1
|
Rzymski P, Zarębska-Michaluk D, Parczewski M, Genowska A, Poniedziałek B, Strukcinskiene B, Moniuszko-Malinowska A, Flisiak R. The burden of infectious diseases throughout and after the COVID-19 pandemic (2020-2023) and Russo-Ukrainian war migration. J Med Virol 2024; 96:e29651. [PMID: 38712743 DOI: 10.1002/jmv.29651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Understanding how the infectious disease burden was affected throughout the COVID-19 pandemic is pivotal to identifying potential hot spots and guiding future mitigation measures. Therefore, our study aimed to analyze the changes in the rate of new cases of Poland's most frequent infectious diseases during the entire COVID-19 pandemic and after the influx of war refugees from Ukraine. We performed a registry-based population-wide study in Poland to analyze the changes in the rate of 24 infectious disease cases from 2020 to 2023 and compared them to the prepandemic period (2016-2019). Data were collected from publicly archived datasets of the Epimeld database published by national epidemiological authority institutions. The rate of most of the studied diseases (66.6%) revealed significantly negative correlations with the rate of SARS-CoV-2 infections. For the majority of infectious diseases, it substantially decreased in 2020 (in case of 83%) and 2021 (63%), following which it mostly rebounded to the prepandemic levels and, in some cases, exceeded them in 2023 when the exceptionally high annual rates of new cases of scarlet fever, Streptococcus pneumoniae infections, HIV infections, syphilis, gonococcal infections, and tick-borne encephalitis were noted. The rate of Clostridioides difficile enterocolitis was two-fold higher than before the pandemic from 2021 onward. The rate of Legionnaires' disease in 2023 also exceeded the prepandemic threshold, although this was due to a local outbreak unrelated to lifted COVID-19 pandemic restrictions or migration of war refugees. The influx of war migrants from Ukraine could impact the epidemiology of sexually transmitted diseases. The present analysis indicates that continued efforts are needed to prevent COVID-19 from overwhelming healthcare systems again and decreasing the control over the burden of other infectious diseases. It also identifies the potential tipping points that require additional mitigation measures, which are also discussed in the paper, to avoid escalation in the future.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Genowska
- Department of Public Health, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Mejías-Molina C, Pico-Tomàs A, Martínez-Puchol S, Itarte M, Torrell H, Canela N, Borrego CM, Corominas L, Rusiñol M, Bofill-Mas S. Wastewater-based epidemiology applied at the building-level reveals distinct virome profiles based on the age of the contributing individuals. Hum Genomics 2024; 18:10. [PMID: 38303015 PMCID: PMC10832175 DOI: 10.1186/s40246-024-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
4
|
Soiza RL, Scicluna C, Bilal S. Virus Infections in Older People. Subcell Biochem 2023; 103:149-183. [PMID: 37120468 DOI: 10.1007/978-3-031-26576-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Older people are more prone to viral infections, and often have worse outcomes. This was well demonstrated during the COVID-19 pandemic, where a disproportionate number of deaths occurred in the oldest and frailest people. The assessment of the older person with a viral infection is complicated by the high prevalence of multiple comorbidities and sensory or cognitive impairment. They often present with common geriatric syndromes such as falls or delirium, rather than the more typical features of a viral illness in younger people. Comprehensive geriatric assessment by a specialist multidisciplinary team is the gold standard of management, as viral illness is unlikely to present in isolation of other healthcare needs. We discuss the presentation, diagnosis, prevention, and management of common viral infections-respiratory syncytial virus, coronavirus, norovirus, influenza, hepatitis, herpes, and dengue viruses-with special consideration of infections in the older patient.
Collapse
Affiliation(s)
- Roy L Soiza
- Ageing Clinical and Experimental Research Group, University of Aberdeen, Aberdeen, UK.
| | - Chiara Scicluna
- Ageing Clinical and Experimental Research Group, University of Aberdeen, Aberdeen, UK
| | - Sana Bilal
- Ageing Clinical and Experimental Research Group, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
5
|
Karakusevic A, Devaney P, Enstone A, Kanibir N, Hartwig S, Carias CDS. The burden of rotavirus-associated acute gastroenteritis in the elderly: assessment of the epidemiology in the context of universal childhood vaccination programs. Expert Rev Vaccines 2022; 21:929-940. [PMID: 35535677 DOI: 10.1080/14760584.2022.2066524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Rotaviruses (RVs) cause acute gastroenteritis (AGE) in infants and young children worldwide and also in older adults (≥60 years), however the burden among this age group is not well understood. Herd immunity through pediatric RV vaccination may reduce the burden of RVGE across all ages, however the impact of pediatric vaccination on burden in older adults is poorly understood. AREAS COVERED This systematic review was undertaken to identify studies related to the following objectives: understand the burden of RV in older adults, RV seroprevalence, and the impact of pediatric vaccination on this burden and highlight evidence gaps to guide future research. Of studies identified, 59 studies from two databases were included in this analysis following a review by two reviewers. EXPERT OPINION RV is an understudied disease in older adults. We found that 0-62% of patients with AGE tested positive for RV, with results varying by setting, country, and patient age. Results also suggest that pediatric vaccination benefits older adults through herd protection. Several studies showed a reduction in RV incidence after vaccination. However, there was variety in results and lack of consistency in outcomes reported. Further studies targeting older adults are needed to better characterize RV burden.
Collapse
Affiliation(s)
| | | | | | - Nabi Kanibir
- Global Medical and Scientific Affairs, Msd International GmbH, Luzern, Switzerland
| | - Susanne Hartwig
- Biostatistical and Research Decision Sciences Epidemiology, MSD Vaccins, France
| | | |
Collapse
|
6
|
Portal TM, Vanmechelen B, Van Espen L, Jansen D, Teixeira DM, de Sousa ESA, da Silva VP, de Lima JS, Reymão TKA, Sequeira CG, da Silva Ventura AMR, da Silva LD, Resque HR, Matthijnssens J, Gabbay YB. Molecular characterization of the gastrointestinal eukaryotic virome in elderly people in Belem, Para, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105241. [PMID: 35150892 DOI: 10.1016/j.meegid.2022.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Acute gastroenteritis is one of the main causes of mortality and morbidity worldwide, affecting mainly children, the immunocompromised and elderly people. Enteric viruses, especially rotavirus A, are considered important etiological agents, while long-term care facilities are considered favorable environments for the occurrence of sporadic cases and outbreaks of acute gastroenteritis. Therefore, it is important to monitor the viral agents present in nursing homes, especially because studies involving the elderly population in Brazil are scarce, resulting in a lack of available virological data. As a result, the causative agent remains unidentified in a large number of reported acute gastroenteritis cases. However, the advent of next-generation sequencing provides new opportunities for viral detection and discovery. The aim of this study was to identify the viruses that circulate among elderly people with and without acute gastroenteritis, living in residential care homes in Belém, Pará, Brazil, between 2017 and 2019. Ninety-three samples were collected and screened by immunochromatography and qPCR. After, the samples were analyzed individually or in pools by next generation sequencing to identify the viruses circulating in this population. In 26 sequenced samples, members of 13 eukaryotic virus families were identified. The most abundantly present virus families were Parvoviridae, Genomoviridae and Smacoviridae. Contigs displaying similarity to pegiviruses were also detected. Furthermore, a near-complete rotavirus A genome was obtained and could be classified as G3P[8] genotype with the equine DS-1-like genetic background. Complete sequences of the VP4 and VP7 genes of a rotavirus C were also detected, belonging to G4P[2]. This study demonstrates the first characterization of the gastrointestinal virome in elderly in Northern Brazil. A diversity of viruses was found to be present in patients with and without diarrhea, reinforcing the need to monitor elderly people residing in long-term care facilities, especially in cases of acute gastroenteritis.
Collapse
Affiliation(s)
- Thayara Morais Portal
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil.
| | - Bert Vanmechelen
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Lore Van Espen
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Daan Jansen
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Dielle Monteiro Teixeira
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Scientific Initiation with CNPq and FAPESPA scholarships from Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Victor Pereira da Silva
- Scientific Initiation with CNPq and FAPESPA scholarships from Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Juliana Silva de Lima
- Scientific Initiation with CNPq and FAPESPA scholarships from Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Tammy Katlhyn Amaral Reymão
- Federal University of Pará, Institute of Biological Sciences, Biology of Infectious and Parasitic Agents Graduate Program, Belém, Pará, Brazil
| | | | | | - Luciana Damascena da Silva
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Hugo Reis Resque
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| |
Collapse
|
7
|
Calderwood LE, Wikswo ME, Mattison CP, Kambhampati AK, Balachandran N, Vinjé J, Barclay L, Hall AJ, Parashar U, Mirza SA. Norovirus Outbreaks in Long-term Care Facilities in the United States, 2009-2018: A Decade of Surveillance. Clin Infect Dis 2022; 74:113-119. [PMID: 34523674 PMCID: PMC8978331 DOI: 10.1093/cid/ciab808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In the United States, norovirus is the leading cause of healthcare-associated gastroenteritis outbreaks. To inform prevention efforts, we describe the epidemiology of norovirus outbreaks in long-term care facilities (LTCFs). METHODS The Centers for Disease Control and Prevention (CDC) collect epidemiologic and laboratory data on norovirus outbreaks from US health departments through the National Outbreak Reporting System (NORS) and CaliciNet. Reports from both systems were merged, and norovirus outbreaks in nursing homes, assisted living, and other LTCFs occurring in 2009-2018 were analyzed. Data from the Centers for Medicare and Medicaid Services and the National Center for Health Statistics were used to estimate state LTCF counts. RESULTS During 2009-2018, 50 states, Washington D.C., and Puerto Rico reported 13 092 norovirus outbreaks and 416 284 outbreak-associated cases in LTCFs. Participation in NORS and CaliciNet increased from 2009 to 2014 and median reporting of LTCF norovirus outbreaks stabilized at 4.1 outbreaks per 100 LTCFs (interquartile range [IQR]: 1.0-7.1) annually since 2014. Most outbreaks were spread via person-to-person transmission (90.4%), and 75% occurred during December-March. Genogroup was reported for 7292 outbreaks with 862 (11.8%) positive for GI and 6370 (87.3%) for GII. Among 4425 GII outbreaks with typing data, 3618 (81.8%) were GII.4. LTCF residents had higher attack rates than staff (median 29.0% vs 10.9%; P < .001). For every 1000 cases, there were 21.6 hospitalizations and 2.3 deaths. CONCLUSIONS LTCFs have a high burden of norovirus outbreaks. Most LTCF norovirus outbreaks occurred during winter months and were spread person-to-person. Outbreak surveillance can inform development of interventions for this vulnerable population, such as vaccines targeting GII.4 norovirus strains.
Collapse
Affiliation(s)
- Laura E. Calderwood
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;,Cherokee Nation Assurance, Arlington, Virginia, USA
| | - Mary E. Wikswo
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claire P. Mattison
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;,Cherokee Nation Assurance, Arlington, Virginia, USA
| | - Anita K. Kambhampati
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Neha Balachandran
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;,Cherokee Nation Assurance, Arlington, Virginia, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Leslie Barclay
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Aron J. Hall
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sara A. Mirza
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Parrón I, Barrabeig I, Alseda M, Rius C, Cornejo-Sánchez T, Jané M, Pérez C, Guix S, Domínguez À. Norovirus outbreaks in long-term care facilities in Catalonia from 2017 to 2018. Sci Rep 2021; 11:23218. [PMID: 34853333 PMCID: PMC8636624 DOI: 10.1038/s41598-021-02348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Norovirus is the leading cause of outbreaks of acute viral gastroenteritis. We carried out this study to investigate outbreaks in long-term care facilities reported in 2017 and 2018 in Catalonia (Spain). The characteristics of the centers, exposed persons and the genogroups responsible were analyzed. Viral loads were estimated. The attack rate (AR) of the outbreaks studied, and the rate ratio (RR) and the odds ratio (OR) and their 95% confidence intervals as measures of association were calculated. The mean cycle thresholds were compared using the t-test for independent means. We included 30 outbreaks (4631 exposed people). The global AR was 25.93%. The RR of residents vs. staff was 2.28 (95% CI 2.0–2.6). The RR between AR in residents with total or severe dependence vs. residents with moderate, low or no-dependence was 1.23 (95% CI 1.05–1.45). The AR were higher in smaller centers than in larger ones (38.47% vs. 19.25% and RR 2; 95% CI 1.82–2.2). GII was responsible for 70% of outbreaks. No association was found between the genogroup and presenting symptoms (OR 0.96; 95% CI 0.41–2.26). Viral loads were higher in symptomatic than in asymptomatic patients (p = 0.001).
Collapse
Affiliation(s)
- Ignacio Parrón
- Sub-Direcció Regional a Barcelona del Departament de Salut, Barcelona, Spain. .,Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | - Irene Barrabeig
- Sub-Direcció Regional a Barcelona del Departament de Salut, Barcelona, Spain.,CIBER Epidemiologia y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Alseda
- Sub-Direcció Regional a Lleida del Departament de Salut, Lleida, Spain
| | - Cristina Rius
- CIBER Epidemiologia y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.,Agència de Salut Pública de Barcelona, Barcelona, Spain
| | | | - Mireia Jané
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER Epidemiologia y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.,Sub-Direcció General de Vigilància i Resposta a Emergències de Salut Pública, Barcelona, Spain
| | - Cristina Pérez
- Sub-Direcció Regional a Barcelona del Departament de Salut, Barcelona, Spain
| | - Susana Guix
- Departament de Genètica Microbiologia i Estadística, Grup de Virus Entèrics, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | - Àngela Domínguez
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER Epidemiologia y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
9
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
10
|
Ondrikova N, Clough HE, Douglas A, Iturriza-Gomara M, Larkin L, Vivancos R, Harris JP, Cunliffe NA. Differential impact of the COVID-19 pandemic on laboratory reporting of norovirus and Campylobacter in England: A modelling approach. PLoS One 2021; 16:e0256638. [PMID: 34432849 PMCID: PMC8386829 DOI: 10.1371/journal.pone.0256638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The COVID-19 pandemic has impacted surveillance activities for multiple pathogens. Since March 2020, there was a decline in the number of reports of norovirus and Campylobacter recorded by England’s national laboratory surveillance system. The aim is to estimate and compare the impact of the COVID-19 pandemic on norovirus and Campylobacter surveillance data in England. Methods We utilised two quasi-experimental approaches based on a generalised linear model for sequential count data. The first approach estimates overall impact and the second approach focuses on the impact of specific elements of the pandemic response (COVID-19 diagnostic testing and control measures). The following time series (27, 2015–43, 2020) were used: weekly laboratory-confirmed norovirus and Campylobacter reports, air temperature, conducted Sars-CoV-2 tests and Index of COVID-19 control measures stringency. Results The period of Sars-CoV-2 emergence and subsequent sustained transmission was associated with persistent reductions in norovirus laboratory reports (p = 0.001), whereas the reductions were more pronounced during pandemic emergence and later recovered for Campylobacter (p = 0.075). The total estimated reduction was 47% - 79% for norovirus (12–43, 2020). The total reduction varied by time for Campylobacter, e.g. 19% - 33% in April, 1% - 7% in August. Conclusion Laboratory reporting of norovirus was more adversely impacted than Campylobacter by the COVID-19 pandemic. This may be partially explained by a comparatively stronger effect of behavioural interventions on norovirus transmission and a relatively greater reduction in norovirus testing capacity. Our study underlines the differential impact a pandemic may have on surveillance of gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Nikola Ondrikova
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute for Risk & Uncertainty, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Helen E. Clough
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Amy Douglas
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London, United Kingdom
| | | | - Lesley Larkin
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Roberto Vivancos
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- Field Service, National Infection Service, Public Health England, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - John P. Harris
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- North West Health Protection Team, Public Health England, Liverpool, United Kingdom
| | - Nigel A. Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin M. Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England. Sci Transl Med 2021. [PMID: 34158411 DOI: 10.25561/85146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modeling framework, allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rt eff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 [95% credible interval (CrI): 15,900 to 38,400]. The infection fatality ratio decreased from 1.00% (95% CrI: 0.85 to 1.21%) to 0.79% (95% CrI: 0.63 to 0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% CrI: 14.7 to 35.2%) than those residing in the community (7.9%, 95% CrI: 5.9 to 10.3%). On 2 December 2020, England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95% CrI: 5.4 to 10.2%) and 22.3% (95% CrI: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be lifted without a resurgence of transmission.
Collapse
Affiliation(s)
- Edward S Knock
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
| | - Lilith K Whittles
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
- Modelling and Economics Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Pablo N Perez-Guzman
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Richard G FitzJohn
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Katy A M Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Natsuko Imai
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Wes Hinsley
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Alicia Rosello
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Nikolas Kantas
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London SW7 2BX, UK
| | - Caroline E Walters
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Charlie Whittaker
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lorenzo Cattarino
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Adhiratha Boonyasiri
- Department of Infectious Disease, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Bimandra A Djaafara
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Keith Fraser
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Han Fu
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Haowei Wang
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Xiaoyue Xi
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London SW7 2BX, UK
| | - Christl A Donnelly
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
- NIHR HPRU in Emerging and Zoonotic Infections, Liverpool, UK
| | - Elita Jauneikaite
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Daniel J Laydon
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Peter J White
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
- Modelling and Economics Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Neil M Ferguson
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK.
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
| | - Marc Baguelin
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK.
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
12
|
Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin M. Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England. Sci Transl Med 2021; 13:eabg4262. [PMID: 34158411 PMCID: PMC8432953 DOI: 10.1126/scitranslmed.abg4262] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modeling framework, allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rt eff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 [95% credible interval (CrI): 15,900 to 38,400]. The infection fatality ratio decreased from 1.00% (95% CrI: 0.85 to 1.21%) to 0.79% (95% CrI: 0.63 to 0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% CrI: 14.7 to 35.2%) than those residing in the community (7.9%, 95% CrI: 5.9 to 10.3%). On 2 December 2020, England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95% CrI: 5.4 to 10.2%) and 22.3% (95% CrI: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be lifted without a resurgence of transmission.
Collapse
Affiliation(s)
- Edward S Knock
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
| | - Lilith K Whittles
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
- Modelling and Economics Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Pablo N Perez-Guzman
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Richard G FitzJohn
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Katy A M Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Natsuko Imai
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Wes Hinsley
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Alicia Rosello
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Nikolas Kantas
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London SW7 2BX, UK
| | - Caroline E Walters
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Charlie Whittaker
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lorenzo Cattarino
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Adhiratha Boonyasiri
- Department of Infectious Disease, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Bimandra A Djaafara
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Keith Fraser
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Han Fu
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Haowei Wang
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Xiaoyue Xi
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London SW7 2BX, UK
| | - Christl A Donnelly
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
- NIHR HPRU in Emerging and Zoonotic Infections, Liverpool, UK
| | - Elita Jauneikaite
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Daniel J Laydon
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Peter J White
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
- Modelling and Economics Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
| | - Neil M Ferguson
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK.
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
| | - Marc Baguelin
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London W2 1PG, UK.
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Modelling and Health Economics, London, UK
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
13
|
Ondrikova N, Clough HE, Cunliffe NA, Iturriza-Gomara M, Vivancos R, Harris JP. Understanding norovirus reporting patterns in England: a mixed model approach. BMC Public Health 2021; 21:1245. [PMID: 34182979 PMCID: PMC8240379 DOI: 10.1186/s12889-021-11317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Norovirus has a higher level of under-reporting in England compared to other intestinal infectious agents such as Campylobacter or Salmonella, despite being recognised as the most common cause of gastroenteritis globally. In England, this under-reporting is a consequence of the frequently mild/self-limiting nature of the disease, combined with the passive surveillance system for infectious diseases reporting. We investigated heterogeneity in passive surveillance system in order to improve understanding of differences in reporting and laboratory testing practices of norovirus in England. METHODS The reporting patterns of norovirus relating to age and geographical region of England were investigated using a multivariate negative binomial model. Multiple model formulations were compared, and the best performing model was determined by proper scoring rules based on one-week-ahead predictions. The reporting patterns are represented by epidemic and endemic random intercepts; values close to one and less than one imply a lower number of reports than expected in the given region and age-group. RESULTS The best performing model highlighted atypically large and small amounts of reporting by comparison with the average in England. Endemic random intercept varied from the lowest in East Midlands in those in the under 5 year age-group (0.36, CI 0.18-0.72) to the highest in the same age group in South West (3.00, CI 1.68-5.35) and Yorkshire & the Humber (2.93, CI 1.74-4.94). Reporting by age groups showed the highest variability in young children. CONCLUSION We identified substantial variability in reporting patterns of norovirus by age and by region of England. Our findings highlight the importance of considering uncertainty in the design of forecasting tools for norovirus, and to inform the development of more targeted risk management approaches for norovirus disease.
Collapse
Affiliation(s)
- N. Ondrikova
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Institute for Risk & Uncertainty, University of Liverpool, Liverpool, UK
| | - H. E. Clough
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - N. A. Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Public Health England, Liverpool, UK
| | - M. Iturriza-Gomara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Centre for Vaccine Innovation and Access, PATH, Geneva, Switzerland
| | - R. Vivancos
- NIHR Health Protection Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Public Health England, Liverpool, UK
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - J. P. Harris
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Public Health England, Liverpool, UK
| |
Collapse
|
14
|
Hoedl M, Eglseer D, Bauer S. Associations between personal protective equipment and nursing staff stress during the COVID-19 pandemic. J Nurs Manag 2021; 29:2374-2382. [PMID: 34174009 PMCID: PMC8420325 DOI: 10.1111/jonm.13400] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Aim This study gives insights into the association between the use of personal protective equipment (PPE), wearing time of masks and stress among frontline nursing staff during the COVID‐19 pandemic. Background PPE can have physical consequences like headache and pain, which could result in increased nurse stress levels. Methods A total of 2600 nurses participated in this online survey. The questionnaire is based on literature and includes the perceived level of stress scale. Results We found no significant association between the use of PPE and stress. Nurses who wore masks for more than 8 h had significant higher stress levels than those who used the masks for a shorter period. Conclusions The duration of wearing masks is associated with nurse's stress level. Our findings can help nurses to argue a higher frequency of breaks and a maximum duration of mask usage in their organisations. Implications for Nursing Management We recommend that nursing managers implement practical strategies such as a mask break task force. This task force could promote awareness for mask breaks and recommend and allocate rooms or locations such as balconies for mask breaks.
Collapse
Affiliation(s)
- Manuela Hoedl
- Institute of Nursing Science, Medical University of Graz, Graz, Austria
| | - Doris Eglseer
- Institute of Nursing Science, Medical University of Graz, Graz, Austria
| | - Silvia Bauer
- Institute of Nursing Science, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Sapovirus, a genus in the Caliciviridae family alongside norovirus, is increasingly recognized as an important cause of childhood diarrhea. Some challenges exist in our ability to better understand sapovirus infections, including the inability to grow sapovirus in cell culture, which has hindered diagnosis and studies of immunity. Another challenge is that individuals with sapovirus infection are commonly coinfected with other enteric pathogens, complicating our ability to attribute the diarrhea episode to a single pathogen. RECENT FINDINGS Development of molecular methods for sapovirus detection has increased our ability to measure disease prevalence. The prevalence of sapovirus varies between 1 and 17% of diarrhea episodes worldwide, with the highest burden in young children and older adults. Further, epidemiological studies have used novel approaches to account for the presence of coinfections with other enteric pathogens; one multisite cohort study of children under two years of age found that sapovirus had the second-highest attributable incidence among all diarrheal pathogens studied. SUMMARY Especially in settings where rotavirus vaccines have been introduced, efforts to reduce the overall burden of childhood diarrhea should focus on the reduction of sapovirus transmission and disease burden.
Collapse
|
16
|
Yandle Z, Coughlan S, Dean J, Hare D, De Gascun CF. Indirect impact of rotavirus vaccination on viral causes of acute gastroenteritis in the elderly. J Clin Virol 2021; 137:104780. [PMID: 33647802 DOI: 10.1016/j.jcv.2021.104780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Rotavirus is considered a childhood infection causing acute gastroenteritis however, it also causes disease in adults which may be underestimated due to less frequent testing in this age-group. OBJECTIVES To determine if paediatric rotavirus vaccination, introduced into Ireland in December 2016, affected the viral aetiology in those aged ≥65 yrs presenting with gastroenteritis in the pre- and post-vaccination years. Additionally, rotavirus genotypes in this age-group will be described. METHODS Faecal samples from 2015 to 2019 for the investigation of gastroenteritis were tested by real-time (RT-) PCR for norovirus, adenovirus, rotavirus, Rotarix, astrovirus and sapovirus. Rotaviruses were genotyped by multiplex real-time RT-PCR or hemi-nested RT-PCR and a proportion confirmed by sequencing. RESULTS 22,593 samples from adults aged ≥65 yrs were tested and 2566 (11 %) had ≥1 virus detected. Of 2566 positive samples, norovirus was detected in 82 %, rotavirus 9 %, sapovirus 6 %, astrovirus 3 % and adenovirus 1 %. Rotavirus and norovirus infections decreased between pre and post-vaccine year groups p < 0.001, whereas sapovirus, astrovirus and adenovirus remained unchanged. Between 2015-16 and 2018-19, G2P[4] increased and G4P[8] decreased, p < 0.001. In 2015-2019 there were 37 rotavirus outbreaks. Five geriatric outbreaks were genotyped and caused by G4P[8] (n = 1), G1P[8] (n = 1), G2P[4] (n = 2) and G12P[8] (n = 1). CONCLUSION Rotavirus causes acute gastroenteritis in older people. Paediatric vaccination may have contributed to a decline in infections in the elderly; nevertheless, rotavirus continued to circulate in older people following vaccine introduction. Genotype distribution changed between the pre- and post-vaccine era however genotypes in outbreak and endemic settings were comparable.
Collapse
Affiliation(s)
- Z Yandle
- UCD National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland.
| | - S Coughlan
- UCD National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - J Dean
- UCD National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - D Hare
- UCD National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - C F De Gascun
- UCD National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| |
Collapse
|