nowak N, Leszczuk A, Zdunek A. A practical guide to in situ and ex situ characterisation of arabinogalactan proteins (AGPs) in fruits. PLANT METHODS 2023; 19:117. [PMID: 37915041 PMCID: PMC10621164 DOI: 10.1186/s13007-023-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are plant cell components found in the extracellular matrix that play crucial roles in fruit growth and development. AGPs demonstrate structural diversity due to the presence of a protein domain and an expanded carbohydrate moiety. Considering their molecular structure, the modification of glycosylation is a primary factor contributing to the functional variety of AGPs. MAIN BODY Immunocytochemical methods are used for qualitative and quantitative analyses of AGPs in fruit tissues. These include in situ techniques such as immunofluorescence and immunogold labelling for visualising AGP distribution at different cellular levels and ex situ methods such as Western blotting and enzyme-linked immunoenzymatic assays (ELISA) for molecular characterisation and quantitative detection of isolated AGPs. The presented techniques were modified by considering the structure of AGPs and the changes that occur in fruit tissues during the development and ripening processes. These methods are based on antibodies that recognise carbohydrate chains, which are the only commercially available highly AGP-specific tools. These probes recognise AGP epitopes and identify structural modifications and changes in spatio-temporal distribution, shedding light on their functions in fruit. CONCLUSION This paper provides a concise overview of AGP research methods, emphasising their use in fruit tissue analysis and demonstrating the accessibility gaps in other tools used in such research (e.g. antibodies against protein moieties). It underscores fruit tissue as a valuable source of AGPs and emphasises the potential for future research to understand of AGP synthesis, degradation, and their roles in various physiological processes. Moreover, the application of advanced probes for AGP visualisation is a milestone in obtaining more detailed insights into the localisation and function of these proteins within fruit.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
17
|
Johnson AM, Karaaslan MA, Cho M, Ogawa Y, Renneckar S. Exploring the impact of water on the morphology and crystallinity of xylan hydrate nanotiles. Carbohydr Polym 2023; 319:121165. [PMID: 37567708 DOI: 10.1016/j.carbpol.2023.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023]
Abstract
There has been a resurgence of studies on xylan particles describing various properties and exploring new applications. The aim of this study was to analyze xylan hydrate crystals in the wet state and after air-drying using state-of-art imaging techniques in order to assess the impact of water on both crystallinity and particle morphology. Xylan from esparto grass (Stipa tenacissima) was crystallized and formed convex platelets, termed 'nanotiles'. Fully hydrated xylan crystals were examined in a layer of vitreous ice by cryogenic electron microscopy. Selected area electron diffraction of the xylan hydrate crystals revealed an oriented crystalline core, unlike the dried crystals that showed no orientation. The surface topographies and thickness of wet and air-dried xylan nanotiles were observed using atomic force microscopy imaging in both liquid and in air. X-ray diffraction was used to assess the crystallinity of xylan nanotiles after drying to varying levels. Air-dried crystals gave diffraction maxima corresponding to xylan hydrate, while wet crystals gave diffraction maxima corresponding to xylan dihydrate. This study offers new insight into xylan hydrate particles, focusing on the role of water on their crystallinity, ultrastructure, and orientation of the crystalline layers.
Collapse
Affiliation(s)
- Amanda M Johnson
- Advanced Renewable Materials Laboratory, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Muzaffer A Karaaslan
- Advanced Renewable Materials Laboratory, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Advanced Renewable Materials Laboratory, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Bioproducts and Biosystems, Alto University, Espoo, Finland
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Scott Renneckar
- Advanced Renewable Materials Laboratory, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
18
|
Nweke AB, Nagasato D, Matsuoka K. Secreted arabinogalactan protein from salt-adapted tobacco BY-2 cells appears to be glycosylphosphatidyl inositol-anchored and associated with lipophilic moieties. Biosci Biotechnol Biochem 2023; 87:1274-1284. [PMID: 37573142 DOI: 10.1093/bbb/zbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.
Collapse
Affiliation(s)
- Arinze Boniface Nweke
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Nagasato
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Rueda S, McCubbin TJ, Shieh M, Hoshing R, Braun DM, Basu A. A Functionalizable Analog of the Yariv Reagent for AGP Imaging using Fluorescence Microscopy. Bioconjug Chem 2023; 34:1398-1406. [PMID: 37534797 DOI: 10.1021/acs.bioconjchem.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Small molecule fluorescent probes that bind selectively to plant cell wall polysaccharides have been instrumental in elucidating the localization and function of these glycans. Arabinogalactan proteins (AGPs) are cell wall proteoglycans implicated in essential functions such as cell signaling, plant growth, and programmed cell death. There is currently no small molecule probe capable of fluorescently labeling AGPs. The Yariv reagents are the only small molecules that bind AGPs, and have been used to study AGP function and isolate AGPs via precipitation of an AGP-Yariv complex. However, the Yariv reagents are not fluorescent, rendering them ineffective for localization studies using fluorescence microscopy. A fluorescent version of a Yariv reagent that is capable of both binding as well as imaging AGPs would provide a powerful tool for studying AGPs in planta. Herein, we describe the synthesis of an azido analog of the Yariv reagent that can be further functionalized with a fluorophore to provide a glycoconjugate that binds AGPs and is fluorescent. We show that the modified reagent binds gum arabic in in vitro binding assays when used in conjunction with the βGlcYariv reagent. Fluorescent imaging of AGPs in fixed maize leaf tissue enables localization of AGPs to cell walls in the leaf. Significantly, imaging can also be carried out using fresh tissue. This represents the first small molecule probe that can be used to visualize AGPs using fluorescence microscopy.
Collapse
Affiliation(s)
- Sebastian Rueda
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tyler J McCubbin
- Division of Plant Science and Technology, Interdisciplinary Plant Group, The Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Raghuraj Hoshing
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - David M Braun
- Division of Plant Science and Technology, Interdisciplinary Plant Group, The Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, United States
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
20
|
Pfeifer L, Mueller KK, Utermöhlen J, Erdt F, Zehge JBJ, Schubert H, Classen B. The cell walls of different Chara species are characterized by branched galactans rich in 3-O-methylgalactose and absence of AGPs. PHYSIOLOGIA PLANTARUM 2023; 175:e13989. [PMID: 37616003 DOI: 10.1111/ppl.13989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Streptophyte algae are the closest relatives to land plants; their latest common ancestor performed the most drastic adaptation in plant evolution around 500 million years ago: the conquest of land. Besides other adaptations, this step required changes in cell wall composition. Current knowledge on the cell walls of streptophyte algae and especially on the presence of arabinogalactan-proteins (AGPs), important signalling molecules in all land plants, is limited. To get deeper insights into the cell walls of streptophyte algae, especially in Charophyceae, we performed sequential cell wall extractions of four Chara species. The three species Chara globularis, Chara subspinosa and Chara tomentosa revealed comparable cell wall compositions, with pectins, xylans and xyloglucans, whereas Chara aspera stood out with higher amounts of uronic acids in the pectic fractions and lack of reactivity with antibodies binding to xylan- and xyloglucan epitopes. Search for AGPs in the four Chara species and in Nitellopsis obtusa revealed the presence of galactans with pyranosidic galactose in 1,3-, 1,6- and 1,3,6-linkage, which are typical galactan motifs in land plant AGPs. A unique feature of these branched galactans was high portions of 3-O-methylgalactose. Only Nitellopsis contained substantial amounts of arabinose A bioinformatic search for prolyl-4-hydroxylases, involved in the biosynthesis of AGPs, revealed one possible functional sequence in the genome of Chara braunii, but no hydroxyproline could be detected in the four Chara species or in Nitellopsis obtusa. We conclude that AGPs that is typical for land plants are absent, at least in these members of the Charophyceae.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jon Utermöhlen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Felicitas Erdt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jean Bastian Just Zehge
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hendrik Schubert
- Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
21
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|