1
|
Kabisch S, Hajir J, Sukhobaevskaia V, Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber on Inflammation in Humans. Int J Mol Sci 2025; 26:2000. [PMID: 40076626 PMCID: PMC11900212 DOI: 10.3390/ijms26052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Cohort studies consistently show that a high intake of cereal fiber and whole-grain products is associated with a decreased risk of type 2 diabetes (T2DM), cancer, and cardiovascular diseases. Similar findings are also reported for infectious and chronic inflammatory disorders. All these disorders are at least partially caused by inflammaging, a chronic state of inflammation associated with aging and Metabolic Syndrome. Surprisingly, insoluble (cereal) fiber intake consistently shows stronger protective associations with most long-term health outcomes than soluble fiber. Most humans consume soluble fiber mainly from sweet fruits, which usually come with high levels of sugar, counteracting the potentially beneficial effects of fiber. In both observational and interventional studies, high-fiber diets show a beneficial impact on inflammation, which can be attributed to a variety of nutrients apart from dietary fiber. These confounders need to be considered when evaluating the effects of fiber as part of complex dietary patterns. When assessing specific types of fiber, inulin and resistant starch clearly elicit anti-inflammatory short-term effects, while results for pectins, beta-glucans, or psyllium turn out to be less convincing. For insoluble fiber, promising but sparse data have been published so far. Hypotheses on putative mechanisms of anti-inflammatory fiber effects include a direct impact on immune cells (e.g., for pectin), fermentation to pleiotropic short-chain fatty acids (for fermentable fiber only), modulation of the gut microbiome towards higher levels of diversity, changes in bile acid metabolism, a differential release of gut hormones (such as the glucose-dependent insulinotropic peptide (GIP)), and an improvement of insulin resistance via the mTOR/S6K1 signaling cascade. Moreover, the contribution of phytate-mediated antioxidative and immune-modulatory means of action needs to be considered. In this review, we summarize the present knowledge on the impact of fiber-rich diets and dietary fiber on the human inflammatory system. However, given the huge heterogeneity of study designs, cohorts, interventions, and outcomes, definite conclusions on which fiber to recommend to whom cannot yet be drawn.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jasmin Hajir
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Varvara Sukhobaevskaia
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism; The ARDEN NET Centre, ENETS CoE; University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Faubel N, Blanco-Morales V, Sentandreu V, Barberá R, Garcia-Llatas G. Modulation of microbiota composition and markers of gut health after in vitro dynamic colonic fermentation of plant sterol-enriched wholemeal rye bread. Food Res Int 2025; 201:115570. [PMID: 39849717 DOI: 10.1016/j.foodres.2024.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
A human oral phase followed by a dynamic gastrointestinal digestion and colonic fermentation (simgi®) has been applied to wholemeal rye bread (WRB) and PS-enriched WRB (PS-WRB). The aim of this study was to evaluate the impact of these solid and high-fiber food matrices on the metabolism of PS, modulation of the microbiota and production of short-chain fatty acids (SCFA) and ammonium ion after a simulated chronic intake (5 days). In both breads, campesterol, campestanol, stigmasterol, β-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-stigmastenol, and Δ7-avenasterol were identified, of which only β-sitosterol was metabolized to sitostenone after PS-WRB treatment. The presence of fiber in both breads exerted a prebiotic effect after fermentation by the increase in Firmicutes (Lactobacillus genus, maximum abundance of 89-99 %) and Actinobacteria (Bifidobacterium genus, maximum abundance of 30-31 %), reflected in an increase of SCFA content. The reduction of proteolytic activity confirmed by the decrease in ammonium ion contents is related to a reduction in the Proteobacteria phylum. Thus, PS-WRB could be considered as a healthy staple food choice since, besides the known hypocholesterolemic effect of PS, rye bread fiber preserves the beneficial microbiota and exerts a positive impact on markers of gut health.
Collapse
Affiliation(s)
- Nerea Faubel
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Virginia Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Vicente Sentandreu
- Statistics and Omics Data Analysis, Central Service for Experimental Research (SCSIE), University of Valencia, Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain.
| |
Collapse
|
3
|
Gold S, Levinson C, Colombel JF, Manning L, Sands BE, Kayal M. Dietary Interventions and Supplementation in Patients With an Ileal Pouch-Anal Anastomosis: A Systematic Review. Inflamm Bowel Dis 2025; 31:246-258. [PMID: 38452029 DOI: 10.1093/ibd/izae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 03/09/2024]
Abstract
Lay Summary
The restorative proctocolectomy with ileal pouch–anal anastomosis is the preferred surgery for patients with medically refractory ulcerative colitis. Although the ileal pouch–anal anastomosis provides gastrointestinal continuity and is an excellent alternative to a permanent end ileostomy, it is not without its complications including acute pouchitis, which occurs in up to 80% of patients. Diet may have a significant impact on pouch function and the development of pouchitis by virtue of its impact on motility and the microbiome. Multiple studies have evaluated the ability of different diets and supplements to improve pouch function and manage pouchitis, yet results are conflicting; thus, evidence-based dietary recommendations are lacking. Patients with an ileoanal pouch routinely ask about dietary interventions to maintain pouch health, and it is crucial that concrete evidence-based recommendations are identified to provide guidance. The goal of this systematic review is to summarize the available data on dietary patterns in patients with an ileoanal pouch, dietary interventions in this cohort, and the impact of supplements on pouch function and pouchitis.
Collapse
Affiliation(s)
- Stephanie Gold
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carrie Levinson
- Levy Library, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Manning
- Susan and Leonard Feinstein Inflammatory Bowel Disease Clinical Center, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maia Kayal
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Mousa WK, Al Ali A. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:11259. [PMID: 39457040 PMCID: PMC11508888 DOI: 10.3390/ijms252011259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome emerges as an integral component of precision medicine because of its signature variability among individuals and its plasticity, which enables personalized therapeutic interventions, especially when integrated with other multiomics data. This promise is further fueled by advances in next-generation sequencing and metabolomics, which allow in-depth high-precision profiling of microbiome communities, their genetic contents, and secreted chemistry. This knowledge has advanced our understanding of our microbial partners, their interaction with cellular targets, and their implication in human conditions such as inflammatory bowel disease (IBD). This explosion of microbiome data inspired the development of next-generation therapeutics for treating IBD that depend on manipulating the gut microbiome by diet modulation or using live products as therapeutics. The current landscape of artificial microbiome therapeutics is not limited to probiotics and fecal transplants but has expanded to include community consortia, engineered probiotics, and defined metabolites, bypassing several limitations that hindered rapid progress in this field such as safety and regulatory issues. More integrated research will reveal new therapeutic targets such as enzymes or receptors mediating interactions between microbiota-secreted molecules that drive or modulate diseases. With the shift toward precision medicine and the enhanced integration of host genetics and polymorphism in treatment regimes, the following key questions emerge: How can we effectively implement microbiomics to further personalize the treatment of diseases like IBD, leveraging proven and validated microbiome links? Can we modulate the microbiome to manage IBD by altering the host immune response? In this review, we discuss recent advances in understanding the mechanism underpinning the role of gut microbes in driving or preventing IBD. We highlight developed targeted approaches to reverse dysbiosis through precision editing of the microbiome. We analyze limitations and opportunities while defining the specific clinical niche for this innovative therapeutic modality for the treatment, prevention, and diagnosis of IBD and its potential implication in precision medicine.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| |
Collapse
|
5
|
Moya AMTM, Alexandrino TD, Morari J, Reguengo LM, Velloso LA, Leal RF, Junior SB, Pereira APA, Pastore GM, Bicas JL, Cazarin CBB. The Consumption of the Fibrous Fraction of Solanum lycocarpum St. Hil. Does Not Preserve the Intestinal Mucosa in TNBS-Induced Rats. Foods 2024; 13:2949. [PMID: 39335878 PMCID: PMC11431493 DOI: 10.3390/foods13182949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Solanum lycocarpum St. Hil. is considered a natural anti-inflammatory. In traditional medicine, it is used to reduce cholesterol levels in the treatment of obesity. Foods capable of conferring a protective and nutritious effect have been used to prevent or attenuate the clinical symptoms of inflammatory bowel diseases. Ulcerative colitis is a multifactorial inflammatory bowel disease. This study investigated the impact of the consumption of the fibrous fraction (FF) and resistant starch (RS) of fruta-do-lobo in an experimental model of colitis induced with the use 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. The different colitis groups all experienced decreased weight gain, which could be linked to the inflammatory process (p = 0.603). Additionally, the experimental model led to increased oxidative stress, higher levels of pro-inflammatory cytokines, and the elevated gene expression of these cytokines. Despite this, consuming the fibrous fraction of fruta-do-lobo (RS and FF) did not appear to protect the animals against the inflammatory process. Regarding the expression of TNF-α, only the group treated with the drug mesalamine had a reduced serum level of this inflammatory marker (p = 0.03). Our results showed that the diet containing RS and FF did not protect the intestinal mucosa against TNBS inflammation. New studies on the variation in the time of consumption or the supplemented dose of fruta-do-lobo fibers could help to elucidate their effects in protecting the mucosa.
Collapse
Affiliation(s)
- Amanda Maria Tomazini Munhoz Moya
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Thaís Dolfini Alexandrino
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Joseane Morari
- School of Medical Sciences, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Campinas 13083-887, São Paulo, Brazil; (J.M.); (L.A.V.); (R.F.L.)
| | - Livia Mateus Reguengo
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Licio Augusto Velloso
- School of Medical Sciences, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Campinas 13083-887, São Paulo, Brazil; (J.M.); (L.A.V.); (R.F.L.)
| | - Raquel Franco Leal
- School of Medical Sciences, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Campinas 13083-887, São Paulo, Brazil; (J.M.); (L.A.V.); (R.F.L.)
| | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos 13566-590, São Paulo, Brazil;
| | - Ana Paula Aparecida Pereira
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
- Faculty of Nutrition, Federal University of Mato Grosso, Avenida Fernando Correa da Costa, 2367, Boa Esperança, Cuiabá 78068-600, Mato Grosso, Brazil
| | - Glaucia Maria Pastore
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Juliano Lemos Bicas
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Cinthia Baú Betim Cazarin
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| |
Collapse
|
6
|
Olson JL, Castillo G, Palumbo A, Harrison M, Singleton R, Lalu MM, Fergusson DA, Stintzi A, Mack DR, Presseau J. A qualitative evaluation of treatment fidelity alongside a pilot trial of a novel therapy for pediatric Inflammatory Bowel Disease. PLoS One 2024; 19:e0292709. [PMID: 39078826 PMCID: PMC11288461 DOI: 10.1371/journal.pone.0292709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Process evaluations conducted alongside clinical trials can improve understanding of treatment fidelity and provide contextual knowledge to aide interpretations of trial outcomes. We adopted a multiple-goals perspective to investigate treatment fidelity in two related pilot clinical trials of an adjuvant treatment for pediatric-onset Inflammatory Bowel Disease. This included a focus on barriers and enablers of performing trial-specific activities and of integrating those activities into daily life. METHODS We conducted one-time semi-structured interviews with a sub-sample of participants of the Resistant Starch in Pediatric Inflammatory Bowel Disease (NCT04522271) and Optimized Resistant Starch in Inflammatory Bowel Disease pilot trials (NCT04520594) and their caregivers (N = 42). The trials examined the effects of personalized food-derived resistant starches as an adjuvant therapy on intestinal microbiome functioning. Interviews were conducted within 3-months of participants completing or withdrawing from the trials. Interview guides with age-appropriate language were developed and pilot tested. Codes were identified inductively though conventional content analysis and then mapped to personal projects analysis, to explore how participants navigated between activities. RESULTS Three themes were identified. The first described the potential impact of living with inflammatory bowel disease and taking prescribed medications. The second described characteristics of trial-specific activities that might impact on their enactment, including perceived difficulty, and challenges following procedures or using trial materials. The third described the integration of trial-specific activities with school, work, household demands, and social, and extracurricular activities. CONCLUSIONS Adjusting to living with inflammatory bowel disease and managing its treatment can impact trial participation. Integrating trial-related activities into daily life can be challenging, which could heighten perceptions of goal conflict. Findings can inform interpretations of trial outcomes and development of strategies for trial optimization and implementation of the adjuvant therapy into clinical practice.
Collapse
Affiliation(s)
- Jenny L. Olson
- Methodological and Implementation Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gisell Castillo
- Methodological and Implementation Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Amelia Palumbo
- Methodological and Implementation Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Megan Harrison
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ruth Singleton
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Methodological and Implementation Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Methodological and Implementation Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - David R. Mack
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Inflammatory Bowel Disease Centre, Ottawa, Ontario, Canada
| | - Justin Presseau
- Methodological and Implementation Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J. Physiochemical characterization and ameliorative effect of rice resistant starch modified by heat-stable α-amylase and glucoamylase on the gut microbial community in T2DM mice. Food Funct 2024; 15:5596-5612. [PMID: 38722000 DOI: 10.1039/d3fo05456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In the presented study, natural rice containing high resistant starch content was used as a raw material to produce rice resistant starch (RRS) through enzymatic hydrolysis with heat-stable α-amylase and glucoamylase. The chemical composition, structural characteristics and in vitro glycemic index (GI) of RRS were evaluated. The effects of RRS at different doses on the body weight, serum biochemical levels, pathological indexes, production of short-chain fatty acids (SCFAs) in the gut and the intestinal microbial composition in T2DM mice were investigated. The results of physiochemical characterization indicated that, relative to rice flour, RRS mainly comprising resistant starch had higher crystallinity (25.85%) and a more stable structure, which contributed to its lower digestibility and decreased GI in vitro. Compared with the model control group, 1 g per kg BW and 2 g per kg BW oral gavage dosages of RRS effectively enhanced the SCFA productivity in the T2DM mouse gut, as well as alleviating T2DM symptoms, involving an increase in body weight, reduction in fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine transaminase and aspartate aminotransferase, and an increase in serum insulin and high-density lipoprotein cholesterol. Besides, 1 g per kg BW and 2 g per kg BW dosages of RRS mitigated T2DM-induced pancreas damage. Furthermore, up-regulation in the abundance of probiotics (Lactobacillus, Ruminococcus, etc.) and down-regulation in the number of harmful bacteria (Desulfovibrio, Prevotella, etc.) were observed in all RRS-treated groups. In summary, this work suggested that RRS prepared using heat-stable α-amylase and glucoamylase could be a potential functional component for amelioration of T2DM applied in the fields of food and pharmaceutics.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
8
|
Christensen C, Knudsen A, Arnesen EK, Hatlebakk JG, Sletten IS, Fadnes LT. Diet, Food, and Nutritional Exposures and Inflammatory Bowel Disease or Progression of Disease: an Umbrella Review. Adv Nutr 2024; 15:100219. [PMID: 38599319 PMCID: PMC11063602 DOI: 10.1016/j.advnut.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), contributes to substantial morbidity. Understanding the intricate interplay between dietary factors and the incidence and progression of IBD is essential for developing effective preventative and therapeutic strategies. This umbrella review comprehensively synthesizes evidence from systematic reviews and meta-analyses to evaluate these complex associations. Dietary factors associated with an increased incidence and/or progression of IBD include a high intake of red and processed meat, other processed foods, and refined sugars, together with a low intake of vegetables, fruits, and fiber. For most other food groups, the results are mixed or indicate no clear associations with IBD, CD, and UC. Some differences seem to exist between UC and CD and their risk factors, with increased intake of dietary fiber being inversely associated with CD incidence but not clearly associated with UC. Dietary fiber may contribute to maintaining the gut epithelial barrier and reduce inflammation, often through interactions with the gut microbiota. This seems to play an important role in inflammatory mechanisms in the gut and in IBD incidence and progression. Diets low in fermentable saccharides and polyols can alleviate symptom burden, but there are concerns regarding their impact on the gut microbiota and their nutritional adequacy. Mediterranean diets, vegetarian diets, and a diet low in grains, sugars, and lactose (specific carbohydrate diet) are also associated with lower incidence and/or progression of IBD. The associations of dietary patterns are mirrored by inflammatory biomarkers. IBD is typically treated pharmaceutically; however, many patients have a suboptimal response to medical treatments. The findings from this umbrella review could provide evidence for nutritional counseling and be a valuable addition to traditional treatment plans for IBD. This systematic review was registered at PROSPERO as CRD440252.
Collapse
Affiliation(s)
- Camilla Christensen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Andrea Knudsen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Erik K Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Norwegian Centre of Competence in Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| | | | - Lars T Fadnes
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Wang Z, Gao M, Kan J, Cheng Q, Chen X, Tang C, Chen D, Zong S, Jin C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024; 13:1028. [PMID: 38611336 PMCID: PMC11011479 DOI: 10.3390/foods13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a complicated inflammatory disease with a continually growing incidence. In this study, resistant starch was obtained from purple sweet potato (PSPRS) by the enzymatic isolation method. Then, the structural properties of PSPRS and its protective function in dextran sulfate sodium (DSS)-induced colitis were investigated. The structural characterization results revealed that the crystallinity of PSPRS changed from CA-type to A-type, and the lamellar structure was totally destroyed during enzymatic hydrolysis. Compared to DSS-induced colitis mice, PSPRS administration significantly improved the pathological phenotype and colon inflammation in a dose-dependent manner. ELISA results indicated that DSS-induced colitis mice administered with PSPRS showed higher IL-10 and IgA levels but lower TNF-α, IL-1β, and IL-6 levels. Meanwhile, high doses (300 mg/kg) of PSPRS significantly increased the production of acetate, propionate, and butyrate. 16S rDNA high-throughput sequencing results showed that the ratio of Firmicutes to Bacteroidetes and the potential probiotic bacteria levels were notably increased in the PSPRS treatment group, such as Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group, and Bifidobacterium. Simultaneously, harmful bacteria like Bacteroides, Staphylococcus, and Akkermansia were significantly inhibited by the administration of a high dose of PSPRS (p < 0.05). Therefore, PSPRS has the potential to be a functional food for promoting intestinal health and alleviating UC.
Collapse
Affiliation(s)
| | | | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.W.); (M.G.); (Q.C.); (X.C.); (C.T.); (D.C.); (S.Z.); (C.J.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Qin N, Meng Y, Ma Z, Li Z, Hu Z, Zhang C, Chen L. Pea Starch-Lauric Acid Complex Alleviates Dextran Sulfate Sodium-Induced Colitis in C57BL/6J Mice. Nutr Cancer 2023; 75:1673-1686. [PMID: 37334819 DOI: 10.1080/01635581.2023.2223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
The previous documentation has shown the role of resistant starch in promoting intestinal health, while the effect of starch-lipid complex (RS5) on colitis remains unclear. This study aimed to investigate the effect and potential mechanism of RS5 in colitis. We prepared RS5 complexes by combining pea starch with lauric acid. Mice with dextran sulfate sodium-induced colitis were treated with either RS5 (3.25 g/kg) or normal saline (10 mL/kg) for seven days, and the effects of pea starch-lauric acid complex on mice were observed. The RS5 treatment significantly attenuated weight loss, splenomegaly, colon shortening, and pathological damage in mice with colitis. Compare with the DSS group, cytokines levels, such as tumor necrosis factor-α and interleukin-6 in both serum and colon tissue was significantly decreased in RS5 treatment group, while the gene expression of interleukin-10 and the expression of mucin 2, zonula occludens-1, Occludin, and claudin-1 in the colon was significantly upregulated in RS5 treatment group. In addition, RS5 treatment altered the gut microbiota structure of colitis mice by increasing the abundance of Bacteroides and decreasing Turicibacter, Oscillospira, Odoribacter, and Akkermansia. The dietary composition could be exploited to manage colitis by attenuating inflammation, restoring the intestinal barrier, and regulating gut microbiota.
Collapse
Affiliation(s)
- Nina Qin
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Meng
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhihua Ma
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaoping Li
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenzhen Hu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenyi Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyong Chen
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Park J, Oh SK, Doo M, Chung HJ, Park HJ, Chun H. Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients 2023; 15:nu15102248. [PMID: 37242130 DOI: 10.3390/nu15102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Rice is a major source of carbohydrates. Resistant starch (RS) is digested in the human small intestine but fermented in the large intestine. This study investigated the effect of consuming heat-treated and powdered brown rice cultivars 'Dodamssal' (HBD) and 'Ilmi' (HBI), with relatively high and less than 1% RS content, respectively, on the regulation of glucose metabolism in humans. Clinical trial meals were prepared by adding ~80% HBI or HBD powder to HBI and HBD meals, respectively. There was no statistical difference for protein, dietary fiber, and carbohydrate content, but the median particle diameter was significantly lower in HBI meals than in HBD meals. The RS content of HBD meals was 11.4 ± 0.1%, and the HBD meals also exhibited a low expected glycemic index. In a human clinical trial enrolling 36 obese participants, the homeostasis model assessment for insulin resistance decreased by 0.05 ± 0.14% and 1.5 ± 1.40% after 2 weeks (p = 0.021) in participants in the HBI and HBD groups, respectively. The advanced glycation end-product increased by 0.14 ± 0.18% in the HBI group and decreased by 0.06 ± 0.14% in the HBD group (p = 0.003). In conclusion, RS supplementation for 2 weeks appears to have a beneficial effect on glycemic control in obese participants.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyejin Chun
- Department of Family Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
12
|
Jang KA, Kim HA, Kang MS, Kim HR, Lee YJ, Song S. Development of a database to estimate dietary intake of resistant starch in Koreans. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
13
|
Haskey N, Gold SL, Faith JJ, Raman M. To Fiber or Not to Fiber: The Swinging Pendulum of Fiber Supplementation in Patients with Inflammatory Bowel Disease. Nutrients 2023; 15:nu15051080. [PMID: 36904081 PMCID: PMC10005525 DOI: 10.3390/nu15051080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence-based dietary guidance around dietary fiber in inflammatory bowel disease (IBD) has been limited owing to insufficient reproducibility in intervention trials. However, the pendulum has swung because of our increased understanding of the importance of fibers in maintaining a health-associated microbiome. Preliminary evidence suggests that dietary fiber can alter the gut microbiome, improve IBD symptoms, balance inflammation, and enhance health-related quality of life. Therefore, it is now more vital than ever to examine how fiber could be used as a therapeutic strategy to manage and prevent disease relapse. At present, there is limited knowledge about which fibers are optimal and in what form and quantity they should be consumed to benefit patients with IBD. Additionally, individual microbiomes play a strong role in determining the outcomes and necessitate a more personalized nutritional approach to implementing dietary changes, as dietary fiber may not be as benign as once thought in a dysbiotic microbiome. This review describes dietary fibers and their mechanism of action within the microbiome, details novel fiber sources, including resistant starches and polyphenols, and concludes with potential future directions in fiber research, including the move toward precision nutrition.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, The Irving K. Barber Faculty of Science, University of British Columbia—Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Stephanie L. Gold
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maitreyi Raman
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
14
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. Components of the Fiber Diet in the Prevention and Treatment of IBD-An Update. Nutrients 2022; 15:nu15010162. [PMID: 36615818 PMCID: PMC9823509 DOI: 10.3390/nu15010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of diseases with a chronic course, characterized by periods of exacerbation and remission. One of the elements that could potentially predispose to IBD is, among others, a low-fiber diet. Dietary fiber has many functions in the human body. One of the most important is its influence on the composition of the intestinal microflora. Intestinal dysbiosis, as well as chronic inflammation that occurs, are hallmarks of IBD. Individual components of dietary fiber, such as β-glucan, pectin, starch, inulin, fructooligosaccharides, or hemicellulose, can significantly affect preventive effects in IBD by modulating the composition of the intestinal microbiota or sealing the intestinal barrier, among other things. The main objective of the review is to provide information on the effects of individual fiber components of the diet on the risk of IBD, including, among other things, altering the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
16
|
Lafiandra D, Sestili F, Sissons M, Kiszonas A, Morris CF. Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods 2022; 11:foods11111532. [PMID: 35681282 PMCID: PMC9180912 DOI: 10.3390/foods11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Although durum wheat (Triticum durum L. ssp. durum Desf.) has traditionally been used to make a range of food products, its use has been restricted due to the absence of the D-genome glutenin proteins, the relatively low variability in starch composition, and its very hard grain texture. This review focuses on the manipulation of the starch and protein composition and modification of the hardness of durum wheat in order to improve its technological and nutritional value and expand its utilization for application to a wider number of end products. Starch is composed of amylopectin and amylose in a 3:1 ratio, and their manipulation has been explored for achieving starch with modified composition. In particular, silencing of the genes involved in amylose and amylopectin synthesis has made it possible to isolate durum wheat lines with amylose content varying from 2–3% up to 75%. This has created opportunities for new products with different properties and enhanced nutritional value. Durum-made bread has generally inferior quality to bread made from common wheat. Attempts to introduce the Glu-D1 subunits 1Dx5 + 1Dy10 and 1Dx2 + 1Dy12 produced stronger dough, but the former produced excessively strong, inelastic doughs, and loaf volume was either inferior or not affected. In contrast, the 1Dx2 + 1Dy12 sometimes improved bread loaf volume (LV) depending on the glutenin subunit background of the genotype receiving these genes. Further breeding and selection are needed to improve the dough extensibility to allow higher LV and better texture. The versatility of durum wheat has been greatly expanded with the creation of soft-textured durum via non-GMO introgression means. This soft durum mills like soft hexaploid wheat and has similar baking properties. The pasta quality is also not diminished by the soft-textured kernels. The Glu-D1 locus containing the subunits 1Dx2 + 1Dy12 has also been introgressed to create higher quality soft durum bread.
Collapse
Affiliation(s)
- Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (D.L.); (M.S.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mike Sissons
- NSW Department of Primary Industries, Tamworth 2340, Australia
- Correspondence: (D.L.); (M.S.)
| | - Alecia Kiszonas
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| | - Craig F. Morris
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| |
Collapse
|
17
|
Sobh M, Montroy J, Daham Z, Sibbald S, Lalu M, Stintzi A, Mack D, Fergusson DA. Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies. Am J Clin Nutr 2022; 115:608-618. [PMID: 34871343 DOI: 10.1093/ajcn/nqab402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistant starches (RSs) have been advocated as a dietary supplement to address microbiota dysbiosis. They are postulated to act through the production of SCFAs. Their clinical tolerability and effect on SCFA production has not been systematically evaluated. OBJECTIVES We conducted a systematic review of RS supplementation as an intervention in adults (healthy individuals and persons with medical conditions) participating in randomized controlled trials. The primary outcome was tolerability of RS supplementation, the secondary outcome was SCFA production. METHODS MEDLINE, Embase, and the Cochrane Central Register were searched. Articles were screened, and data extracted, independently and in duplicate. RESULTS A total of 39 trials met eligibility criteria, including a total of 2263 patients. Twenty-seven (69%) studies evaluated the impact of RS supplementation in healthy subjects whereas 12 (31%) studies included individuals with an underlying medical condition (e.g., obesity, prediabetes). Type 2 RS was most frequently investigated (29 studies). Of 12 studies performed in subjects with health conditions, 11 reported on tolerability. All studies showed that RS supplementation was tolerated; 9 of these studies used type 2 RS with doses of 20-40 g/d for >4 wk. Of 27 studies performed in healthy subjects, 20 reported on tolerability. In 14 studies, RS supplementation was tolerated, and the majority used type 2 RS with a dose between 20 and 40 g/d. Twenty-one (78%) studies reporting SCFAs used type 2 RS with a dose of 20-40 g/d for 1-4 wk. In 16 of 23 studies (70%), SCFA production was increased, in 7 studies there was no change in SCFA concentration before and after RS supplementation, and in 1 study SCFA concentration decreased. CONCLUSIONS Available evidence suggests that RS supplementation is tolerated in both healthy subjects and in those with an underlying medical condition. In addition, SCFA production was increased in most of the studies.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zeinab Daham
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephanie Sibbald
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Manoj Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Mack
- Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, CHEO Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Hiraishi K, Zhao F, Kurahara LH, Li X, Yamashita T, Hashimoto T, Matsuda Y, Sun Z, Zhang H, Hirano K. Lactulose Modulates the Structure of Gut Microbiota and Alleviates Colitis-Associated Tumorigenesis. Nutrients 2022; 14:nu14030649. [PMID: 35277009 PMCID: PMC8840163 DOI: 10.3390/nu14030649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Lactulose, a galactose-fructose disaccharide, is made from the milk sugar lactose by heating or isomerization processes. Lactulose is proposed to modulate gut microbiota and thus expected to be beneficial in treating inflammatory bowel disease. In the present study, we investigated the therapeutic effect of lactulose on gastrointestinal inflammation and inflammation-related tumorigenesis in a mouse model of colorectal cancer as well as its effect on gut microbiota composition. Azoxymethane (AOM)/dextran sulfate sodium (DSS) model was used in this study. Lactulose treatment was performed by feeding 2% lactulose for 14 weeks. Stool samples collected at 4 time points were used for metagenomic analysis of the microbiota. Pathological analysis was performed 21 weeks after AOM injection. AOM/DSS increased the macrophage counts, inflammatory cytokine expression, colorectal tumorigenesis, and imbalance in gut microbiota composition, as evidenced by increased pathogen abundance (e.g., Escherichia and Clostridium). Lactulose significantly inhibited the inflammatory events, and ameliorated inflammation and tumorigenesis. The composition of the intestinal microbiota was also restored upon lactulose treatment, and lactulose reduced pathogen abundance and increased the abundance of Muribaculum and Lachnospiraceae. Meanwhile, the pathways related to Crohn’s disease were downregulated after lactulose treatment. Our findings suggest that lactulose restores the structure and composition of the intestinal microbiota, mitigates inflammation, and suppresses inflammatory tumorigenesis.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (K.H.); (X.L.); (T.Y.); (T.H.); (K.H.)
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (F.Z.); (Z.S.); (H.Z.)
| | - Lin-Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (K.H.); (X.L.); (T.Y.); (T.H.); (K.H.)
- Correspondence: ; Tel.: +81-87-891-2100
| | - Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (K.H.); (X.L.); (T.Y.); (T.H.); (K.H.)
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (K.H.); (X.L.); (T.Y.); (T.H.); (K.H.)
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (K.H.); (X.L.); (T.Y.); (T.H.); (K.H.)
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan;
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (F.Z.); (Z.S.); (H.Z.)
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (F.Z.); (Z.S.); (H.Z.)
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (K.H.); (X.L.); (T.Y.); (T.H.); (K.H.)
| |
Collapse
|
19
|
Nguyen SN, Drawbridge P, Beta T. Resistant Starch in Wheat‐, Barley‐, Rye‐, and Oat‐Based Foods: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si Nhat Nguyen
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Pamela Drawbridge
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Trust Beta
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| |
Collapse
|