1
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
The Intracellular and Secreted Sides of Osteopontin and Their Putative Physiopathological Roles. Int J Mol Sci 2023; 24:ijms24032942. [PMID: 36769264 PMCID: PMC9917417 DOI: 10.3390/ijms24032942] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Classically, osteopontin (OPN) has been described as a secreted glycophosprotein. Indeed, most data concerning its physiological and pathological roles are mainly related to the secreted OPN (sOPN). However, there are several instances in which intracellular OPN (iOPN) has been described, presenting some specific roles in distinct experimental models, such as in the immune system, cancer cells, and neurological disorders. We herein aimed to highlight and discuss some of these secreted and intracellular roles of OPN and their putative clinical and biological impacts. Moreover, by consolidating data from the OPN protein database, we also analyzed the occurrence of signal peptide (SP) sequences and putative subcellular localization, especially concerning currently known OPN splicing variants (OPN-SV). Comprehending the roles of OPN in its distinct cellular and tissue environments may provide data regarding the additional applications of this protein as biomarkers and targets for therapeutic purposes, besides further describing its pleiotropic roles.
Collapse
|
3
|
Mohammadi A, Shabestari AN, Baghdadabad LZ, Khatami F, Reis LO, Pishkuhi MA, Kazem Aghamir SM. Genetic Polymorphisms and Kidney Stones Around the Globe: A Systematic Review and Meta-Analysis. Front Genet 2022; 13:913908. [PMID: 35846117 PMCID: PMC9280078 DOI: 10.3389/fgene.2022.913908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study explores associations between recurrent kidney stones and genetic polymorphisms. Methods: Meta-analysis of polymorphisms in renal stone cases versus control groups. Four electronic databases (PubMed, SCOPUS, EMBASE, and Web of Science) were searched up to 30 May 2021, using the keywords: “kidney stone” or “kidney calculi,” or “urolithiasis” or “nephrolithiasis” or “urinary calculi” and “genome” or “genetic” or “mutation” or “single nucleotide polymorphism.” Forrest plots, ORs, 95% CI, Chi-square (χ2)-test, and index of heterogeneity (I2) were calculated. Only studies with Newcastle–Ottawa scale (NOS) ≥ 6 were included for quality control, and Funnel, Begg’s, and Eager’s plots assessed publication bias. PROSPERO: CRD42022250427. Results: Among 7,671 searched articles, 72 were included. Polymorphisms in VDR (OR: 1.20; 95% CI: 1.06–1.36), CASR (OR = 1.24; 95% CI: 1.01–1.52), Osteopontin (OR = 1.38; 95% CI: 1.09–1.74), and Urokinase genes (OR = 1.52; 95% CI: 1.02–2.28) showed a significant association with risk of urinary stone formation, while Klotho gene showed a protective effect (OR = 0.75; 95% CI: 0.57–0.99). The VDR gene polymorphism was frequent in Asians, whereas CASR polymorphism was frequent in European and North American populations. Conclusion: Multifactorial nature of the stone formation, emphasizing the role of environmental factors, might explain contradictory results in the literature. While polymorphisms in VDR, CASR, Osteopontin, and Urokinase genes were associated with urinary stone formation, the Klotho gene showed a protective effect.
Collapse
Affiliation(s)
- Abdolreza Mohammadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Namazi Shabestari
- Department of Geriatric Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience and Department of Surgery (Urology), School of Medical Sciences, University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, São Paulo, Brazil
| | - Mahin Ahmadi Pishkuhi
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Kazem Aghamir
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Seyed Mohammad Kazem Aghamir,
| |
Collapse
|
4
|
Cheng Y, Li Y, Scherer N, Grundner-Culemann F, Lehtimäki T, Mishra BH, Raitakari OT, Nauck M, Eckardt KU, Sekula P, Schultheiss UT. Genetics of osteopontin in patients with chronic kidney disease: The German Chronic Kidney Disease study. PLoS Genet 2022; 18:e1010139. [PMID: 35385482 PMCID: PMC9015153 DOI: 10.1371/journal.pgen.1010139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.
Collapse
Affiliation(s)
- Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Binisha H. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
5
|
Osteopontin Gene Polymorphisms Are Associated with Cardiovascular Risk Factors in Patients with Premature Coronary Artery Disease. Biomedicines 2021; 9:biomedicines9111600. [PMID: 34829826 PMCID: PMC8615378 DOI: 10.3390/biomedicines9111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Osteopontin (OPN) is considered a clinical predictor of cardiovascular disease. We aimed to evaluate the association of the OPN gene polymorphisms rs2728127 and rs11730582 with the development of premature coronary artery disease (pCAD), cardiovascular risk factors, and cardiometabolic parameters. We evaluated 1142 patients with pCAD and 1073 controls. Both polymorphisms were determined by Taqman assays. Similar allele and genotype frequencies were observed in both groups; additionally, an association of these polymorphisms with CAD and cardiometabolic parameters was observed in both groups. In patients with pCAD, the rs11730582 was associated with a high risk of hypoadiponectinemia (OR = 1.300, P additive = 0.003), low risk of hypertension (OR = 0.709, P codominant 1 = 0.030), and low risk of having high non-HDL cholesterol (OR = 0.637, P additive = 0.038). In the control group, the rs2728127 was associated with a low risk of fatty liver (OR = 0.766, P additive = 0.038); while the rs11730582 was associated with a low risk of hypoadiponectinemia (OR = 0.728, P dominant = 0.022), and risk of having elevated apolipoprotein B (OR = 1.400, P dominant = 0.031). Our results suggest that in Mexican individuals, the rs11730582 and rs2728127 OPN gene polymorphisms are associated with some abnormal metabolic variables in patients with pCAD and controls.
Collapse
|