1
|
Głuszek S, Adamus-Białek W, Chrapek M, Dziuba A, Dulębska J, Kozieł D, Matykiewicz J, Wawszczak-Kasza M. Genetic Variability in the CPA1 Gene and Its Impact on Acute Pancreatitis Risk: New Insights from a Large-Scale Study. Int J Mol Sci 2024; 25:11301. [PMID: 39457082 PMCID: PMC11508624 DOI: 10.3390/ijms252011301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Acute pancreatitis (AP) is a common and potentially lethal disease. Over the last 10 years, AP has become one of the most important healthcare problems. On a global scale, the incidence has increased by 63% over the last 20 years. AP is usually caused by gallstones and excessive alcohol consumption and genetic factors play an important role in the development of inflammation. Recent studies involving the CPA1 mutations are ambiguous and dependent on the population studied. In this study, the variability of the CPA1 gene in patients with AP was analyzed. Genetic material was isolated from the blood of 301 patients with AP and 184 healthy individuals. Identification of the variants in exons 5, 6, 8, and 9 with introns was performed using molecular biology methods. Mutations were identified by comparison to the reference sequence (NM_001868.4). Statistical analysis included the identification of mutations correlating with the risk of AP, the etiology of inflammation, and family history. Several novel mutations in the CPA1 gene have been identified, along with a high degree of variability within the coding region of the carboxypeptidase gene. A correlation between mutations CPA1:c.1072 + 84del; c.987 + 57G>A and increased risk of developing AP was found. Two protective mutations, CPA1:c.625A>T, c.1072 + 94del, were identified. The CPA1 gene is characterized by high sequence variability and regions in which mutations lead to an increased risk of developing AP. Single or co-occurring mutations of the CPA1 gene can significantly affect the risk of developing AP.
Collapse
Affiliation(s)
- Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Wioletta Adamus-Białek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Magdalena Chrapek
- Department of Mathematics, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Anna Dziuba
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Julia Dulębska
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Dorota Kozieł
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Jarosław Matykiewicz
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| | - Monika Wawszczak-Kasza
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland (W.A.-B.)
| |
Collapse
|
2
|
Liu M, Ma L, An W, Yang Y, Liu J, Jiang H, Yuan J, Sun X, Zhu J, Yan M, Wang L, Li Z, Liao Z, Sun C. Heterozygous Spink1 c.194+2T>C mutation promotes chronic pancreatitis after acute attack in mice. Pancreatology 2024; 24:677-689. [PMID: 38763786 DOI: 10.1016/j.pan.2024.05.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND & AIMS Mutations in genes, including serine protease inhibitor Kazal-type 1 (SPINK1), influence disease progression following sentinel acute pancreatitis event (SAPE) attacks. SPINK1 c.194+2T > C intron mutation is one of the main mutants of SPINK1,which leads to the impairment of SPINK1 function by causing skipping of exon 3. Research on the pathogenesis of SAPE attacks would contribute to the understanding of the outcomes of acute pancreatitis. Therefore, the aim of the study was to clarify the role of SPINK1 c.194+2T > C mutation in the CP progression after an AP attack. METHODS SAPE attacks were induced in wildtype and SPINK mutant (Spink1 c.194+2T > C) mice by cerulein injection. The mice were sacrificed at 24 h, 14 d, 28 d, and 42 d post-SAPE. Data-independent acquisition (DIA) proteomic analysis was performed for the identification of differentially expressed protein in the pancreatic tissues. Functional analyses were performed using THP-1 and HPSCs. RESULTS Following SAPE attack, the Spink1 c.194+2T > C mutant mice exhibited a more severe acute pancreatitis phenotype within 24 h. In the chronic phase, the chronic pancreatitis phenotype was more severe in the Spink1 c.194+2T > C mutant mice after SAPE. Proteomic analysis revealed elevated IL-33 level in Spink1 c.194+2T > C mutant mice. Further in vitro analyses revealed that IL-33 induced M2 polarization of macrophages and activation of pancreatic stellate cells. CONCLUSION Spink1 c.194+2T > C mutation plays an important role in the prognosis of patients following SAPE. Heterozygous Spink1 c.194+2T > C mutation promotes the development of chronic pancreatitis after an acute attack in mice through elevated IL-33 level and the induction of M2 polarization in coordination with pancreatic stellate cell activation.
Collapse
Affiliation(s)
- Muyun Liu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Department of Gastroenterology, NO. 905 Hospital of PLA Navy affiliated to Naval Medical University, Shanghai, 200050, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Lizhe Ma
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China; Department of Gastroenterology, No 988 Hospital of PLA Joint Logistics Support Force, Zhengzhou, 450000, China
| | - Wei An
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
| | - Juncen Liu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Hui Jiang
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China; Department of Pathology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Jihang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xiaoru Sun
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Jingyi Zhu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Maoyun Yan
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Luowei Wang
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Zhuan Liao
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Chang Sun
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| |
Collapse
|
3
|
Furukawa R, Kuwatani M, Jiang JJ, Tanaka Y, Hasebe R, Murakami K, Tanaka K, Hirata N, Ohki I, Takahashi I, Yamasaki T, Shinohara Y, Nozawa S, Hojyo S, Kubota SI, Hashimoto S, Hirano S, Sakamoto N, Murakami M. GGT1 is a SNP eQTL gene involved in STAT3 activation and associated with the development of Post-ERCP pancreatitis. Sci Rep 2024; 14:12224. [PMID: 38806529 PMCID: PMC11133343 DOI: 10.1038/s41598-024-60312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Yuki Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Kumiko Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Noriyuki Hirata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Izuru Ohki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Shunichiro Nozawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Girodon E, Rebours V, Chen JM, Pagin A, Levy P, Ferec C, Bienvenu T. Clinical interpretation of SPINK1 and CTRC variants in pancreatitis. Pancreatology 2020; 20:1354-1367. [PMID: 32948427 DOI: 10.1016/j.pan.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Since the description of the SPINK1 gene encoding the serine protease inhibitor Kazal type 1 and the CTRC gene encoding the Chymotrypsin C as being involved in chronic pancreatitis, more than 56 SPINK1 and 87 CTRC variants have been reported. Assessing the clinical relevance of SPINK1 and CTRC variants is often complicated in the absence of functional evidence and interpretation of rare variants is not very easy in clinical practice. The aim of this study was to review the different variants identified in these two genes and to classify them according to their degree of damaging effect. This classification was based on the results of in vitro experiments, in silico analysis using different prediction tools, and on population data, in comparing the allelic frequency of each variant in patients with pancreatitis and in unaffected control individuals. This review should help geneticists and clinicians in charge of patient's care and genetic counseling to interpret the results of genetic studies.
Collapse
Affiliation(s)
- Emmanuelle Girodon
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP. Centre-Université de Paris, France
| | - Vinciane Rebours
- Service de Pancréatologie-Gastroentérologie, Pôle des Maladies de l'Appareil Digestif, Université Denis Diderot, Hôpital Beaujon, APHP, DHU UNITY, Clichy, France; Centre de Référence des Maladies Rares du Pancréas, PAncreaticRaresDISeases (PaRaDis), France
| | - Jian Min Chen
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", INSERM, EFS - Bretagne, Université de Brest, CHRU Brest, Brest, France
| | - Adrien Pagin
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Philippe Levy
- Service de Pancréatologie-Gastroentérologie, Pôle des Maladies de l'Appareil Digestif, Université Denis Diderot, Hôpital Beaujon, APHP, DHU UNITY, Clichy, France
| | - Claude Ferec
- Centre de Référence des Maladies Rares du Pancréas, PAncreaticRaresDISeases (PaRaDis), France
| | - Thierry Bienvenu
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP. Centre-Université de Paris, France.
| |
Collapse
|
5
|
Usategui-Martín R, Carbonell C, Novo-Veleiro I, Hernández-Pinchete S, Mirón-Canelo JA, Chamorro AJ, Marcos M. Association between genetic variants in CYP2E1 and CTRC genes and susceptibility to alcoholic pancreatitis: A systematic review and meta-analysis. Drug Alcohol Depend 2020; 209:107873. [PMID: 32045777 DOI: 10.1016/j.drugalcdep.2020.107873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic predisposition plays an important role in the development of alcoholic pancreatitis (AP), with previous studies suggesting that genetics variants in certain genes, such asCYP2E1 and CTRC, partially explain individual susceptibility to this disease. Therefore, the aim of this work was to conduct a systematic review and meta-analysis of existing studies that analyzed how polymorphisms within CYP2E1 and CTRC genes influence the risk of AP. MATERIAL AND METHODS We performed a systematic review of studies that analyzed the genotype distribution of CYP2E1 and CTRC allelic variants among patients with AP and a group of controls. A meta-analysis was conducted using a random effects model. Odds ratios (ORs) and their confidence intervals (CIs) were calculated. RESULTS The T allele of theCTRC 180 C > T variant was significantly more prevalent among patients with AP compared to all controls (OR = 1.79, 95% CI = 1.43-2.24; P < 0.00001) and healthy subjects (OR = 1.84, 95% CI = 1.46-2.31; P < 0.00001). The Trp variant of CTRC Arg254Trp polymorphism was also more prevalent in patients with AP; however, these results were not significant after excluding one study. We found no clear evidence that CYP2E1-DraI or of CYP2E1-RsaI/PstI polymorphisms modulate the risk of developing AP. CONCLUSIONS Our meta-analysis supports that the T allele ofCTRC 180C > T polymorphisms modulates the risk of alcoholic pancreatitis. No clear evidence was found for the remaining SNPs being associated with this disease.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada (IOBA). University of Valladolid, Valladolid, Spain.
| | - Cristina Carbonell
- Alcoholism Unit. Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Working Group on Alcohol and Alcoholism. Spanish Society of Internal Medicine (SEMI), Spain.
| | - Ignacio Novo-Veleiro
- Working Group on Alcohol and Alcoholism. Spanish Society of Internal Medicine (SEMI), Spain; Department of Internal Medicine, University Hospital of Santiago de Compostela, A Coruña, Spain.
| | | | | | - Antonio-Javier Chamorro
- Alcoholism Unit. Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Working Group on Alcohol and Alcoholism. Spanish Society of Internal Medicine (SEMI), Spain; Department of Medicine, University of Salamanca, Salamanca, Spain.
| | - Miguel Marcos
- Alcoholism Unit. Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Working Group on Alcohol and Alcoholism. Spanish Society of Internal Medicine (SEMI), Spain; Department of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
6
|
CaMKII/proteasome/cytosolic calcium/cathepsin B axis was present in tryspin activation induced by nicardipine. Biosci Rep 2019; 39:BSR20190516. [PMID: 31221819 PMCID: PMC6603279 DOI: 10.1042/bsr20190516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Premature trypsinogen activation is the early event of acute pancreatitis. Therefore, the studies on the processes of trypsinogen activation induced by compounds are important to understand mechanism underly acute pancreatitis under various conditions. Calcium overload in the early stage of acute pancreatitis was previously found to cause intracellular trypsinogen activation; however, treatment of acute pancreatitis using calcium channel blockers did not produced consistent results. Proteasome activity that could be inhibited by some calcium channel blocker has recently been reported to affect the development of acute pancreatitis; however, the associated mechanism were not fully understood. Here, the roles of nicardipine were investigated in trypsinogen activation in pancreatic acinar cells. The results showed that nicardipine could increase cathepsin B activity that caused trypsinogen activation, but higher concentration of nicardipine or prolonged treatment had an opposite effect. The effects of short time treatment of nicardipine at low concentration were studied here. Proteasome inhibition was observed under nicardipine treatment that contributed to the up-regulation in cytosolic calcium. Increased cytosolic calcium from ER induced by nicardipine resulted in the release and activation of cathepsin B. Meanwhile, calcium chelator inhibited cathepsin B as well as trypsinogen activation. Consistently, proteasome activator protected acinar cells from injury induced by nicardipine. Moreover, proteasome inhibition caused by nicardipine depended on CaMKII. In conclusion, CaMKII down-regulation/proteasome inhibition/cytosolic calcium up-regulation/cathepsin B activation/trypsinogen activation axis was present in pancreatic acinar cells injury under nicardipine treatment.
Collapse
|
7
|
Deng Y, Li Z. Effects of PRSS1-PRSS2 rs10273639, CLDN2 rs7057398 and MORC4 rs12688220 polymorphisms on individual susceptibility to pancreatitis: A meta-analysis. Genomics 2019; 112:848-852. [PMID: 31163246 DOI: 10.1016/j.ygeno.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genetic association studies regarding relationship between PRSS1-PRSS2 rs10273639/CLDN2 rs7057398/MORC4 rs12688220 polymorphisms and pancreatitis yielded conflicting results. We performed this meta-analysis to explore associations between these polymorphisms and pancreatitis in a larger pooled population. METHODS A systematic search of the literature was conducted for eligible studies. We used Review Manager to conduct statistical analyses. RESULTS Fifteen studies were included in this meta-analysis. The results of pooled analyses showed that CLDN2 rs7057398, MORC4 rs12688220 and PRSS1-PRSS2 rs10273639 polymorphisms were all significantly associated with susceptibility to acute pancreatitis in Caucasians. Moreover, MORC4 rs12688220 and PRSS1-PRSS2 rs10273639 polymorphisms were also significantly associated with susceptibility to chronic pancreatitis in Asians. CONCLUSIONS Our findings suggested that rs7057398, rs12688220 and rs10273639 polymorphisms could be used to identify individuals at an elevated susceptibility to acute pancreatitis in Caucasians. Moreover, rs12688220 and rs10273639 polymorphisms could be used to identify individuals at an elevated susceptibility chronic pancreatitis in Asians.
Collapse
Affiliation(s)
- Yanjun Deng
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenhua Li
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
8
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
9
|
Common variants in the CLDN2-MORC4 and PRSS1-PRSS2 loci confer susceptibility to acute pancreatitis. Pancreatology 2018; 18:477-481. [PMID: 29884332 DOI: 10.1016/j.pan.2018.05.486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Acute pancreatitis (AP) is one of the most common gastrointestinal disorders often requiring hospitalization. Frequent aetiologies are gallstones and alcohol abuse. In contrast to chronic pancreatitis (CP) few robust genetic associations have been described. Here we analysed whether common variants in the CLDN2-MORC4 and the PRSS1-PRSS2 locus that increase recurrent AP and CP risk associate with AP. METHODS We screened 1462 AP patients and 3999 controls with melting curve analysis for SNPs rs10273639 (PRSS1-PRSS2), rs7057398 (RIPPLY), and rs12688220 (MORC4). Calculations were performed for the overall group, aetiology, and gender sub-groups. To examine genotype-phenotype relationships we performed several meta-analyses. RESULTS Meta-analyses of all AP patients depicted significant (p-value < 0.05) associations for rs10273639 (odds ratio (OR) 0.88, 95% confidence interval (CI) 0.81-0.97, p-value 0.01), rs7057398 (OR 1.27, 95% CI 1.07-1.5, p-value 0.005), and rs12688220 (OR 1.32, 95% CI 1.12-1.56, p-value 0.001). For the different aetiology groups a significant association was shown for rs10273639 (OR 0.76, 95% CI 0.63-0.92, p-value 0.005), rs7057398 (OR 1.43, 95% CI 1.07-1.92, p-value 0.02), and rs12688220 (OR 1.44, 95% CI 1.07-1.93, p-value 0.02) in the alcoholic sub-group only. CONCLUSIONS The association of CP risk variants with different AP aetiologies, which is strongest in the alcoholic AP group, might implicate common pathomechanisms most likely between alcoholic AP and CP.
Collapse
|
10
|
Chen Y, Xie CL, Hu R, Shen CY, Zeng M, Wu CQ, Chen TW, Chen C, Tang MY, Xue HD, Jin ZY, Zhang XM. Genetic Polymorphisms: A Novel Perspective on Acute Pancreatitis. Gastroenterol Res Pract 2017; 2017:5135172. [PMID: 29333155 PMCID: PMC5733231 DOI: 10.1155/2017/5135172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a complex disease that results in significant morbidity and mortality. For many decades, it has compelled researchers to explore the exact pathogenesis and the understanding of the pathogenesis of AP has progressed dramatically. Currently, premature trypsinogen activation and NF-κB activation for inflammation are two remarkable hypotheses for the mechanism of AP. Meanwhile, understanding of the influence of genetic polymorphisms has resulted in tremendous development in the understanding of the advancement of complex diseases. Now, genetic polymorphisms of AP have been noted gradually and many researchers devote themselves to this emerging area. In this review, we comprehensively describe genetic polymorphisms combined with the latest hypothesis of pathogenesis associated with AP.
Collapse
Affiliation(s)
- Yong Chen
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chao Lian Xie
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Hu
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Yi Shen
- Sichuan Key Laboratory of Medical Imaging and Department of Pathophysiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mei Zeng
- Biology Group, North Sichuan Medical College, Nanchong, China
| | - Chang Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chen Chen
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hua Dan Xue
- Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Yu Jin
- Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Głuszek S, Kowalik A, Kozieł D, Wawrzycka I, Głuszek-Osuch M, Matykiewicz J. CTRC gene polymorphism may increase pancreatic cancer risk – preliminary study. POLISH JOURNAL OF SURGERY 2017; 89:48-53. [DOI: 10.5604/01.3001.0010.5411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic cancer is often fatal due to delayed diagnosis and treatment difficulties. Objective: To analyze selected SPINK1, CTRC, CFTR, and PRSS1 gene mutations in cancer tissue and blood samples of patients with pancreatic tumors. Materials and method: We enrolled 16 consecutive patients diagnosed with pancreatic tumors. We collected cancer tissue, normal pancreatic tissue, and blood samples for genetic tests. The control group consisted of 419 healthy individuals. Peripheral blood samples were collected from all study participants in EDTA-coated tubes. Results: Out of 16 patients with pancreatic tumors, 12 had pancreatic cancer on microscopic examination (mean age, 60.2 years). The CTRC polymorphism Hetero p.G60=(c.180C>T) was found in 5 patients with pancreatic cancer (41.7% vs. 18.6% in the control group). One patient with pancreatic cancer and a positive family history had the SPINK1 (p.N34S) mutation [8.3% vs. 2.9% (12/419) in the control group]. One patient with pancreatic cancer had the CTRC (p.R254W) mutation [8.3% vs. 1% (4/419) in the control group]. Conclusions: Our preliminary results show that the CTRC polymorphism p.G60= (c.180C>T) is frequent in patients with pancreatic cancer. However, further research is needed to verify our findings.
Collapse
Affiliation(s)
- Stanisław Głuszek
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland; Head: prof. dr hab. n. med. Stanisław Głuszek Department of General, Oncological and Endocrinological Surgery, Voivodeship Hospital, Kielce, Poland; prof. dr hab. n. med. Stanisław Głuszek
| | - Artur Kowalik
- Department of Molecular Diagnostic, Holy Cross Cancer Centre, Kielce, Poland; Head: dr n. med. Artur Kowalik
| | - Dorota Kozieł
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland; Head: prof. dr hab. n. med. Stanisław Głuszek
| | - Iwona Wawrzycka
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland; Head: prof. dr hab. n. med. Stanisław Głuszek Department of General, Oncological and Endocrinological Surgery, Voivodeship Hospital, Kielce, Poland; prof. dr hab. n. med. Stanisław Głuszek
| | - Martyna Głuszek-Osuch
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland; Head: prof. dr hab. n. med. Stanisław Głuszek
| | - Jarosław Matykiewicz
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland; Head: prof. dr hab. n. med. Stanisław Głuszek Department of General, Oncological and Endocrinological Surgery, Voivodeship Hospital, Kielce, Poland; prof. dr hab. n. med. Stanisław Głuszek
| |
Collapse
|