1
|
Sánchez-Nuño S, Santocildes G, Rebull J, Bardallo RG, Girabent-Farrés M, Viscor G, Carbonell T, Torrella JR. Effects of intermittent exposure to hypobaric hypoxia and cold on skeletal muscle regeneration: Mitochondrial dynamics, protein oxidation and turnover. Free Radic Biol Med 2024; 225:286-295. [PMID: 39313011 DOI: 10.1016/j.freeradbiomed.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Muscle injuries and the subsequent regeneration events compromise muscle homeostasis at morphological, functional and molecular levels. Among the molecular alterations, those derived from the mitochondrial function are especially relevant. We analysed the mitochondrial dynamics, the redox balance, the protein oxidation and the main protein repairing mechanisms after 9 days of injury in the rat gastrocnemius muscle. During the recovery rats were exposed to intermittent cold exposure (ICE), intermittent hypobaric hypoxia (IHH), and both simultaneous combined stimuli. Non-injured contralateral legs were also analysed to evaluate the specific effects of the three environmental exposures. Our results showed that ICE enhanced mitochondrial adaptation by improving the electron transport chain efficiency during muscle recovery, decreased the expression of regulatory subunit of proteasome and accumulated oxidized proteins. Exposure to IHH did not show mitochondrial compensation or increased protein turnover mechanisms; however, no accumulation of oxidized proteins was observed. Both ICE and IHH, when applied separately, elicited an increased expression of eNOS, which could have played an important role in accelerating muscle recovery. The combined effect of ICE and IHH led to a complex response that could potentially impede optimal mitochondrial function and enhanced the accumulation of protein oxidation. These findings underscore the nuanced role of environmental stressors in the muscle healing process and their implications for optimizing recovery strategies.
Collapse
Affiliation(s)
- Sergio Sánchez-Nuño
- Campus Docent Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), C/ Sant Benito Menni, 18-20, 08830, Sant Boi de Llobregat, Spain
| | - Garoa Santocildes
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Josep Rebull
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Montserrat Girabent-Farrés
- Campus Docent Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), C/ Sant Benito Menni, 18-20, 08830, Sant Boi de Llobregat, Spain
| | - Ginés Viscor
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Burns MPA, Reges CR, Barnhill SW, Koehler KN, Lewis BC, Colombo AT, Felter NJ, Schaeffer PJ. Chronic cold exposure causes left ventricular hypertrophy that appears to be physiological. J Exp Biol 2024; 227:jeb247476. [PMID: 39206582 PMCID: PMC11529882 DOI: 10.1242/jeb.247476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Exposure to winter cold causes an increase in energy demands to meet the challenge of thermoregulation. In small rodents, this increase in cardiac output leads to a profound cardiac hypertrophy, 2-3 times that typically seen with exercise training. The nature of this hypertrophy and its relevance to winter mortality remains unclear. Our goal was to characterize cold-induced cardiac hypertrophy and to assess its similarity to either exercise-induced (physiological) hypertrophy or the pathological hypertrophy of hypertension. We hypothesized that cold-induced hypertrophy will most closely resemble exercise-induced hypertrophy, but be another unique pathway for physiological cardiac growth. We found that cold-induced hypertrophy was largely reversed after a return to warm temperatures. Further, metabolic rates were elevated while gene expression and mitochondrial enzyme activities indicative of pathology were absent. A gene expression panel comparing hearts of exercised and cold-exposed mice further suggests that these activities are similar, although not identical. In conclusion, we found that chronic cold led to a phenotype that most closely resembled physiological hypertrophy, with enhanced metabolic rate, without induction of fetal genes, but with decreased expression of genes associated with fatty acid oxidation, suggesting that heart failure is not a cause of winter mortality in small rodents and identifying a novel approach for the study of cardiac growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nick J. Felter
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
3
|
Yadav RB, Pathak DP, Varshney R, Arora R. Elucidation of the Role of TRPV1, VEGF-A, TXA2, Redox Homeostasis, and Inflammatory Cascades in Protection against Cold Injuries by Herbosomal-Loaded PEG-Poloxamer Topical Formulation. ACS APPLIED BIO MATERIALS 2024; 7:2836-2850. [PMID: 38717017 DOI: 10.1021/acsabm.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1β, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.
Collapse
Affiliation(s)
- Renu Bala Yadav
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Dharam Pal Pathak
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rajeev Varshney
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rajesh Arora
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
4
|
Su Y, Li T, He X, Sun H, Li J. PI3K/AKT pathway modulation and cold acclimation alleviation concerning apoptosis and necroptosis in broiler thymus. Poult Sci 2024; 103:103634. [PMID: 38537409 PMCID: PMC10987937 DOI: 10.1016/j.psj.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Moderate cold stimulation regulates the thymus's growth and function and facilitates cold acclimatization in broilers. However, the underlying mechanism remains unknown. To explore the possible mechanism of the thymus in cold-acclimated broilers against cold stress, 240 one-day-old Arbor Acres (AA) broilers were assigned to 2 groups randomly. The control group (C) was housed at conventional temperatures. The temperature during the first week was 33°C to 34°C. Between the ages of 8 and 32 d, the temperature was lowered by 1°C every 2 d, i.e., gradually from 32°C to 20°C, and then maintained at 20°C until 42 d of age. The cold-acclimated group (C-3) was housed at the same temperature as C from 1 to 7 d after birth. Between 8 and 42 d, the temperature of C-3 was 3°C colder than C. After 24 h exposure to acute cold stress (ACS) at 42 d, C and C-3 were named as S and S-3. The results showed that ACS was able to induce oxidation stress, modulate PI3K/AKT signal, and cause necroptosis and apoptosis in broiler thymus. By contrast, cold acclimation could alleviate apoptosis and necroptosis induced by cold stress via alleviating oxidative stress, efficiently activating the PI3K/AKT signal, as well as decreasing apoptotic and necrotic genes' levels. This study offers a novel theoretical basis for cold acclimation to improve the body's cold tolerance.
Collapse
Affiliation(s)
- Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyue He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hanqing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
5
|
Zhang J, You S, Yu L, Zhang Y, Li Z, Zhao N, Zhang B, Kang L, Sun S. The hysteresis damage of cold exposure on tissue and transcript levels in mice. J Therm Biol 2024; 120:103823. [PMID: 38442663 DOI: 10.1016/j.jtherbio.2024.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES Although cold stress-induced damage to the heart and thyroid has been reported, specific organ associations between the heart and thyroid with delayed injury mechanisms have not been investigated. In this study, we determined the damage time and transcript levels of a large number of genes in the heart and thyroid after cold exposure. Meanwhile, we analysed the relationship between heart and thyroid injury in human medical records to determine the association of delayed injury from cold exposure. METHODS Mice were exposed to cold stress and hysteresis injury. Gene changes at the transcriptional level were detected using high throughput sequencing technology. The most variable genes were verified at the protein level using Western Blotting and medical records were collected and analysed. RESULTS The damage was the most severe when the animals were allowed to recover to room temperature for 4 h after exposure to cold stress. During this process, STAT1 and ATF3 genes were acutely up-regulated. Analysis of human medical records showed the highest correlation between AST and T4 under cold stress (p = 0.0011). CONCLUSIONS Exposure to cold increases blood level of free thyroid hormone and biomarkers of myocardial injury, as well as related mRNA levels. These changes were more pronounced after return to room temperature.
Collapse
Affiliation(s)
- Jing Zhang
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China; Xinjiang University of Science&Technology, School of Medicine, Korla, 841000, China
| | - Shiwan You
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Lan Yu
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yuling Zhang
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Zuoping Li
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Na Zhao
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Lihua Kang
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China.
| | - Shiguo Sun
- Shihezi University College of Chemistry and Chemical Engineering, College of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China; Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Wei H, Li T, Zhang Y, Liu X, Gong R, Bao J, Li J. Cold stimulation causes oxidative stress, inflammatory response and apoptosis in broiler heart via regulating Nrf2/HO-1 and NF-κB pathway. J Therm Biol 2023; 116:103658. [PMID: 37463527 DOI: 10.1016/j.jtherbio.2023.103658] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
To investigate the effect of cold stimulation on heart, 300 1-day-old female broilers were divided into control (CON) and two cold stimulation (CS3 and CS9) groups. Birds in CON group were reared in normal ambient temperature during day 1-43; while birds in CS3 and CS9 groups were reared at 3 °C and 9 °C below CON group for 5 h at 1-day intervals from day 15 to day 35, respectively. Heart tissues were collected at day 22, 29, 36, and 43 to determine the indexes related to oxidative stress, inflammation and apoptosis. The H&E staining displayed that inflammatory cell infiltration and myocardial fiber break were obviously observed in CS9 group, and cardiac pathological score in CS9 group was higher than CON and CS3 groups (P < 0.05) at day 22, 36, and 43. Overall, compared to CON group, the concentrations of MDA and H2O2 were elevated, the activities of SOD, CAT, GPx, and T-AOC were reduced, and mRNA expression of CAT, GPx, SOD, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) was downregulated in CS9 group at each time-point (P < 0.05). Compared to CON group, mRNA expression of NF-κBp65, COX-2, iNOS, PTGEs, TNF-α, and IL-1β, and mRNA and protein expression of Bax, Bak, Cyt-c, caspase-3, and caspase-9 were increased, while Bcl-2 and Bcl-2/Bax ratio were decreased in CS9 group (P < 0.05) at the most detected time-points. There were no significant differences in the levels of indexes associated with oxidative stress, Nrf2/HO-1 antioxidant system, inflammation, and apoptosis between CON and CS3 groups at the most detected time-points (P > 0.05). Therefore, this study suggests that severe cold stimulation at 9 °C below normal rearing temperature induces cardiomyocyte inflammation and apoptosis by regulating Nrf2/HO-1 pathway-related oxidative stress in broilers, and mild cold stimulation of CS3 group can improve the adaptability of hearts to cold environment.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030, Harbin, China.
| |
Collapse
|
7
|
Portes AMO, Paula ABR, Miranda DCD, Resende LT, Coelho BIC, Teles MC, Jardim IABA, Natali AJ, Castrucci AMDL, Isoldi MC. A systematic review of the effects of cold exposure on pathological cardiac remodeling in mice. J Therm Biol 2023; 114:103598. [PMID: 37321023 DOI: 10.1016/j.jtherbio.2023.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Exposure to cold promotes cardiac remodeling, characterized by deleterious effects on structure and function, contributing to increased mortality from cardiovascular diseases. The mechanisms associated with these changes are poorly understood. This review gathers the literature data on the main alterations and mechanisms associated with the adverse cardiac structural and functional remodeling induced by cold exposure in mice. Original studies were identified by searching PubMed, Scopus, and Embase databases from January 1990 to June 2022. This systematic review was conducted in accordance with the criteria established by PRISMA and registered in PROSPERO (CRD42022350637). The risk of bias was evaluated by the SYRCLE. Eligible studies included original papers published in English that evaluated cardiac outcomes in mice submitted to short- or long-time cold exposure and had a control group at room temperature. Seventeen original articles were included in this review. Cold exposure induces pathological cardiac remodeling, characterized by detrimental structural and functional parameters, changes in metabolism and autophagy process, and increases in oxidative stress, inflammation, and apoptosis. In addition, Nppa, AT1A, Fbp3, BECN, ETA, and MT, appear to play fundamental roles in regulating cardiac remodeling. We suggest that strategies that seek to minimize the CVD risk and adverse effects of cold exposure should target these agents.
Collapse
Affiliation(s)
- Alexandre Martins Oliveira Portes
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil; Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil.
| | | | - Denise Coutinho de Miranda
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil; Department of Nutrition, Governador Ozanam Coelho University Center, Uba, Brazil
| | | | | | - Maria Cecília Teles
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| | - Ana Maria de Lauro Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States
| | - Mauro César Isoldi
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
8
|
Sun G, Su W, Bao J, Teng T, Song X, Wang J, Shi B. Dietary full-fat rice bran prevents the risk of heart ferroptosis and imbalance of energy metabolism induced by prolonged cold stimulation. Food Funct 2023; 14:1530-1544. [PMID: 36655680 DOI: 10.1039/d2fo03673h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The threat to human health from cold stimulation is increasing due to the frequent occurrence of temperature extremes. It is a challenge for people to resist the negative effects of prolonged cold stimulation on the heart. In this study, we created prolonged cold stimulation pig models to investigate the cardiac energy metabolism and injury during prolonged cold stimulation, and the molecular mechanisms by which dietary supplementation with full-fat rice bran reduces cardiac injury. The results showed that lesions in the morphological structure of the heart were detected under prolonged cold stimulation. At the same time, dystrophin was downregulated under the effect of prolonged cold stimulation. Cardiac fatty acid transport and utilization were promoted, and oxidative stress was increased under prolonged cold stimulation. It also increased MDA content and decreased T-AOC level in the heart, while promoting the mRNA expression of Nrf2 and NQO1, as well as the protein content of Nrf2 and HO-1. Prolonged cold stimulation induced mitochondrial lesions, mitochondrial fusion, and mitophagy in the heart. Prolonged cold stimulation promoted the mRNA expression of PTGS2, TLR4, MyD88, NLRP3, and IL-1β; and protein expression of PTGS2, NLRP3, and mature-IL-1β. GCH1 and FtH inhibited by prolonged cold stimulation caused the activation of heart ferroptosis. In addition, dietary supplementation with full-fat rice bran improved oxidative stress in the heart and inhibited mitophagy, ferroptosis, and pyroptosis. In conclusion, prolonged cold stimulation heightens the risk of cardiac ferroptosis and imbalance of energy metabolism, whereas dietary supplementation with full-fat rice bran mitigates the adverse effects of prolonged cold stimulation on the heart.
Collapse
Affiliation(s)
- Guodong Sun
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Su
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Jiaxin Bao
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Teng Teng
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Xin Song
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Jiawei Wang
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Baoming Shi
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Lv H, He Y, Wu J, Zhen L, Zheng Y. Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis. J Vet Sci 2022; 24:e2. [PMID: 36726274 PMCID: PMC9899938 DOI: 10.4142/jvs.22185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. OBJECTIVES This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. METHODS In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4°C) for three hours per day for three weeks. RESULTS CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stress-involved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. CONCLUSIONS These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yvxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| | - Yvwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
10
|
Li T, Bai H, Yang L, Hao W, Wei S, Yan P. Low temperature exposure inhibits proliferation and induces apoptosis of bovine subcutaneous preadipocytes via p38 MAPK/JNK activation. Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110813. [DOI: 10.1016/j.cbpb.2022.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
11
|
Influence of Cold Environments on Growth, Antioxidant Status, Immunity and Expression of Related Genes in Lambs. Animals (Basel) 2022; 12:ani12192535. [PMID: 36230276 PMCID: PMC9559294 DOI: 10.3390/ani12192535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Cold climates may be a risk to the health and welfare of lambs during winter because cold environments alter the physiological processes of lambs, and we used cold environments with three different temperature gradients—an indoor heating control group (IHC) using electric heating; an indoor temperature group (IT) with intermittent and slight degrees of stimulation of coldness; an outdoor temperature group (OT) exposed to cold environments in an external natural environment. The results showed that the lambs in the OT group had a greater decrease in the average daily gain (ADG) and increase in the average daily feed intake (ADFI) and the feed-to-gain ratio (F:G) compared to the other two groups. The decrease in immunoglobulin A (IgA) and interleukin 2 (IL-2) contents and IL-2 gene expression, and the increase in tumor necrosis factor α (TNF-α) content and TNF-α and nuclear factor kappa-B p65 (NF-κB p65) gene expressions in the OT group suggested that the lambs had a compromised immune status in cold environments. Moreover, the decrease in catalase (CAT), glutathione peroxidase (GPx), total superoxide dismutase (T-SOD), and total antioxidant capacity (T-AOC) levels, and CAT, GPx, SOD1, SOD2, and nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expressions, and the increase in malondialdehyde (MDA) in the OT group suggested that the lambs had a lower antioxidant defense capacity in cold environments. Thus, in extreme cold, lambs kept outdoors could reduce growth, immune function and antioxidant status. However, shelter feeding in winter could relieve the stress of cold environments on lambs, and housing with heating equipment was more conducive to the improve growth, immune, and antioxidant function of the lambs.
Collapse
|
12
|
Kim SY, Ban HJ, Lee S, Jin HJ. Regulation of CIRP by genetic factors of SP1 related to cold sensitivity. Front Immunol 2022; 13:994699. [PMID: 36189232 PMCID: PMC9524288 DOI: 10.3389/fimmu.2022.994699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cold-inducible RNA-binding-protein (CIRP) is a cold shock protein that plays a protective role in genotoxic stress response. CIRP modulates inflammation in human diseases, inhibits cell proliferation, and protects cells from genotoxic damage during cellular stress. The mild cold responsive element and specificity protein 1 (SP1) play a role in Cirp expression at low temperatures. Although previous studies have provided insights into the immune functions of SP1 or CIRP, the mechanisms by which CIRP and SP1 me diate inflammatory responses remain largely unknown. Therefore, in the current study, we examined whether Cirp expression is affected by genetic factors related to temperature sensitivity as well as under low temperature. We performed a genome-wide association study on cold sensitivity in 2,000 participants. Fifty-six genome-wide significant trait-locus pairs were identified (p<1×10-5, false discovery rate < 0.05). Among these variants, rs1117050 and rs11170510 had a strong linkage disequilibrium (r2 > 0.8) relationship and expression quantitative trait locus-associated signals with the nearest Sp1 gene. We confirmed that the minor alleles of rs11170510 and rs58123204 were associated with increased Sp1 expression. Additionally, Sp1 overexpression led to CIRP translocation from the nucleus to the cytoplasm. CIRP protein levels increased in serum samples that had minor alleles of rs11170510 and rs58123204. Levels of various pro-inflammatory cytokines were also significantly increased in human peripheral blood mononuclear cells with minor alleles of rs11170510 and rs58123204. These results suggest that genetic factors related to cold sensitivity regulate CIRP expression and function and provide valuable insights into prediction of potential diseases through analysis of inherent genetic factors in humans.
Collapse
|
13
|
Effects of Housing and Management Systems on the Growth, Immunity, Antioxidation, and Related Physiological and Biochemical Indicators of Donkeys in Cold Weather. Animals (Basel) 2022; 12:ani12182405. [PMID: 36139265 PMCID: PMC9494980 DOI: 10.3390/ani12182405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The study was designed with a 2 × 2 factorial experiment to evaluate the effects of growth performance, immune function, antioxidant status, blood biochemical indexes, and hormone levels of donkeys in different housing and management systems in cold weather. Twenty-four male donkeys with similar body weight and age were randomly allocated into four treatment groups that were as follows: a cold-water-drinking group without a windproof facility, a lukewarm-water-drinking group without windproof facilities, a cold-water-drinking group with a windproof facility, and a lukewarm-water-drinking group with a windproof facility. The experiment lasted for 42 days. The results showed that windproof facilities increased average daily gain (ADG) and decreased average daily feed intake (ADFI) and feed-to-gain ratio (F:G) at all time periods (p < 0.01) of the experiment. Windproof facilities increased the digestibility of dry matter (DM), crude fat (CF), crude protein (CP), ash, calcium (Ca), and phosphate (P) on day 21 (p < 0.01), and increased the digestibility of DM, CF, ash, and P on day 42 (p < 0.01). The respiration rate and the skin temperature of the abdomen and legs increased (p < 0.05) and rectal temperature tended to increase (p = 0.083) by adopting windproof facilities at 07:00; the windproof facilities tended to increase the skin temperature of the ears and abdomen (p = 0.081, p = 0.091) at 14:00. For the blood parameters, with windproof facilities, the concentrations of total protein (TP), blood urea nitrogen (BUN), triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) increased (p < 0.05) and glucose (GLU) concentration decreased (p < 0.05) at 07:00 on day 21; the concentrations of TG and cholesterol (CHO) increased and the concentrations of TP, BUN, and GLU decreased at 07:00 on day 42 (p < 0.05). The concentrations of adrenocorticotropic hormone (ACTH), cortisol (COR), triiodothyronine (T3), and thyroxine (T4) decreased (p < 0.05) at 07:00 on day 21, and T4 concentration decreased (p < 0.05) at 07:00 on day 42. The concentrations of interleukin-4 (IL-4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) increased (p < 0.01) and the concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α) decreased (p < 0.01) on days 21 and 42. The activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GPx) increased (p < 0.05), and malondialdehyde (MDA) concentration decreased (p < 0.01) on day 21; the activities of T-SOD and catalase (CAT) increased (p < 0.05), and MDA concentration decreased (p < 0.01) on day 42. However, under the conditions of this experiment, water temperature did not affect the above indexes on days 21 and 42. These results indicated that adopting windproof facilities in a cold climate can mitigate the effects of atrocious weather on the production performance of donkeys.
Collapse
|
14
|
Ruperez C, Blasco-Roset A, Kular D, Cairo M, Ferrer-Curriu G, Villarroya J, Zamora M, Crispi F, Villarroya F, Planavila A. Autophagy is Involved in Cardiac Remodeling in Response to Environmental Temperature Change. Front Physiol 2022; 13:864427. [PMID: 35514342 PMCID: PMC9061941 DOI: 10.3389/fphys.2022.864427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: To study the reversibility of cold-induced cardiac hypertrophy and the role of autophagy in this process. Background: Chronic exposure to cold is known to cause cardiac hypertrophy independent of blood pressure elevation. The reversibility of this process and the molecular mechanisms involved are unknown. Methods: Studies were performed in two-month-old mice exposed to cold (4°C) for 24 h or 10 days. After exposure, the animals were returned to room temperature (21°C) for 24 h or 1 week. Results: We found that chronic cold exposure significantly increased the heart weight/tibia length (HW/TL) ratio, the mean area of cardiomyocytes, and the expression of hypertrophy markers, but significantly decreased the expression of genes involved in fatty acid oxidation. Echocardiographic measurements confirmed hypertrophy development after chronic cold exposure. One week of deacclimation for cold-exposed mice fully reverted the morphological, functional, and gene expression indicators of cardiac hypertrophy. Experiments involving injection of leupeptin at 1 h before sacrifice (to block autophagic flux) indicated that cardiac autophagy was repressed under cold exposure and re-activated during the first 24 h after mice were returned to room temperature. Pharmacological blockage of autophagy for 1 week using chloroquine in mice subjected to deacclimation from cold significantly inhibited the reversion of cardiac hypertrophy. Conclusion: Our data indicate that mice exposed to cold develop a marked cardiac hypertrophy that is reversed after 1 week of deacclimation. We propose that autophagy is a major mechanism underlying the heart remodeling seen in response to cold exposure and its posterior reversion after deacclimation.
Collapse
Affiliation(s)
- C Ruperez
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - A Blasco-Roset
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - D Kular
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Cairo
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - G Ferrer-Curriu
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - J Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Zamora
- Fetal Medicine Research Center, BCNatal -Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - F Crispi
- Fetal Medicine Research Center, BCNatal -Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - F Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - A Planavila
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
15
|
Yildiz M, Buyuk B, Kanbur S. The Effect of Chronic Intermittent Cold Exposure on Gastrin-, Somatostatin-, Secretin-, and Serotonin-Containing Cells in the Small Intestine of Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Hu Y, Liu Y, Yang Y, Lv H, Lian S, Xu B, Li S. OGT upregulates myogenic IL-6 by mediating O-GlcNAcylation of p65 in mouse skeletal muscle under cold exposure. J Cell Physiol 2021; 237:1341-1352. [PMID: 34668190 DOI: 10.1002/jcp.30612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Cold exposure is an unavoidable and severe challenge for people and animals residing in cold regions of the world, and may lead to hypothermia, drastic changes in systemic metabolism, and inhibition of protein synthesis. O-linked-N-acetylglucoseaminylation (O-GlcNAcylation) directly regulates the activity and function of target proteins involved in multiple biological processes by acting as a stress receptor and nutrient sensor. Therefore, our study aimed to examine whether O-GlcNAcylation affected myogenic IL-6 expression, regulation of energy metabolism, and promotion of survival in mouse skeletal muscle under acute cold exposure conditions. Total protein was extracted from C2C12 cells that had been cultured at 32°C for 3, 6, 9, and 12 h. Western blot analysis showed that mild hypothermia enhanced O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) expression. Furthermore, global OGT-dependent glycosylation and interleukin-6 (IL-6) levels peaked 3 h after induction of mild hypothermia. Enhanced activation of the NF-κB pathway was also observed in response to mild hypothermia. Alloxan and Thiamet G were used to reduce and increase global OGT glycosylation levels in C2C12 cells, respectively. Increased O-GlcNAcylation was associated with significant upregulation of IL-6 expression, as well as enhanced activity and nuclear translocation of p65, while decreased O-GlcNAcylation had the opposite effect. In addition, increased O-GlcNAcylation was associated with significantly increased glucose metabolism, and OGT-mediated O-GlcNAcylation of p65. We generated skeletal muscle-specific OGT knockout mice and exposed them to cold at 4°C for 3 h per day for 1 week. OGT deficiency attenuated the O-GlcNAcylation, activity, and nuclear translocation of p65, resulting in downregulation of IL-6 in mouse skeletal muscle of mice exposed to cold conditions. Taken together, our data suggested that O-GlcNAcylation of p65 enhanced p65 activity and nuclear translocation leading to the upregulation of IL-6, which maintained energy homeostasis and promotes cell survival in mouse skeletal muscle during cold exposure.
Collapse
Affiliation(s)
- Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Liu Y, Liu P, Hu Y, Cao Y, Lu J, Yang Y, Lv H, Lian S, Xu B, Li S. Cold-Induced RNA-Binding Protein Promotes Glucose Metabolism and Reduces Apoptosis by Increasing AKT Phosphorylation in Mouse Skeletal Muscle Under Acute Cold Exposure. Front Mol Biosci 2021; 8:685993. [PMID: 34395524 PMCID: PMC8358400 DOI: 10.3389/fmolb.2021.685993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The main danger of cold stress to animals in cold regions is systemic metabolic changes and protein synthesis inhibition. Cold-induced RNA-binding protein is a cold shock protein that is rapidly up-regulated under cold stimulation in contrast to the inhibition of most proteins and participates in multiple cellular physiological activities by regulating targets. Therefore, this study was carried out to investigate the possible mechanism of CIRP-mediated glucose metabolism regulation and survival promotion in skeletal muscle after acute cold exposure. Skeletal muscle and serum from mice were obtained after 0, 2, 4 and 8 h of acute hypothermia exposure. Subsequently, the changes of CIRP, metabolism and apoptosis were examined. Acute cold exposure increased energy consumption, enhanced glycolysis, increased apoptosis, and up-regulated CIRP and phosphorylation of AKT. In addition, CIRP overexpression in C2C12 mouse myoblasts at each time point under 37°C and 32°C mild hypothermia increased AKT phosphorylation, enhanced glucose metabolism, and reduced apoptosis. CIRP knockdown by siRNA interference significantly reduced the AKT phosphorylation of C2C12 cells. Wortmannin inhibited the AKT phosphorylation of skeletal muscle after acute cold exposure, thereby inhibiting glucose metabolism and aggravating apoptosis. Taken together, acute cold exposure up-regulates CIRP in mouse skeletal muscle, which regulates glucose metabolism and maintains energy balance in skeletal muscle cells through the AKT signaling pathway, thus slowing down the apoptosis of skeletal muscle cells.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Cao
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
18
|
Liu Y, Yang Y, Yao R, Hu Y, Liu P, Lian S, Lv H, Xu B, Li S. Dietary supplementary glutamine and L-carnitine enhanced the anti-cold stress of Arbor Acres broilers. Arch Anim Breed 2021; 64:231-243. [PMID: 34159254 PMCID: PMC8209504 DOI: 10.5194/aab-64-231-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/01/2021] [Indexed: 01/16/2023] Open
Abstract
Newborn poultry in cold regions often suffer from cold stress,
causing a series of changes in their physiology and metabolism, leading to
slow growth and decreased production performance. However, a single
anti-stress substance cannot completely or maximally eliminate or alleviate
the various effects of cold stress on animals. Therefore, the effects of the
supplemented glutamine and L-carnitine on broilers under low temperature
were evaluated in this study. Broilers were randomly allocated into 16
groups which were respectively fed with different levels of glutamine and
L-carnitine according to the L16 (45) orthogonal experimental
design for 3 weeks (the first week is the adaptive feeding period; the
second and third weeks are the cold exposure period). Growth performance
was recorded, and blood samples were collected during cold exposure. The
results showed the supplementation had altered the plasma parameters, growth
performance and cold-induced oxidative stress. The increase of
corticosterone and suppression of thyroid hormone was ameliorated.
Supplemented groups had lower daily feed intake and feed-to-gain ratio, higher
daily weight gain and better relative weights of immune organs. Plasma
glucose, total protein, blood urea nitrogen and alkaline phosphatase
changed as well. Oxidative stress was mollified due to the improved
activities of superoxide dismutase and glutathione peroxidase, heightened
total antioxidant capacity and stable malondialdehyde. Dietary glutamine and
L-carnitine improve the growth performance, nutritional status and cold
stress response of broilers at low temperature, and their interaction
occurred.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| |
Collapse
|
19
|
Li X, Lu HY, Jiang XW, Yang Y, Xing B, Yao D, Wu Q, Xu ZH, Zhao QC. Cinnamomum cassia extract promotes thermogenesis during exposure to cold via activation of brown adipose tissue. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113413. [PMID: 32980484 DOI: 10.1016/j.jep.2020.113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cinnamomum cassia (L.) J.Presl (Lauraceae), a widely used traditional Chinese medicine, is well known to exert hot property. It is recorded as dispelling cold drug in ancient Chinese monographs, such as Synopsis of golden chamber published in Han dynasty. According to Chinese Pharmacopoeia (2015), Cinnamomum cassia (L.) J.Presl (Cinnamon) has the functions of dispersing cold, relieving pain, warming meridians and promoting blood circulation. AIM OF THE STUDY The aim of this study is to evaluate the effect of Cinnamon extract (CE) on cold endurance and the mechanism of thermogenesis activity. MATERIALS AND METHODS The improving effect of hypothermia were evaluated with body temperature by infrared camera and multi-thermo thermometer. In vivo, the thermogenic effect was observed with energy metabolism and substrate utilization. The activation of brown adipose tissue (BAT) was evaluated with the histomorphology and expression of thermogenic protein. In vitro, the uncoupling effect on mitochondrial was evaluated with Seahorse and fluorescent staining. The mechanism of thermogenesis was explored in brown adipocyte. RESULTS The body temperature and energy expenditure were significantly increased by CE administration in cold environment. In morphology, lipid droplets were reduced and the number of mitochondrial was increased. CE significantly increased the non-shivering thermogenesis via upregulating the expression of thermogenic protein. In vitro, the uncoupling effect was obviously along with the decreased mitochondrial membrane potential and ATP production. It was confirmed that the thermogenesis effect was induced via lipolysis and energy metabolism. In addition, CE also alleviated myocardium injury in the morphology in cold environment. Moreover, the major constituent was identified as (1) coumarin, (2) cinnamic acid, (3) cinnamaldehyde and (4) 2-methoxy cinnamaldehyde. CONCLUSIONS The mechanism of improving cold tolerance was related to lipolysis and activation of BAT. Meanwhile, we provided a kind of potential prevention methods for cold injury.
Collapse
Affiliation(s)
- Xiang Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Hong-Yuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yue Yang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bo Xing
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Dong Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zi-Hua Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Qing-Chun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| |
Collapse
|
20
|
Kong X, Liu H, He X, Sun Y, Ge W. Unraveling the Mystery of Cold Stress-Induced Myocardial Injury. Front Physiol 2020; 11:580811. [PMID: 33250775 PMCID: PMC7674829 DOI: 10.3389/fphys.2020.580811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Exposure to low ambient temperature imposes great challenge to human health. Epidemiological evidence has noted significantly elevated emergency admission and mortality rate in cold climate in many regions, in particular, adverse events in cardiovascular system. Cold stress is becoming one of the important risk factors for cardiovascular death. Through recent advance in echocardiography and myocardial histological techniques, both clinical and experimental experiments have unveiled that cold stress triggers a variety of pathological and pathophysiological injuries, including ventricular wall thickening, cardiac hypertrophy, elevated blood pressure, decreased cardiac function, and myocardial interstitial fibrosis. In order to examine the potential mechanism of action behind cold stress-induced cardiovascular anomalies, ample biochemical and molecular biological experiments have been conducted to denote a role for mitochondrial injury, intracellular Ca2+ dysregulation, generation of reactive oxygen species (ROS) and other superoxide, altered gene and protein profiles for apoptosis and autophagy, and increased adrenergic receptor sensitivity in cold stress-induced cardiovascular anomalies. These findings suggest that cold stress may damage the myocardium through mitochondrial injury, apoptosis, autophagy, metabolism, oxidative stress, and neuroendocrine pathways. Although the precise nature remains elusive for cold stress-induced cardiovascular dysfunction, endothelin (ET-A) receptor, endoplasmic reticulum (ER) stress, transient receptor potential vanilloid, mitochondrial-related protein including NRFs and UCP-2, ROS, Nrf2-Keap1 signaling pathway, Bcl-2/Bax, and lipoprotein lipase (LPL) signaling may all play a pivotal role. For myocardial injury evoked by cold stress, more comprehensive and in-depth mechanisms are warranted to better define the potential therapeutic options for cold stress-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Xue Kong
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Liu
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaole He
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Xu W, Li H, Wu L, Dong B, Jin J, Han D, Zhu X, Yang Y, Liu H, Xie S. Genetically Based Physiological Responses to Overwinter Starvation in Gibel Carp ( Carassius gibelio). Front Endocrinol (Lausanne) 2020; 11:578777. [PMID: 33329387 PMCID: PMC7711150 DOI: 10.3389/fendo.2020.578777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/22/2020] [Indexed: 01/15/2023] Open
Abstract
Normally, fish will decrease food intake or even stop feeding during the winter. In previous studies, two widely cultured gibel carp strains (strain A and strain F) showed differences in lipid and glucose metabolism. Therefore, we hypothesized that the physiological changes during the overwintering period would be different between the two strains. Thus, the two strains were starved for 77 days, after which the levels of glucose and lipid metabolism, ER stress, autophagy, and apoptosis were determined. The starvation increased hepatic glycogenolysis and fatty acid β-oxidation but suppressed lipogenesis in both strains overwintering. Considering the effects of genotype, strain F had higher levels of ER stress and autophagy but lower levels of apoptosis than strain A, suggesting that strain F might be more resistant to overwintering starvation. The interactions between strains and starvation periods were observed in plasma triglyceride contents and the mRNA levels of pyruvate kinase (pk), sterol regulatory element binding protein 1 (srebp1), activating transcription factor 4 (atf4), and autophagy protein 12 (atg12). In conclusion, long-term starvation during winter could induce hepatic glycogenolysis and fatty acid β-oxidation but suppress lipogenesis, ER stress, autophagy, and apoptosis in gibel carp, and strain F may be more resistant to starvation during winter. Taken together, these results discovered the responses to prolonged starvation stress during winter in two strains of gibel carp and could provide information for genotype selection, especially for selecting strains better adapted to winter.
Collapse
Affiliation(s)
- Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hongyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Junyan Jin,
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
22
|
Konkel L. Taking the Heat: Potential Fetal Health Effects of Hot Temperatures. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:102002. [PMID: 31652107 PMCID: PMC6910775 DOI: 10.1289/ehp6221] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
23
|
Clementi ME, Lazzarino G, Sampaolese B, Brancato A, Tringali G. DHA protects PC12 cells against oxidative stress and apoptotic signals through the activation of the NFE2L2/HO-1 axis. Int J Mol Med 2019; 43:2523-2531. [PMID: 31017264 DOI: 10.3892/ijmm.2019.4170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/10/2019] [Indexed: 11/06/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega‑3 polyunsaturated fatty acid, derived mainly from fish oil. It is well known that DHA is present in high concentrations in nervous tissue and plays an important role in brain development and neuroprotection. However, the molecular mechanisms underlying its role remain to be fully elucidated. In this study, to enhance our understanding of the pathophysiological role of DHA, we investigated the possible neuroprotective mechanisms of action of DHA against hydrogen peroxide (H2O2)‑induced oxidative damage in a rat pheochromocytoma cell line (PC12). Specifically, we evaluated the viability, oxidation potential, and the expression and production of antioxidant/cytoprotective enzymes, and eventual apoptosis. We found that pre‑treatment with DHA (24 h) protected the cells from H2O2‑induced oxidative damage. In particular, pre‑treatment with DHA: i) Antagonized the consistent decrease in viability observed following exposure to H2O2 for 24 h; ii) reduced the high levels of intracellular reactive oxygen species (ROS) associated with H2O2‑induced oxidative stress; iii) increased the intracellular levels of enzymatic antioxidants [superoxide dismutase (SOD) and glutathione peroxidase (GSH‑Px)] both under basal conditions and following H2O2 exposure; iv) augmented the intracellular levels of reduced glutathione (GSH) and ascorbic acid, while it reduced the malondialdehyde (MDA) levels under conditions of oxidative stress; v) upregulated the expression of nuclear factor (erythroid‑derived 2)‑like 2 (NFE2L2) and its downstream target protein, heme‑oxygenase‑1 (HO‑1); and vi) induced an anti‑apoptotic effect by decreasing Bax and increasing Bcl2 expression. These findings provide evidence suggesting that DHA is able to prevent H2O2‑induced oxidative damage to PC12 cells, which is attributed to its antioxidant and anti‑apoptotic effects via the regulation NFE2L2/HO‑1 signaling. Therefore, DHA may play protective role in neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- CNR‑ICRM Institute of 'Chemistry of Molecular Recognition', c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, I‑00168 Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, I‑00168 Rome, Italy
| | - Beatrice Sampaolese
- CNR‑ICRM Institute of 'Chemistry of Molecular Recognition', c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, I‑00168 Rome, Italy
| | - Anna Brancato
- Department of Science for Health Promotion and Mother‑Child Care 'G. D'Alessandro' University of Palermo, I‑90127 Palermo, Italy
| | - Giuseppe Tringali
- A. Gemelli University Polyclinic Foundation, Italy IRCCS, I‑00168 Rome, Italy
| |
Collapse
|
24
|
Tian Z, Jia H, Jin Y, Wang M, Kou J, Wang C, Rong X, Xie X, Han G, Pang X. Chrysanthemum extract attenuates hepatotoxicity via inhibiting oxidative stress in vivo and in vitro. Food Nutr Res 2019; 63:1667. [PMID: 31024225 PMCID: PMC6475127 DOI: 10.29219/fnr.v63.1667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/31/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background ‘Bianliang ziyu’, a famous chrysanthemum variety commonly planted in Kaifeng, China, is often consumed by local residents. However, the hepatoprotective effects of Bianliang ziyu and their underlying mechanisms are not clear. Objective In this study, we investigated the hepatoprotective and antioxidative effects of Bianliang ziyu extract (BZE) on liver injury and explored its molecular mechanisms. Design Sprague-Dawley rats were administered BZE by intragastric administration for 8–9 days, and then alcohol or carbon tetrachloride (CCl4) was administered by gavage to induce acute liver injury. The activities of serum alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and malondialdehyde in the rats were measured, and the liver of each rat was examined for histopathological changes. In vitro, HL-7702 cells were pretreated with BZE for 24 h and then exposed to 30 mmol•L−1 acetaminophen (APAP) for 12 h. The survival rate of the cells and the alanine aminotransferase and aspartate aminotransferase activities were determined. Then, we investigated the effects of BZE on oxidative stress, apoptosis, and the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling in HL-7702 cells induced by APAP. Results The results showed that BZE prevented alcohol-, CCl4-, and APAP-induced liver injury and suppressed hepatic oxidative stress in vitro and in vivo. BZE was also observed to significantly inhibit the reduction of mitochondrial membrane potential and regulate the expression of Bcl-2, Bax and Caspase-3 in APAP-induced HL-7702 cells. In addition, BZE significantly promoted nuclear translocation and the expression of Nrf2 as well as its downstream gene hemeoxygenase-1 (HO-1) in vitro. Furthermore, the findings showed that Nrf2 siRNA reversed the effects of BZE on cell survival and apoptosis-related protein expression in APAP-induced HL-7702 cells. Conclusions BZE plays an important role in preventing hepatotoxicity by inhibiting oxidative stress and apoptosis through activation of Nrf2 signaling. BZE could be developed as an effective functional food for protecting the liver.
Collapse
Affiliation(s)
- Zixia Tian
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Haiyan Jia
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Yuezhen Jin
- Henan Medical Technician Institute, Kaifeng, China
| | - Minghui Wang
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Jiejian Kou
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Chunli Wang
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Xuli Rong
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Xinmei Xie
- Pharmaceutical Institute, Henan University, Kaifeng, China
| | - Guang Han
- Pharmaceutical Institute, Henan University, Kaifeng, China.,Kaifeng Key Lab for Application of Local Dendranthema morifolium in Food & Drug, Kaifeng, China
| | - Xiaobin Pang
- Pharmaceutical Institute, Henan University, Kaifeng, China.,Kaifeng Key Lab for Application of Local Dendranthema morifolium in Food & Drug, Kaifeng, China
| |
Collapse
|
25
|
Luo B, Shi H, Zhang K, Wei Q, Niu J, Wang J, Hammond SK, Liu S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:9-16. [PMID: 30384172 DOI: 10.1016/j.ecoenv.2018.10.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA.
| | - Hongxia Shi
- Health Management Center, Lanzhou University the Second Hospital, Lanzhou 730030, China
| | - Kai Zhang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Wei
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA; Environmental & Occupational Health Sciences, School of Health Sciences, Purdue University, West Lafayette 47907, USA.
| |
Collapse
|
26
|
Cong P, Tong C, Liu Y, Shi L, Shi X, Zhao Y, Xiao K, Jin H, Liu Y, Hou M. CD28 Deficiency Ameliorates Thoracic Blast Exposure-Induced Oxidative Stress and Apoptosis in the Brain through the PI3K/Nrf2/Keap1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8460290. [PMID: 31885821 PMCID: PMC6915017 DOI: 10.1155/2019/8460290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022]
Abstract
Blast exposure is a worldwide public health concern, but most related research has been focused on direct injury. Thoracic blast exposure-induced neurotrauma is a type of indirect injuries where research is lacking. As CD28 stimulates T cell activation and survival and contributes to inflammation initiation, it may play a role in thoracic blast exposure-induced neurotrauma. However, it has not been investigated. To explore the effects of CD28 on thoracic blast exposure-induced brain injury and its potential molecular mechanisms, a mouse model of thoracic blast exposure-induced brain injury was established. Fifty C57BL/6 wild-type (WT) and fifty CD28 knockout (CD28-/-) mice were randomly divided into five groups (one control group and four model groups), with ten mice (from each of the two models) for each group. Lung and brain tissue and serum samples were collected at 12 h, 24 h, 48 h, and 1 week after thoracic blast exposure. Histopathological changes were detected by hematoxylin-eosin staining. The expressions of inflammatory-related factors were detected by ELISA. Oxidative stress in the brain tissue was evaluated by determining the generation of reactive oxygen species (ROS) and the expressions of thioredoxin (TRX), malondialdehyde (MDA), SOD-1, and SOD-2. Apoptosis in the brain tissue was evaluated by TUNEL staining and the levels of Bax, Bcl-xL, Bad, Cytochrome C, and caspase-3. In addition, proteins of related pathways were also studied by western blotting and immunofluorescence. We found that CD28 deficiency significantly reduced thoracic blast exposure-induced histopathological changes and decreased the levels of inflammatory-related factors, including IL-1β, TNF-α, and S100β. In the brain tissue, CD28 deficiency also significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of MDA, TRX, SOD-1, and SOD-2; lowered the number of apoptotic cells and the expression of Bax, cleaved caspase-3, Cytochrome C, and Bad; and maintained Bcl-xL expression. Additionally, CD28 deficiency significantly ameliorated thoracic blast exposure-induced increases of p-PI3K and Keap1 and the decrease of Nrf2 expression in the brain. Our results indicate that CD28 deficiency has a protective effect on thoracic blast exposure-induced brain injury that might be associated with the PI3K/Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Peifang Cong
- 1College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang l10016, China
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Changci Tong
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ying Liu
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lin Shi
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiuyun Shi
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yan Zhao
- 3Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Keshen Xiao
- 3Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hongxu Jin
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yunen Liu
- 2Emergency Medicine Department of General Hospital of Northern theater command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Mingxiao Hou
- 1College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang l10016, China
| |
Collapse
|
27
|
Effects of Acute Cold Stress on Liver O-GlcNAcylation and Glycometabolism in Mice. Int J Mol Sci 2018; 19:ijms19092815. [PMID: 30231545 PMCID: PMC6165085 DOI: 10.3390/ijms19092815] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Protein O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) regulates many biological processes. Studies have shown that O-GlcNAc modification levels can increase during acute stress and suggested that this may contribute to the survival of the cell. This study investigated the possible effects of O-GlcNAcylation that regulate glucose metabolism, apoptosis, and autophagy in the liver after acute cold stress. Male C57BL/6 mice were exposed to cold conditions (4 °C) for 0, 2, 4, and 6 h, then their livers were extracted and the expression of proteins involved in glucose metabolism, apoptosis, and autophagy was determined. It was found that acute cold stress increased global O-GlcNAcylation and protein kinase B (AKT) phosphorylation levels. This was accompanied by significantly increased activation levels of the glucose metabolism regulators 160 kDa AKT substrate (AS160), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), and glycogen synthase kinase-3β (GSK3β). The levels of glycolytic intermediates, fructose-1,6-diphosphate (FDP) and pyruvic acid (PA), were found to show a brief increase followed by a sharp decrease. Additionally, adenosine triphosphate (ATP), as the main cellular energy source, had a sharp increase. Furthermore, the B-cell lymphoma 2(Bcl-2)/Bcl-2-associated X (Bax) ratio was found to increase, whereas cysteine-aspartic acid protease 3 (caspase-3) and light chain 3-II (LC3-II) levels were reduced after acute cold stress. Therefore, acute cold stress was found to increase O-GlcNAc modification levels, which may have resulted in the decrease of the essential processes of apoptosis and autophagy, promoting cell survival, while altering glycose transport, glycogen synthesis, and glycolysis in the liver.
Collapse
|