1
|
Truffin D, Marchand F, Chatelais M, Chêne G, Saias L, Herbst F, Lipner J, King AJ. Impact of Methylated Cyclodextrin KLEPTOSE ® CRYSMEB on Inflammatory Responses in Human In Vitro Models. Int J Mol Sci 2024; 25:9748. [PMID: 39273695 PMCID: PMC11396153 DOI: 10.3390/ijms25179748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
KLEPTOSE® CRYSMEB methylated cyclodextrin derivative displays less methylated group substitution than randomly methylated cyclodextrin. It has demonstrated an impact on atherosclerosis and neurological diseases, linked in part to cholesterol complexation and immune response, however, its impact on inflammatory cascade pathways is not clear. Thus, the impact of KLEPTOSE® CRYSMEB on various pharmacological targets was assessed using human umbilical vein endothelial cells under physiological and inflammatory conditions, followed by screening against twelve human primary cell-based systems designed to model complex human tissue and disease biology of the vasculature, skin, lung, and inflammatory tissues using the BioMAP® Diversity PLUS® panel. Finally, its anti-inflammatory mechanism was investigated on peripheral blood mononuclear cells to evaluate anti-inflammatory or pro-resolving properties. The results showed that KLEPTOSE® CRYSMEB can modulate the immune system in vitro and potentially manage vascular issues by stimulating the expression of molecules involved in the crosstalk between immune cells and other cell types. It showed anti-inflammatory effects that were driven by the inhibition of pro-inflammatory cytokine secretion and could have different impacts on different tissue types. Moreover, this cyclodextrin showed no clear impact on pro-resolving lipid mediators. Additionally, it appeared that the mechanism of action of KLEPTOSE® CRYSMEB seems to not be shared by other well-known anti-inflammatory molecules. Finally, KLEPTOSE® CRYSMEB may have an anti-inflammatory impact, which could be due to its effect on receptors such as TLR or direct complexation with LPS or PGE2, and conversely, this methylated cyclodextrin could stimulate a pro-inflammatory response involving lipid mediators and on proteins involved in communication with immune cells, probably via interaction with membrane cholesterol.
Collapse
Affiliation(s)
- Damien Truffin
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - Flora Marchand
- ProfileHIT, 7 Rue du Buisson, 44680 Sainte-Pazanne, France
| | | | - Gérald Chêne
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Laure Saias
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Frauke Herbst
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Justin Lipner
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Alastair J King
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| |
Collapse
|
2
|
Ma X, Zhang L, Gao F, Jia W, Li C. Salvia miltiorrhiza and Tanshinone IIA reduce endothelial inflammation and atherosclerotic plaque formation through inhibiting COX-2. Biomed Pharmacother 2023; 167:115501. [PMID: 37713995 DOI: 10.1016/j.biopha.2023.115501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
The mechanisms of Salvia miltiorrhiza (SM) and Tanshinone IIA (Tan IIA) in the treatment of atherosclerosis was examined by combining network pharmacology and molecular biology experiments. The TCMSP and BATMAN-TCM databases provided 104 SM candidate ingredients and 813 target genes, while GEO and GeneCards databases identified 35 overlapping targets between SM and coronary artery disease (CAD). From these data, we constructed a CAD-target-active ingredient network, and using Gene Ontology (GO) and KEGG pathway analysis, 211 GO terms and 43 pathways were identified, which facilitated the construction of a key active ingredient-target-pathway network. We then constructed a protein-protein interaction (PPI) network and performed molecular docking simulations between Tan IIA and 10 key target proteins to analyze the interactions between the molecule and the protein. SM was found to alleviate CAD by reducing the expression of key pro-inflammatory factors, such as COX-2 (PTGS2), MMP9, ICAM1, TNF-α, and NF-κB. Tan IIA was identified as the primary effective component of SM in treating CAD, with TNF and PTGS2 being its main targets. We further validated these findings using in vitro/in vivo experiments. The results showed that both SM and Tan IIA attenuated the buildup of plaque and the accumulation of lipids in ApoE-/- mice. In addition, SM and Tan IIA reduced vascular inflammatory factors expression in ApoE-/- mice and ox-LDL-cultured HUVECs. Furthermore, our findings showed that Tan IIA reduced vascular endothelial inflammation and prevented plaque formation via COX-2/TNF-a/NF-κB signaling pathway. We have demonstrated for the first time that Tan IIA plays a vital role in attenuating atherosclerosis by downregulating COX-2 expression.
Collapse
Affiliation(s)
- Xiangke Ma
- Beijing Shijingshan Hospital, Capital Medical University, Beijing 100040, China.
| | - Lei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Fujun Gao
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Weihua Jia
- Beijing Shijingshan Hospital, Capital Medical University, Beijing 100040, China
| | - Chao Li
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
3
|
Luo L, Zhao C, Chen N, Dong Y, Li Z, Bai Y, Wu P, Gao C, Guo X. Characterization of global research trends and prospects on sudden coronary death: A literature visualization analysis. Heliyon 2023; 9:e18586. [PMID: 37576229 PMCID: PMC10413084 DOI: 10.1016/j.heliyon.2023.e18586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Background Sudden coronary death is a major global public health issue that has a significant impact on both individuals and society. Nowadays, scholars are active in sudden coronary death all over the world. However, no relevant bibliometric studies have been published. Here, we aim to gain a better understanding the current state of research and to explore potential new research directions through bibliometric analysis. Methods Articles and reviews on sudden coronary death from 2012 to 2023 were retrieved from the Web of Science Core Collection (WoSCC). The topic search was conducted using the following keywords: ((("sudden cardiac death" OR "sudden death") AND (coronary OR "myocardial infarction")) OR "sudden coronary death"). Knowledge maps of authors, countries, institutions, journals, keywords, and citations were conducted by CiteSpace. Publication dynamics, hotspots, and frontiers were analyzed independently by authors. Results A total of 2914 articles were identified from January 1, 2012 to June 20, 2023. The USA (n = 972) contributed the greatest absolute productivity and UK (centrality = 0.13) built a robust global collaboration. Harvard University was the institution with the highest number of publications (n = 143). Huikuri HV and Junttila MJ were the most published authors who devoted to searching for biomarkers of sudden coronary death. American Journal of Cardiology was the journal with the most publications, and Circulation was the most cited journal. Left ventricular ejection fraction, society, inflammation, and fractional flow reserve became novel burst words that lasted until 2023. Research on etiology and pathology, role of early risk factors in risk stratification, potential predictive biomarkers and novel measurement methods for the prevention and management of sudden coronary death were identified as the research hotspots and frontiers. Conclusion Our knowledge and understanding of sudden coronary death have significantly improved. Ongoing efforts should focus on the various etiologies and pathologies of sudden coronary death. Furthermore, a novel sudden coronary death risk model, large-scale population studies, and the rational use of multiple indicators to individualize the assessment of sudden coronary death and other risk factors are other emerging research trends.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Chunmei Zhao
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Niannian Chen
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiming Dong
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhanpeng Li
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yaqin Bai
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peng Wu
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Cairong Gao
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiangjie Guo
- Department of Pathology, School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Guo F, He M, Hu B, Li G. Levels and clinical significance of the m6A methyltransferase METTL14 in patients with coronary heart disease. Front Cardiovasc Med 2023; 10:1167132. [PMID: 37441706 PMCID: PMC10333499 DOI: 10.3389/fcvm.2023.1167132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Objective To investigate the association of methyltransferase-like protein 14 (METTL14) expression with coronary heart disease (CHD). Methods Three hundred and sixteen patients who attended Henan Provincial People's Hospital between June 2019 and February 2021 with principal symptoms of pain or tightness in the chest and who underwent coronary angiography for definitive diagnosis were enrolled. The uric acid, TG, TC, LDL-C, HDL-C, apolipoprotein A1, free fatty acid, lipoprotein a, homocysteine, CRP, and SAA levels were examined. The levels of METTL14, TNF-α, MCP-1, VCAM-1, ICAM-1, and IL-6 were evaluated by ELISA. Results Patients with CHD had significantly higher m6A methyltransferase activity. In addition, the incidence of diabetes and hypertension, as well as the concentrations of TC, CRP, and SAA were higher in CHD patients. Patients with coronary lesion branches also had significantly increased TG, LDL-C, CRP, and SAA levels. TNF-α, MCP-1, VCAM-1, ICAM-1, and IL-6 expression was also markedly increased in the CHD group (P < 0.001) as was the expression of METTL14 (P < 0.001). The METTL14 expression levels also differed significantly in relation to the number of branches with lesions (P < 0.01) and were correlated with SAA, VCAM-1, ICAM-1, IL-6, and the Gensini score. ROC curve analyses of METTL14 in CHD indicated an AUC of 0.881 (0.679, 0.894) with a cut-off value of 342.37, a sensitivity of 77%, and a specificity of 84%. MCP-1, VCAM-1, IL-6, SAA, and METTL14 were found to independently predict CHD risk. Conclusions METTL14 levels were found to be positively associated with inflammatory markers and to be an independent predictor of CHD risk.
Collapse
Affiliation(s)
- Fengxia Guo
- Department of Clinical Laboratory, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Mei He
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People’s Hospital, Zhengzhou, China
| | - Bing Hu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Li
- Department of Clinical Laboratory, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Udaya R, Sivakanesan R. Synopsis of Biomarkers of Atheromatous Plaque Formation, Rupture and Thrombosis in the Diagnosis of Acute Coronary Syndromes. Curr Cardiol Rev 2022; 18:53-62. [PMID: 35410616 PMCID: PMC9896418 DOI: 10.2174/1573403x18666220411113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022] Open
Abstract
Acute coronary syndrome is the main cause of mortality and morbidity worldwide and early diagnosis is a challenge for clinicians. Though cardiac Troponin, the most commonly used biomarker, is the gold standard for myocardial necrosis, it is blind for ischemia without necrosis. Therefore, ideal biomarkers are essential in the care of patients presenting with symptoms suggestive of cardiac ischemia. The ideal biomarker or group of biomarkers of atheromatous plaque formation, rupture and thrombosis for timely and accurate diagnosis of acute coronary syndrome is a current need. Therefore, we discuss the existing understanding and future of biomarkers of atheromatous plaque formation, rupture and thrombosis of acute coronary syndrome in this review. Keywords were searched from Medline, ISI, IBSS and Google Scholar databases. Further, the authors conducted a manual search of other relevant journals and reference lists of primary articles. The development of high-sensitivity troponin assays facilitates earlier exclusion of acute coronary syndrome, contributing to a reduced length of stay at the emergency department, and earlier treatment resulting in better outcomes. Although researchers have investigated biomarkers of atheromatous plaque formation, rupture and thrombosis to help early diagnosis of cardiac ischemia, most of them necessitate validation from further analysis. Among these biomarkers, pregnancy-associated plasma protein-A, intercellular adhesion molecule-1, and endothelial cell-specific molecule- 1(endocan) have shown promising results in the early diagnosis of acute coronary syndrome but need further evaluation. However, the use of a combination of biomarkers representing varying pathophysiological mechanisms of cardiac ischemia will support risk assessment, diagnosis and prognosis in these patients and this is the way forward.
Collapse
Affiliation(s)
- Ralapanawa Udaya
- Address correspondence to this author at the Department of Medicine, University of Peradeniya, Galaha Rd, 20400, Sri Lanka; Tel: 0718495682; E-mail:
| | | |
Collapse
|
6
|
Peng J, Le CY, Xia B, Wang JW, Liu JJ, Li Z, Zhang QJ, Zhang Q, Wang J, Wan CW. Research on the correlation between activating transcription factor 3 expression in the human coronary artery and atherosclerotic plaque stability. BMC Cardiovasc Disord 2021; 21:356. [PMID: 34320932 PMCID: PMC8317287 DOI: 10.1186/s12872-021-02161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background Activating transcription factor 3 (ATF3) is an early response gene that is activated in response to atherosclerotic stimulation and may be an important factor in inhibiting the progression of atherosclerosis. In this study, we directly measured the expression of ATF3 and inflammatory factors in human coronary atherosclerotic plaques to examine the relationship between ATF3 expression, inflammation and structural stability in human coronary atherosclerotic plaques. Methods A total of 68 coronary artery specimens were collected from the autopsy group, including 36 cases of sudden death from coronary heart disease (SCD group) and 32 cases of acute death caused by mechanical injury with coronary atherosclerosis (CHD group). Twenty-two patients who had no coronary heart disease were collected as the control group (Con group). The histological structure of the coronary artery was observed under a light microscope after routine HE staining, and the intimal and lesion thicknesses, thickness of the fibrous cap, thickness of necrosis core, degree of lumen stenosis were assessed by image analysis software. Western blotting and immunohistochemistry were used to measure the expression and distribution of ATF3, inflammatory factors (CD45, IL-1β, TNF-α) and matrix metalloproteinase-9 (MMP-9) and vascular cell adhesion molecule 1 (VCAM1) in the coronary artery. The Pearson correlation coefficient was used to analyse the correlation between ATF3 protein expression and inflammatory factors and between ATF3 protein expression and structure-related indexes in the lesion group. Results Compared with those in the control group, the intima and necrotic core in the coronary artery were thickened, the fibrous cap became thin and the degree of vascular stenosis was increased in the lesion group, while the intima and necrotic core became thicker and the fibrous cap became thinner in the SCD group than in the CHD group (P < 0.05). There was no or low expression of ATF3, inflammatory factors, VCAM1 and MMP-9 in the control group, and the expression of inflammatory factors, VCAM1 and MMP-9 in the SCD group was higher than that in CHD group, while the expression of ATF3 in the SCD group was significantly lower than that in CHD group (P < 0.05). In the lesion group, the expression of ATF3 was negatively correlated with intimal and necrotic focus thickness, positively correlated with fibrous cap thickness (P < 0.01), and negatively correlated with inflammatory factors, VCAM1 and MMP-9 (P < 0.01). Conclusions The expression of ATF3 may be related to the progression and stability of atherosclerotic plaques, and may affect the structural stability of atherosclerotic plaques by regulating the inflammatory response, thus participating in the regulation of atherosclerotic progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02161-9.
Collapse
Affiliation(s)
- J Peng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - C Y Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - B Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - J W Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - J J Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Z Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Q J Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Q Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - J Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - C W Wan
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
7
|
Li J, Wang C, Wang W, Liu L, Zhang Q, Zhang J, Wang B, Wang S, Hou L, Gao C, Yu X, Sun L. PRDX2 Protects Against Atherosclerosis by Regulating the Phenotype and Function of the Vascular Smooth Muscle Cell. Front Cardiovasc Med 2021; 8:624796. [PMID: 33791345 PMCID: PMC8006347 DOI: 10.3389/fcvm.2021.624796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2), an inhibitor of reactive oxygen species (ROS), is potentially involved in the progression of atherosclerosis (AS). The aim of this study was to explore the role and mechanism of PRDX2 in AS. The expression of PRDX2 was evaluated in 14 human carotid artery tissues with or without AS. The results showed that the positive reaction of PRDX2 was observed in the carotid artery vascular smooth muscle cells (CAVSMCs). To assess the mechanism by which PRDX2 may function in AS, the CAVSMCs were transfected with pEX4-PRDX2 and si-PRDX2. The catalase, hydrogen peroxide (H2O2) scavenger, was used to further confirm that PRDX2-induced inhibitory effects might be mediated through reducing ROS levels. Phenotype alteration and functional testing included transcription testing, immunostaining, and expression studies. The drug of MAPK signaling pathway inhibitors SB203580, SP600125, and PD98059 was used to evaluate the underlying mechanism. In this study, we found that the protein level of PRDX2 and the level of H2O2 were higher in the human AS carotid artery tissues than in the normal carotid artery tissues, accompanied with the activation of MAPK signaling pathway. The up-regulation of PRDX2 in the CAVSMCs significantly decreased the expression of ROS, collagen type I (COL I), collagen type III (COL III), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) and inhibited the proliferation, migration, and transformation of the CAVSMCs. The up-regulation of PRDX2 reversed the effect of the CAVSMCs treated with tumor necrosis factor-α (TNF-α). In addition, PRDX2 down-regulation promoted the protein levels of p-p38, p-JNK, and p-ERK, which was confirmed in relevant MAPK inhibitor treatment experiments. Our results suggest a protective role of PRDX2, as a scavenger of ROS, in AS progression through inhibiting the VSMC phenotype alteration and function via MAPK signaling pathway.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenjing Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lingzi Liu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuanzhou Gao
- Department of Electron Microscope, Dalian Medical University, Dalian, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lei Sun
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Piccioni A, Valletta F, Zanza C, Esperide A, Franceschi F. Novel biomarkers to assess the risk for acute coronary syndrome: beyond troponins. Intern Emerg Med 2020; 15:1193-1199. [PMID: 32621267 DOI: 10.1007/s11739-020-02422-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
Current diagnostic biomarkers for ACS are mainly represented by troponin I and troponin T. Dosing of these two molecules often leads to false positive results, since their plasma levels can increase in several different systemic settings. Therefore, identification of new markers able to detect patients with acute coronary syndromes is an emerging priority. On this view, many studies have been performed on different microRNAs, mitochondrial peptides, inflammatory cytokines and adhesion molecules with very promising results. Besides their introduction in screening programs, further studies are now needed in the acute setting, beyond or in association with troponin levels. This will help to better discriminate the real occurrence of an ACS in many patients accessing the emergency department for chest pain.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | - Federico Valletta
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Christian Zanza
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Alessandra Esperide
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Francesco Franceschi
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
9
|
Quan XQ, Wang RC, Zhang Q, Zhang CT, Sun L. The predictive value of lymphocyte-to-monocyte ratio in the prognosis of acute coronary syndrome patients: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020; 20:338. [PMID: 32669086 PMCID: PMC7362430 DOI: 10.1186/s12872-020-01614-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
Background The association between the lymphocyte-to-monocyte ratio (LMR) and prognosis in the patients with acute coronary syndrome (ACS) is not fully understood. We performed this systematic review and meta-analysis to evaluate the correlation between LMR and mortality or major adverse cardiac events (MACE) in patients with ACS. Methods A systematic search was performed in PubMed, MEDLINE, EMBASE, the Cochrane Library, Scopus, and Web of science. The association between LMR and mortality/MACE was analyzed in patients with ACS. The search was updated to April 15, 2020. Results A total of 5 studies comprising 4343 patients were included in this meta-analysis. The results showed that lower LMR predicted higher short-term mortality/MACE (hazard ratio [HR] = 3.44, 95% confidence interval [CI]: 1.46–8.14, P < 0.05) and long-term mortality/MACE (HR = 1.70, 95% CI: 1.36–2.13, P < 0.05). In the subgroup analysis, there was still statistical significance of long-term mortality/MACE in all subgroups. Conclusions This study suggested that lower LMR value might be associated with higher short-term and long-term mortality/MACE in ACS patients. Especially for younger ACS patients, low LMR was more closely associated with poor prognosis.
Collapse
Affiliation(s)
- Xiao-Qing Quan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Run-Chang Wang
- Second clinical medical college, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Sun
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China.
| |
Collapse
|