1
|
Chiu CP, Chou HH, Lin PC, Lee CC, Hsieh SY. Using machine learning to predict bacteremia in urgent care patients on the basis of triage data and laboratory results. Am J Emerg Med 2024; 85:80-85. [PMID: 39243592 DOI: 10.1016/j.ajem.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Despite advancements in antimicrobial therapies, bacteremia remains a life-threatening condition. Appropriate antimicrobials must be promptly administered to ensure patient survival. However, diagnosing bacteremia based on blood cultures is time-consuming and not something emergency department (ED) personnel are routinely trained to do. METHODS This retrospective cohort study developed several machine learning (ML) models to predict bacteremia in adults initially presenting with fever or hypothermia, comprising logistic regression, random forest, extreme gradient boosting, support vector machine, k-nearest neighbor, multilayer perceptron, and ensemble models. Random oversampling and synthetic minority oversampling techniques were adopted to balance the dataset. The variables included demographic characteristics, comorbidities, immunocompromised status, clinical characteristics, subjective symptoms reported during ED triage, and laboratory data. The study outcome was an episode of bacteremia. RESULTS Of the 5063 patients with initial fever or hypothermia from whom blood cultures were obtained, 128 (2.5 %) were diagnosed with bacteremia. We combined 36 selected variables and 10 symptoms subjectively reported by patients into features for analysis in our models. The ensemble model outperformed other models, with an area under the receiver operating characteristic curve (AUROC) of 0.930 and an F1-score of 0.735. The AUROC of all models was higher than 0.80. CONCLUSION The ML models developed effectively predicted bacteremia among febrile or hypothermic patients in the ED, with all models demonstrating high AUROC values and rapid processing times. The findings suggest that ED clinicians can effectively utilize ML techniques to develop predictive models for addressing clinical challenges.
Collapse
Affiliation(s)
- Chung-Ping Chiu
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Hsin-Hung Chou
- Department of Computer Science and Information Engineering, National Chi Nan University, Nantou 545301, Taiwan.
| | - Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ching-Chi Lee
- Clinical Medicine Research Centre, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Sun-Yuan Hsieh
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Department of Computer Science and Information Engineering, National Chi Nan University, Nantou 545301, Taiwan; Institute of Manufacturing Information and Systems, National Cheng Kung University. Tainan. 70101, Taiwan; Institute of information Science, Academia Sinica, Taipei, 115, Taiwan; Research Center for Information Technology Innovation. Academia Sinica, Taipei, 115. Taiwan.
| |
Collapse
|
2
|
Musuroi SI, Voinescu A, Musuroi C, Baditoiu LM, Muntean D, Izmendi O, Jumanca R, Licker M. The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine. J Pers Med 2023; 14:46. [PMID: 38248747 PMCID: PMC10821085 DOI: 10.3390/jpm14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
The emergency department (ED) represents an important setting for addressing inappropriate antimicrobial prescribing practices because of the time constraints and the duration of microbiological diagnosis. The purpose of this study is to evaluate the etiology and antimicrobial resistance (AMR) pattern of the community-acquired pathogens, as well as the epidemiological characteristics of patients admitted through the ED, in order to guide appropriate antibiotic therapy. METHODS A retrospective observational study was performed on 657 patients, from whom clinical samples (urine, purulent secretions, blood cultures, etc.) were collected for microbiological diagnosis in the first 3 days after presentation in the ED. The identification of pathogens and the antimicrobial susceptibility testing with minimum inhibitory concentration determination were carried out according to the laboratory protocols. RESULTS From the 767 biological samples analyzed, 903 microbial isolates were identified. E. coli was most frequently isolated (24.25%), followed by Klebsiella spp., S. aureus (SA), and non-fermentative Gram-negative bacilli. E. coli strains maintained their natural susceptibility to most antibiotics tested. In the case of Pseudomonas spp. and Acinetobacter spp., increased rates of AMR were identified. Also, 32.3% of SA strains were community-acquired MRSA. CONCLUSIONS The introduction of rapid microbiological diagnostic methods in emergency medicine is imperative in order to timely identify AMR strains and improve therapeutic protocols.
Collapse
Affiliation(s)
- Silvia Ioana Musuroi
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Internal Medicine Department, Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania
| | - Adela Voinescu
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Corina Musuroi
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Luminita Mirela Baditoiu
- Epidemiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Delia Muntean
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Oana Izmendi
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Romanita Jumanca
- Romanian and Foreign Languages Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Licker
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
3
|
Chotiprasitsakul D, Trirattanapikul A, Namsiripongpun W, Chaihongsa N, Santanirand P. From Epidemiology of Community-Onset Bloodstream Infections to the Development of Empirical Antimicrobial Treatment-Decision Algorithm in a Region with High Burden of Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1699. [PMID: 38136733 PMCID: PMC10740575 DOI: 10.3390/antibiotics12121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial-resistant (AMR) infections have increased in community settings. Our objectives were to study the epidemiology of community-onset bloodstream infections (BSIs), identify risk factors for AMR-BSI and mortality-related factors, and develop the empirical antimicrobial treatment-decision algorithm. All adult, positive blood cultures at the emergency room and outpatient clinics were evaluated from 08/2021 to 04/2022. AMR was defined as the resistance of organisms to an antimicrobial to which they were previously sensitive. A total of 1151 positive blood cultures were identified. There were 450 initial episodes of bacterial BSI, and 114 BSIs (25%) were AMR-BSI. Non-susceptibility to ceftriaxone was detected in 40.9% of 195 E. coli isolates and 16.4% among 67 K. pneumoniae isolates. A treatment-decision algorithm was developed using the independent risk factors for AMR-BSI: presence of multidrug-resistant organisms (MDROs) within 90 days (aOR 3.63), prior antimicrobial exposure within 90 days (aOR 1.94), and urinary source (aOR 1.79). The positive and negative predictive values were 53.3% and 83.2%, respectively. The C-statistic was 0.73. Factors significantly associated with 30-day all-cause mortality were Pitt bacteremia score (aHR 1.39), solid malignancy (aHR 2.61), and urinary source (aHR 0.30). In conclusion, one-fourth of community-onset BSI were antimicrobial-resistant, and one-third of Enterobacteriaceae were non-susceptible to ceftriaxone. Treatment-decision algorithms may reduce overly broad antimicrobial treatment.
Collapse
Affiliation(s)
- Darunee Chotiprasitsakul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (A.T.); (W.N.)
| | - Akeatit Trirattanapikul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (A.T.); (W.N.)
| | - Warunyu Namsiripongpun
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (A.T.); (W.N.)
| | - Narong Chaihongsa
- Microbiology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.C.); (P.S.)
| | - Pitak Santanirand
- Microbiology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.C.); (P.S.)
| |
Collapse
|
4
|
Rödenbeck M, Ayobami O, Eckmanns T, Pletz MW, Bleidorn J, Markwart R. Clinical epidemiology and case fatality due to antimicrobial resistance in Germany: a systematic review and meta-analysis, 1 January 2010 to 31 December 2021. Euro Surveill 2023; 28:2200672. [PMID: 37199987 PMCID: PMC10197495 DOI: 10.2807/1560-7917.es.2023.28.20.2200672] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/14/2023] [Indexed: 05/19/2023] Open
Abstract
BackgroundAntimicrobial resistance (AMR) is of public health concern worldwide.AimWe aimed to summarise the German AMR situation for clinicians and microbiologists.MethodsWe conducted a systematic review and meta-analysis of 60 published studies and data from the German Antibiotic-Resistance-Surveillance (ARS). Primary outcomes were AMR proportions in bacterial isolates from infected patients in Germany (2016-2021) and the case fatality rates (2010-2021). Random and fixed (common) effect models were used to calculate pooled proportions and pooled case fatality odds ratios, respectively.ResultsThe pooled proportion of meticillin resistance in Staphylococcus aureus infections (MRSA) was 7.9% with a declining trend between 2014 and 2020 (odds ratio (OR) = 0.89; 95% CI: 0.886-0.891; p < 0.0001), while vancomycin resistance in Enterococcus faecium (VRE) bloodstream infections increased (OR = 1.18; (95% CI: 1.16-1.21); p < 0.0001) with a pooled proportion of 34.9%. Case fatality rates for MRSA and VRE were higher than for their susceptible strains (OR = 2.29; 95% CI: 1.91-2.75 and 1.69; 95% CI: 1.22-2.33, respectively). Carbapenem resistance in Gram-negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Enterobacter spp. and Escherichia coli) was low to moderate (< 9%), but resistance against third-generation cephalosporins and fluoroquinolones was moderate to high (5-25%). Pseudomonas aeruginosa exhibited high resistance against carbapenems (17.0%; 95% CI: 11.9-22.8), third-generation cephalosporins (10.1%; 95% CI: 6.6-14.2) and fluoroquinolones (24.9%; 95% CI: 19.3-30.9). Statistical heterogeneity was high (I2 > 70%) across studies reporting resistance proportions.ConclusionContinuous efforts in AMR surveillance and infection prevention and control as well as antibiotic stewardship are needed to limit the spread of AMR in Germany.
Collapse
Affiliation(s)
- Maria Rödenbeck
- Institute of General Practice and Family Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Olaniyi Ayobami
- Unit for Healthcare Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Unit for Healthcare Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jutta Bleidorn
- Institute of General Practice and Family Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Robby Markwart
- InfectoGnostics Research Campus Jena, Jena, Germany
- Institute of General Practice and Family Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Manandhar S, Nguyen Q, Nguyen Thi Nguyen T, Pham DT, Rabaa MA, Dongol S, Basnyat B, Dixit SM, Baker S, Karkey A. Genomic epidemiology, antimicrobial resistance and virulence factors of Enterobacter cloacae complex causing potential community-onset bloodstream infections in a tertiary care hospital of Nepal. JAC Antimicrob Resist 2022; 4:dlac050. [PMID: 35663828 PMCID: PMC9155248 DOI: 10.1093/jacamr/dlac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Community-onset bloodstream infections (BSIs) caused by carbapenemase-producing Enterobacter cloacae complex (ECC) species are increasing internationally. This observation suggests that ECC are emerging pathogens, requiring for detailed understanding on their genomic epidemiology including transmission dynamics and antimicrobial resistance profiles. Patients and methods We performed WGS on 79 Enterobacter spp. isolated from the patients with clinically significant BSIs and admitted to emergency department of a major tertiary hospital in Nepal between April 2016 and October 2017. Results We identified 5 species and 13 STs of ECC. Enterobacter xiangfangensis ST171, one of the globally emerging carbapenem resistant ECC clones with epidemic potential, was the most prevalent (42%). Phylogenetic analysis showed a large (>19 400 SNPs) core genome SNP distance across major STs, which was minimal (<30 SNPs) among the isolates of each prevalent ST, suggesting the relatively recent importation of major STs followed by local clonal expansions. Genomic evidence for resistance to all major antimicrobial classes except for colistin and macrolides was detected. A limited number of isolates also carried bla NDM-1 (n = 2) and bla OXA-48 (n = 1) carbapenemase genes. Virulence factors encoding siderophores (24%), T6SSD (25%) and fimbriae (54%) were detected. Conclusions Our study highlighted that MDR ECC clones are important pathogens of BSIs in community. Though of low prevalence, carbapenem resistance observed in our ECC isolates raised concern about further community dissemination, underscoring the need for community surveillance to identify MDR ECC clones with epidemic potential.
Collapse
Affiliation(s)
- Sulochana Manandhar
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quynh Nguyen
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - Duy Thanh Pham
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - Maia A. Rabaa
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Edwards T, Heinz E, van Aartsen J, Howard A, Roberts P, Corless C, Fraser AJ, Williams CT, Bulgasim I, Cuevas LE, Parry CM, Roberts AP, Adams ER, Mason J, Hubbard ATM. Piperacillin/tazobactam-resistant, cephalosporin-susceptible Escherichia coli bloodstream infections are driven by multiple acquisition of resistance across diverse sequence types. Microb Genom 2022; 8. [PMID: 35404783 PMCID: PMC9453079 DOI: 10.1099/mgen.0.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to piperacillin/tazobactam (TZP) in Escherichia coli has predominantly been associated with mechanisms that confer resistance to third-generation cephalosporins. Recent reports have identified E. coli strains with phenotypic resistance to piperacillin/tazobactam but susceptibility to third-generation cephalosporins (TZP-R/3GC-S). In this study we sought to determine the genetic diversity of this phenotype in E. coli (n=58) isolated between 2014–2017 at a single tertiary hospital in Liverpool, UK, as well as the associated resistance mechanisms. We compare our findings to a UK-wide collection of invasive E. coli isolates (n=1509) with publicly available phenotypic and genotypic data. These data sets included the TZP-R/3GC-S phenotype (n=68), and piperacillin/tazobactam and third-generation cephalosporin-susceptible (TZP-S/3GC-S, n=1271) phenotypes. The TZP-R/3GC-S phenotype was displayed in a broad range of sequence types, which was mirrored in the same phenotype from the UK-wide collection, and the overall diversity of invasive E. coli isolates. The TZP-R/3GC-S isolates contained a diverse range of plasmids, indicating multiple acquisition events of TZP resistance mechanisms rather than clonal expansion of a particular plasmid or sequence type. The putative resistance mechanisms were equally diverse, including hyperproduction of TEM-1, either via strong promoters or gene amplification, carriage of inhibitor-resistant β-lactamases, and an S133G blaCTX-M-15 mutation detected for the first time in clinical isolates. Several of these mechanisms were present at a lower abundance in the TZP-S/3GC-S isolates from the UK-wide collection, but without the associated phenotypic resistance to TZP. Eleven (19%) of the isolates had no putative mechanism identified from the genomic data. Our findings highlight the complexity of this cryptic phenotype and the need for continued phenotypic monitoring, as well as further investigation to improve detection and prediction of the TZP-R/3GC-S phenotype from genomic data.
Collapse
Affiliation(s)
- Thomas Edwards
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jon van Aartsen
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Alex Howard
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Paul Roberts
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Caroline Corless
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Alice J. Fraser
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher T. Williams
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Issra Bulgasim
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Luis E. Cuevas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher M. Parry
- Alder Hey Children’s NHS Foundation Trust, Liverpool, L12 2AP, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Emily R. Adams
- Centre for Drug and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jenifer Mason
- Liverpool University Hospital Foundation Trust, Prescot street, Liverpool, L7 8XP, UK
| | - Alasdair T. M. Hubbard
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
7
|
Chiang HY, Chen TC, Lin CC, Ho LC, Kuo CC, Chi CY. Trend and Predictors of Short-term Mortality of Adult Bacteremia at Emergency Departments: A 14-Year Cohort Study of 14 625 Patients. Open Forum Infect Dis 2021; 8:ofab485. [PMID: 34805430 PMCID: PMC8598924 DOI: 10.1093/ofid/ofab485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Bacteremia is a life-threatening condition with a high mortality rate in critical care and emergency settings. The current study investigated the trend of mortality and developed predictive models of mortality for adults with bacteremia at emergency departments (EDs). METHODS We conducted a retrospective cohort study of adults with bacteremia at the ED of China Medical University Hospital. Patient data were obtained from the Clinical Research Data Repository, and mortality information was obtained from the National Death Registry. We developed a new model to predict 7-day mortality in the derivation population and compared the model performance of the new model with Pitt Bacteremia Score (PBS) and Bloodstream Infection Mortality Risk Score (BSIMRS) in the validation population. RESULTS We identified 14625 adult patients with first-time bacteremia at the ED, of whom 8.4% died within 7 days. From 2003 to 2016, both the cumulative incidence and 7-day mortality rate of bacteremia decreased significantly. The ED bacteremia mortality (ED-BM) model included PBS parameters, age, infection source, baseline steroid use, and biochemical profiles (estimated glomerular filtration rate, platelet, blood urea nitrogen, potassium, and hemoglobin) for predicting 7-day mortality. The discrimination performance of the ED-BM model (area under curve [AUC], 0.903) was significantly better than that of PBS (AUC, 0.848) or BSIMRS (AUC, 0.885). CONCLUSIONS Although the cumulative incidence and mortality of ED bacteremia decreased, its mortality burden remains critical. The proposed ED-BM model had significantly better model performance than other scoring systems in predicting short-term mortality for adult patients with bacteremia at EDs.
Collapse
Affiliation(s)
- Hsiu-Yin Chiang
- Big Data Center, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Chia Chen
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Che-Chen Lin
- Big Data Center, China Medical University Hospital, Taichung, Taiwan
| | - Lu-Ching Ho
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Chi Kuo
- Big Data Center, China Medical University Hospital, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
D'Onofrio V, Meersman A, Vijgen S, Cartuyvels R, Messiaen P, Gyssens IC. Risk Factors for Mortality, Intensive Care Unit Admission, and Bacteremia in Patients Suspected of Sepsis at the Emergency Department: A Prospective Cohort Study. Open Forum Infect Dis 2020; 8:ofaa594. [PMID: 33511231 PMCID: PMC7813192 DOI: 10.1093/ofid/ofaa594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Background There is a clear need for a better assessment of independent risk factors for in-hospital mortality, intensive care unit admission, and bacteremia in patients presenting with suspected sepsis at the emergency department. Methods A prospective observational cohort study including 1690 patients was performed. Two multivariable logistic regression models were used to identify independent risk factors. Results Sequential organ failure assessment (SOFA) score of ≥2 and serum lactate of ≥2mmol/L were associated with all outcomes. Other independent risk factors were individual SOFA variables and systemic inflammatory response syndrome variables but varied per outcome. Mean arterial pressure <70 mmHg negatively impacted all outcomes. Conclusions These readily available measurements can help with early risk stratification and prediction of prognosis.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Infectious Diseases and Immunity, Jessa Hospital, Hasselt, Belgium.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Sara Vijgen
- Clinical Laboratory, Jessa Hospital, Hasselt, Belgium
| | | | - Peter Messiaen
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Infectious Diseases and Immunity, Jessa Hospital, Hasselt, Belgium
| | - Inge C Gyssens
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Benkő R, Gajdács M, Matuz M, Bodó G, Lázár A, Hajdú E, Papfalvi E, Hannauer P, Erdélyi P, Pető Z. Prevalence and Antibiotic Resistance of ESKAPE Pathogens Isolated in the Emergency Department of a Tertiary Care Teaching Hospital in Hungary: A 5-Year Retrospective Survey. Antibiotics (Basel) 2020; 9:antibiotics9090624. [PMID: 32961770 PMCID: PMC7560131 DOI: 10.3390/antibiotics9090624] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic treatments initiated on Emergency Departments (ED) are empirical. Therefore, knowledge of local susceptibility patterns is important. Despite this, data on expected pathogens and their resistance profile are scarce from EDs internationally. The study aim was to assess the epidemiology and resistance patterns of bacterial isolates from a tertiary-care ED over 5 years, focusing on ESKAPE bacteria (including the Enterobacterales group). After removal of duplicates, n = 6887 individual bacterial isolates were recovered, out of which n = 4974 (72.22%) were ESKAPE isolates. E. coli was the most frequent isolate (2193, 44.1%), followed by the Klebsiella genus (664; 13.4%). The third most frequent isolate was S. aureus (561, 11.3%). In total, multi-drug resistance (MDR) was present in 23.8% and was most prevalent in A. baumanii (65.5%), P. mirabilis (42.7%), and K. pneumoniae (32.6%). MRSA was isolated in 19.6%, while ESBL-producing Enterobacterales in 17.7%, and these were associated with remarkably higher resistance to other antibacterials as well. Difficult-to-treat resistance (DTR) was detected in 0.5%. The frequent isolation of some ESKAPE bacteria and the detected considerable acquired resistance among ED patients raise concern. The revealed data identified problematic pathogens and will guide us to set up the optimal empiric antibiotic protocol for clinicians.
Collapse
Affiliation(s)
- Ria Benkő
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary;
- Central Pharmacy Department, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary;
- Department of Emergency Medicine, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary; (P.H.); (P.E.); (Z.P.)
- Correspondence: ; Tel.: +36-62-342572
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary;
| | - Mária Matuz
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary;
- Central Pharmacy Department, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary;
| | - Gabriella Bodó
- Central Pharmacy Department, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary;
| | - Andrea Lázár
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
| | - Edit Hajdú
- Infectious Disease Ward, 1st Department of Internal Medicine, University of Szeged, Albert Szent-Györgyi Medical Center, 6725 Szeged, Hungary; (E.H.); (E.P.)
| | - Erika Papfalvi
- Infectious Disease Ward, 1st Department of Internal Medicine, University of Szeged, Albert Szent-Györgyi Medical Center, 6725 Szeged, Hungary; (E.H.); (E.P.)
| | - Peter Hannauer
- Department of Emergency Medicine, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary; (P.H.); (P.E.); (Z.P.)
| | - Péter Erdélyi
- Department of Emergency Medicine, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary; (P.H.); (P.E.); (Z.P.)
| | - Zoltán Pető
- Department of Emergency Medicine, University of Szeged, Albert Szent-Györgyi Health Center, 6725 Szeged, Hungary; (P.H.); (P.E.); (Z.P.)
| |
Collapse
|
10
|
Mehta R, Dhruv S, Kaushik V, Sen KK, Khan NS, Abhishek A, Dixit AK, Tripathi VN. A comparative study of antibacterial and antifungal activities of extracts from four indigenous plants. Bioinformation 2020; 16:267-273. [PMID: 32308269 PMCID: PMC7147494 DOI: 10.6026/97320630016267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
A repetitive and wide use of chemical antibiotics has brought a serious threat in the biomedical and clinical sectors by the emergence of multidrug resistant pathogens. Plants have secondary metabolites that make them suitable candidate for natural antimicrobial agent without any side effect. In this study, we assessed comparative antibacterial and antifungal effects of extracts from four Indigenous plants (Nerium sp; Mentha sp; Aloe vera and Eucalyptus sp). Total phenolic and flavonoid content were extracted by microwave-assisted extractor and used for phytochemical assay. Antimicrobial experiment was done by micro dilution technique. A post hoc analysis inbuilt with one-way ANOVA test was used for the compilation of antibiotic sensitivity data and percent inhibition. Total phenolic content was significantly high in Mentha sp. and low in Nerium sp. (All p < 0.05). In antibacterial and antifungal activity higher concentrations of extracts showed a strong activity, which was as good as antibiotics used as control. Results from Eucalyptus sample showed a significant growth reducing capability even at lower concentrations. This study concludes that the plant extracts can be used to treat microbial infections with almost same efficacy as antibiotics and with a lower chance of resistance development.
Collapse
Affiliation(s)
- Rajendra Mehta
- Department of Rural Technology, Guru Ghasidas University, Bilaspur, India 495009
| | - Suraj Dhruv
- Department of Rural Technology, Guru Ghasidas University, Bilaspur, India 495009
| | - Vidyanshu Kaushik
- Department of Rural Technology, Guru Ghasidas University, Bilaspur, India 495009
| | - Kamal Kumar Sen
- Department of Rural Technology, Guru Ghasidas University, Bilaspur, India 495009
| | - Naureen Shaba Khan
- Department of Botany, Dr. C. V. Raman University, Bilaspur, India 495113
| | - Amar Abhishek
- Department of Botany, Guru Ghasidas University, Bilaspur, India 495009
| | | | | |
Collapse
|