1
|
Maheshwari S, Singh A, Ansari VA, Mahmood T, Wasim R, Akhtar J, Verma A. Navigating the dementia landscape: Biomarkers and emerging therapies. Ageing Res Rev 2024; 94:102193. [PMID: 38215913 DOI: 10.1016/j.arr.2024.102193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The field of dementia research has witnessed significant developments in our understanding of neurodegenerative disorders, with a particular focus on Alzheimer's disease (AD) and Frontotemporal Dementia (FTD). Dementia, a collection of symptoms arising from the degeneration of brain cells, presents a significant healthcare challenge, especially as its prevalence escalates with age. This abstract delves into the complexities of these disorders, the role of biomarkers in their diagnosis and monitoring, as well as emerging neurophysiological insights. In the context of AD, anti-amyloid therapy has gained prominence, aiming to reduce the accumulation of amyloid-beta (Aβ) plaques in the brain, a hallmark of the disease. Notably, Leqembi recently received full FDA approval, marking a significant breakthrough in AD treatment. Additionally, ongoing phase 3 clinical trials are investigating novel therapies, including Masitinib and NE3107, focusing on cognitive and functional improvements in AD patients. In the realm of FTD, research has unveiled distinct neuropathological features, including the involvement of proteins like TDP-43 and progranulin, providing valuable insights into the diagnosis and management of this heterogeneous condition. Biomarkers, including neurofilaments and various tau fragments, have shown promise in enhancing diagnostic accuracy. Neurophysiological techniques, such as transcranial magnetic stimulation (TMS), have contributed to our understanding of AD and FTD. TMS has uncovered unique neurophysiological signatures, highlighting impaired plasticity, hyperexcitability, and altered connectivity in AD, while FTD displays differences in neurotransmitter systems, particularly GABAergic and glutamatergic circuits. Lastly, ongoing clinical trials in anti-amyloid therapy for AD, such as Simufilam, Solanezumab, Gantenerumab, and Remternetug, offer hope for individuals affected by this devastating disease, with the potential to alter the course of cognitive decline. These advancements collectively illuminate the evolving landscape of dementia research and the pursuit of effective treatments for these challenging conditions.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences Rama University Mandhana, Bithoor Road, Kanpur, Uttar Pradesh 209217, India; Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| | - Aditya Singh
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Vaseem Ahamad Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Tarique Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Rufaida Wasim
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Amita Verma
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| |
Collapse
|
2
|
Chowdari Gurram P, Satarker S, Kumar G, Begum F, Mehta C, Nayak U, Mudgal J, Arora D, Nampoothiri M. Avanafil mediated dual inhibition of IKKβ and TNFR1 in an experimental paradigm of Alzheimer's disease: in silico and in vivo approach. J Biomol Struct Dyn 2023; 41:10659-10677. [PMID: 36533331 DOI: 10.1080/07391102.2022.2156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
In Alzheimer's disease pathology, inhibitors of nuclear factor kappa-β kinase subunit β (IKKB) and Tumor necrosis factor receptor 1 (TNFR1) signaling are linked to neuroinflammation-mediated cognitive decline. We explored the role of a phosphodiesterase 5 inhibitor (PDE5I) with dual antagonistic action on IKKB and TNFR1 to inhibit nuclear factor kappa B (NF-kB) and curb neuroinflammation. In the in silico approach, the FDA-approved Zinc 15 library was docked with IKKB and TNFR1. The top compound with dual antagonistic action on IKKB and TNFR1 was selected based on bonding and non-bonding interactions. Further, induced fit docking (IFD), molecular mechanics-generalized Born and surface area (MMGBSA), and molecular dynamic studies were carried out and evaluated. Lipopolysaccharide (LPS) administration caused a neuroinflammation-mediated cognitive decline in mice. Two doses of avanafil were administered for 28 days while LPS was administered for 10 days. Morris water maze (MWM) along with the passive avoidance test (PAT) were carried out. Concurrently brain levels of inflammatory markers, oxidative parameters, amyloid beta (Aβ), IKKB and NF-kB levels were estimated. Avanafil produced good IKKB and TNFR1 binding ability. It interacted with crucial inhibitory amino acids of IKKB and TNFR1. MD analysis predicted good stability of avanafil with TNFR1 and IKKB. Avanafil 6 mg/kg could significantly improve performance in MWM, PAT and oxidative parameters and reduce Aβ levels and inflammatory markers. As compared to avanafil 3 mg/kg, 6 mg/kg dose was found to exert better efficacy against elevated Aβ , neuroinflammatory cytokines and oxidative markers while improving behavioural parameters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Verma A, Shteinfer-Kuzmine A, Kamenetsky N, Pittala S, Paul A, Nahon Crystal E, Ouro A, Chalifa-Caspi V, Pandey SK, Monsengo A, Vardi N, Knafo S, Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl Neurodegener 2022; 11:58. [PMID: 36578022 PMCID: PMC9795455 DOI: 10.1186/s40035-022-00329-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS In neuronal cultures, amyloid-beta (Aβ)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aβ plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aβ-plaque load. CONCLUSIONS The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.
Collapse
Affiliation(s)
- Ankit Verma
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nikita Kamenetsky
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Srinivas Pittala
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Avijit Paul
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Edna Nahon Crystal
- grid.443007.40000 0004 0604 7694Achva Academic College, 79804 Shikmim, Israel
| | - Alberto Ouro
- grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.488911.d0000 0004 0408 4897Present Address: NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Vered Chalifa-Caspi
- grid.7489.20000 0004 1937 0511Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Swaroop Kumar Pandey
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Alon Monsengo
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noga Vardi
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Shira Knafo
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|
5
|
Tan W, Zheng Q, Feng K, Feng X, Zhong W, Liao C, Li S, Liu Y, Hu W. Neuroprotection of Gastrodia elata polyphenols against H 2O 2-induced PC12 cell cytotoxicity by reducing oxidative stress. Front Pharmacol 2022; 13:1050775. [PMID: 36438797 PMCID: PMC9684467 DOI: 10.3389/fphar.2022.1050775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 08/04/2023] Open
Abstract
It has been suggested that oxidative stress (OS) has a role in the development of aging and neurodegenerative disorders. Biological molecules are easily damaged by reactive oxygen species, which can ultimately result in necrotic or apoptotic cell death. Foods containing phytochemicals, such as phenolic compounds, may have potential preventive effects against several diseases, including alzheimer's disease (AD), according to epidemiological and in vitro research. Gastrodia elata is a well-known homology of medicine and food plant that has been used for centuries in China and other East Asian countries to treat central nervous system disorders. In this study, we focused on the potential of the extract, Gastrodia elata polyphenols (GPP), for the prevention and treatment of AD. H2O2 induced PC12 cell damage was used to simulate the oxidative stress of AD. The effects of GPP on the injury model were evaluated by cell survival rate, lactate dehydrogenase (LDH), lipid peroxidation (MDA), production of intracellular antioxidant enzymes, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), cellular inflammation level and apoptosis level. The results showed that GPP pretreatment had a protective effect by increasing cell viability, reducing lactate dehydrogenase infiltration, decreasing MDA and increasing intracellular antioxidant enzymes, diminishing reactive oxygen species production and decreasing mitochondrial membrane potential, reducing cell inflammation and decreasing apoptosis. Accordingly, it is suggested that GPP possessed promising neuroprotective benefits which enabled the prevention or therapeutic implementation of AD along with serving as a reference towards the exploitation of functional foods or drugs derived from Gastrodia elata.
Collapse
Affiliation(s)
- Weijian Tan
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Qinhua Zheng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kexin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Xiaolin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Caiyu Liao
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Shangjian Li
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Yuntong Liu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
6
|
Kaushik M, Kaushik P, Parvez S. Memory related molecular signatures: The pivots for memory consolidation and Alzheimer's related memory decline. Ageing Res Rev 2022; 76:101577. [PMID: 35104629 DOI: 10.1016/j.arr.2022.101577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Age-related cognitive decline is the major cause of concern due to its 70% more incidence than dementia cases worldwide. Moreover, aging is also the major risk factor of Alzheimer's disease (AD), associated with progressive memory loss. Approx. 13 million people will have Alzheimer-related memory decline by 2050. Learning and memory is the fundamental process of brain functions. However, the mechanism for the same is still under investigation. Thus, it is critical to understand the process of memory consolidation in the brain and extrapolate its understanding to the memory decline mechanism. Research on learning and memory has identified several molecular signatures such as Protein kinase M zeta (PKMζ), Calcium/calmodulin-dependent protein kinase II (CaMKII), Brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) and Activity-regulated cytoskeleton-associated protein (Arc) crucial for the maintenance and stabilization of long-term memory in the brain. Interestingly, memory decline in AD has also been linked to the abnormality in expressing these memory-related molecular signatures. Hence, in the present consolidated review, we explored the role of these memory-related molecular signatures in long-term memory consolidation. Additionally, the effect of amyloid-beta toxicity on these molecular signatures is discussed in detail.
Collapse
Affiliation(s)
- Medha Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Xu J, Li D, Lu Y, Zheng TY. Aβ monomers protect lens epithelial cells against oxidative stress by upregulating CDC25B. Free Radic Biol Med 2021; 175:161-170. [PMID: 34478836 DOI: 10.1016/j.freeradbiomed.2021.08.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022]
Abstract
Our previous studies showed high β-amyloid (Aβ) expression levels in the nuclei of the lens epithelial cells (LECs) of healthy subjects and revealed that Aβ monomers could protect LECs from oxidative damage. Here, we further explored the mechanism by which Aβ monomers act as transcription factors to regulate the oxidative stress of LECs through high-throughput studies. First, we compared the Aβ-binding sites in the lens epithelia (LE) of age-related cataract patients with those in the LE of healthy donors via chromatin immunoprecipitation-sequencing (ChIP-seq), and we identified comparable numbers (1648 and 1445, respectively) of Aβ peaks. Then, the KEGG tool was used for gene function enrichment analysis of these genes, which were more highly enriched in healthy LE. Combining the literature review with these KEGG analysis results, in the current study, we chose four target genes related to oxidative stress, namely, CDC25B, SOS2, CTNNA1 and Cox6a1. Then, ChIP-PCR assays, dual-luciferase reporter assays, real-time PCR and Western blotting were performed to validate the regulatory effects of Aβ on these targets. Our data suggested that Aβ monomers could upregulate the mRNA and protein expression levels of CDC25B in LECs. We also confirmed that Aβ monomers could activate the Akt/Nrf2 pathway in a CDC25B-dependent manner by knockdown experiments in cultured LECs. Furthermore, we performed functional verification of the CDC25B-mediated protective effects of Aβ monomers against oxidative stress. We observed that Aβ monomers significantly improved the antioxidant capacity (the GSH level, SOD activity and total antioxidant capacity) and decreased the oxidative stress (the ROS and MDA levels) of LECs, while CDC25B knockdown decreased the antioxidant effects of Aβ, disrupting redox homeostasis. Therefore, we propose that Aβ monomers activate the Akt/Nrf2 pathway by upregulating CDC25B expression, increase various downstream antioxidant enzyme levels, maintain peroxidation-antioxidant homeostasis in LECs, and prevent the cell damage caused by oxidative stress.
Collapse
Affiliation(s)
- Jie Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China
| | - Dan Li
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China.
| | - Tian-Yu Zheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China.
| |
Collapse
|
8
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 2021; 46:2832-2851. [PMID: 34357520 DOI: 10.1007/s11064-021-03415-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Loss of APP in mice increases thigmotaxis and is associated with elevated brain expression of IL-13 and IP-10/CXCL10. Physiol Behav 2021; 240:113533. [PMID: 34293404 DOI: 10.1016/j.physbeh.2021.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and is often accompanied by increased anxiety. Although AD is a heterogeneous disease, dysregulation of inflammatory pathways is a consistent event. Interestingly, the amyloid precursor protein (APP), which is the source of the amyloid peptide Aβ, is also necessary for the efficient regulation of the innate immune response. Here, we hypothesize that loss of APP function in mice would lead to cognitive loss and anxiety behavior, both of which are typically present in AD, as well as changes in the expression of inflammatory mediators. To test this hypothesis, we performed open field, Y-maze and novel object recognition tests on 12-18-week-old male and female wildtype and AppKO mice to measure thigmotaxis, short-term spatial memory and long-term recognition memory. We then performed a quantitative multiplexed immunoassay to measure levels of 32 cytokines/chemokines associated with AD and anxiety. Our results showed that AppKO mice, compared to wildtype controls, experienced increased thigmotactic behavior but no memory impairments, and this phenotype correlated with increased IP-10 and IL-13 levels. Future studies will determine whether dysregulation of these inflammatory mediators contributes to pathogenesis in AD.
Collapse
|
10
|
Tan MS, Yang YX, Wang HF, Xu W, Tan CC, Zuo CT, Dong Q, Tan L, Yu JT. PET Amyloid and Tau Status Are Differently Affected by Patient Features. J Alzheimers Dis 2020; 78:1129-1136. [PMID: 33104024 DOI: 10.3233/jad-200124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) plaques and tau neurofibrillary tangles are two neuropathological hallmarks of Alzheimer's disease (AD), which both can be visualized in vivo using PET radiotracers, opening new opportunities to study disease mechanisms. OBJECTIVE Our study investigated 11 non-PET factors in 5 categories (including demographic, clinical, genetic, MRI, and cerebrospinal fluid (CSF) features) possibly affecting PET amyloid and tau status to explore the relationships between amyloid and tau pathology, and whether these features had a different association with amyloid and tau status. METHODS We included 372 nondemented elderly from the Alzheimer's Disease Neuroimaging Initiative cohort. All underwent PET amyloid and tau analysis simultaneously, and were grouped into amyloid/tau quadrants based on previously established abnormality cut points. We examined the associations of above selected features with PET amyloid and tau status using a multivariable logistic regression model, then explored whether there was an obvious correlation between the significant features and PET amyloid or tau levels. RESULTS Our results demonstrated that PET amyloid and tau status were differently affected by patient features, and CSF biomarker features provided most significant values associating PET findings. CSF Aβ42/40 was the most important factor affecting amyloid PET status, and negatively correlated with amyloid PET levels. CSF pTau could significantly influence both amyloid and tau PET status. Besides CSF pTau and Aβ42, APOEɛ4 allele status and Mini-Mental State Examination scores also could influence tau PET status, and significantly correlated with tau PET levels. CONCLUSION Our results support that tau pathology possibly affected by Aβ-independent factors, implicating the importance of tau pathology in AD pathogenesis.
Collapse
Affiliation(s)
- Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
11
|
Wang T, Kuang W, Chen W, Xu W, Zhang L, Li Y, Li H, Peng Y, Chen Y, Wang B, Xiao J, Li H, Yan C, Du Y, Tang M, He Z, Chen H, Li W, Lin H, Shi S, Bi J, Zhou H, Cheng Y, Gao X, Guan Y, Huang Q, Chen K, Xin X, Ding J, Geng M, Xiao S. A phase II randomized trial of sodium oligomannate in Alzheimer's dementia. ALZHEIMERS RESEARCH & THERAPY 2020; 12:110. [PMID: 32928279 PMCID: PMC7489025 DOI: 10.1186/s13195-020-00678-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sodium oligomannate (GV-971), a marine-derived oligosaccharide, is a novel agent that may improve cognition in AD patients. METHODS The 24-week multicenter, randomized, double-blind, placebo parallel controlled clinical trial was conducted in AD in China between 24 October 2011 and 10 July 2013. The study included a 4-week screening/washout period, followed by a 24-week treatment period. Patients were randomized in a 1:1:1 ratio to receive GV-971 900 mg, 600 mg, or placebo capsule in treatment period, respectively. The primary outcome was cognitive improvement as assessed by changes in Alzheimer's Disease Assessment Scale-cognitive subscale 12-item (ADAS-cog12) scores from baseline to week 24. The secondary efficacy outcomes included CIBIC-Plus, ADCS-ADL, and NPI at 24 weeks after treatment compared with baseline. A subgroup study was assessment of the change in cerebral glucose metabolism by fluorodeoxyglucose positron emission tomography measurements. RESULTS Comparing with the placebo group (n = 83, change - 1.45), the ADAS-cog12 score change in the GV-971 600-mg group (n = 76) was - 1.39 (p = 0.89) and the GV-971 900-mg group (n = 83) was - 2.58 (p = 0.30). The treatment responders according to CIBIC-Plus assessment were significantly higher in the GV-971 900-mg group than the placebo group (92.77% vs. 79.52%, p < 0.05). The GV-971 900-mg subgroup showed a lower decline of cerebral metabolic rate for glucose than the placebo subgroup at the left precuneus, right posterior cingulate, bilateral hippocampus, and bilateral inferior orbital frontal at uncorrected p = 0.05. The respective rates of treatment-related AEs were 5.9%, 14.3%, and 3.5%. CONCLUSIONS GV-971 was safe and well tolerated. GV-971 900 mg was chosen for phase III clinical study. TRIAL REGISTRATION ClinicalTrials.gov, NCT01453569 . Registered on October 18, 2011.
Collapse
Affiliation(s)
- Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Alzheimer's Disease and Related Disorders Center of Shanghai Jiaotong University, 600 South Wan Ping Road, Shanghai, 200030, China.
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Chen
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwei Xu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Wuxi, Jiangsu, China
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingjie Li
- Department of Neurology, The Hospital of 81st Group Army PLA, Zhangjiakou, Hebei, China
| | - Hailin Li
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region, China
| | - Jinsong Xiao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghua Li
- Department of Neurology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Mouni Tang
- Department of Geriatric Psychiatry, Guangzhou Brian Hospital, Guangzhou, Guangdong, China
| | - Zhiyi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haibo Chen
- Department of Neurology, Beijing Hospital, Beijing, China
| | - Wei Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Neurology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shanxi, China
| | - Shugui Shi
- Department of Neurology, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Huadong Zhou
- Department of Neurology, Daping Hospital, Chongqing, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University general hospital, Tianjin, China
| | - Xiaoping Gao
- Department of Neurology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Yihui Guan
- PET Center Huashan Hospital Fudan University, Shanghai, China
| | - Qiu Huang
- Med-X Research Institution, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Xianliang Xin
- Shanghai Green Valley Pharmaceutical Co Ltd, Shanghai, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Alzheimer's Disease and Related Disorders Center of Shanghai Jiaotong University, 600 South Wan Ping Road, Shanghai, 200030, China.
| |
Collapse
|
12
|
Oksanen M, Hyötyläinen I, Trontti K, Rolova T, Wojciechowski S, Koskuvi M, Viitanen M, Levonen A, Hovatta I, Roybon L, Lehtonen Š, Kanninen KM, Hämäläinen RH, Koistinaho J. NF-E2-related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin-1 mutated Alzheimer's disease astrocytes. Glia 2020; 68:589-599. [PMID: 31670864 PMCID: PMC7003860 DOI: 10.1002/glia.23741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a common dementia affecting a vast number of individuals and significantly impairing quality of life. Despite extensive research in animal models and numerous promising treatment trials, there is still no curative treatment for AD. Astrocytes, the most common cell type of the central nervous system, have been shown to play a role in the major AD pathologies, including accumulation of amyloid plaques, neuroinflammation, and oxidative stress. Here, we show that inflammatory stimulation leads to metabolic activation of human astrocytes and reduces amyloid secretion. On the other hand, the activation of oxidative metabolism leads to increased reactive oxygen species production especially in AD astrocytes. While healthy astrocytes increase glutathione (GSH) release to protect the cells, Presenilin-1-mutated AD patient astrocytes do not. Thus, chronic inflammation is likely to induce oxidative damage in AD astrocytes. Activation of NRF2, the major regulator of cellular antioxidant defenses, encoded by the NFE2L2 gene, poses several beneficial effects on AD astrocytes. We report here that the activation of NRF2 pathway reduces amyloid secretion, normalizes cytokine release, and increases GSH secretion in AD astrocytes. NRF2 induction also activates the metabolism of astrocytes and increases the utilization of glycolysis. Taken together, targeting NRF2 in astrocytes could be a potent therapeutic strategy in AD.
Collapse
Affiliation(s)
- Minna Oksanen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Ida Hyötyläinen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Kalevi Trontti
- Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
- SleepWell Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
| | - Taisia Rolova
- Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Marja Koskuvi
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
- Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
| | - Matti Viitanen
- Department of GeriatricsUniversity of Turku, Turku City HospitalTurkuFinland
- Department of GeriatricsKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Anna‐Liisa Levonen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Iiris Hovatta
- Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
- SleepWell Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
| | - Laurent Roybon
- Department of Experimental Medical Science and MultiPark and Lund Stem Cell CenterFaculty of Medicine, Lund UniversityLundSweden
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
- Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
| | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
- Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Dong YT, Cao K, Tan LC, Wang XL, Qi XL, Xiao Y, Guan ZZ. Stimulation of SIRT1 Attenuates the Level of Oxidative Stress in the Brains of APP/PS1 Double Transgenic Mice and in Primary Neurons Exposed to Oligomers of the Amyloid-β Peptide. J Alzheimers Dis 2019; 63:283-301. [PMID: 29614660 DOI: 10.3233/jad-171020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the study, we examined whether the silent information regulator 1 (SIRT1) can attenuate oxidative stress in the brains of mice carrying the APP/PS1 double mutation and/or in primary neonatal rat neurons exposed to oligomers of amyloid-β peptide (AβOs). Starting at 4 or 8 months of age, the transgenic mice were treated with resveratrol (RSV, a stimulator of SIRT1) or suramin (an inhibitor) (each 20 mg/kg BW/day) for two months. The primary neurons were exposed to AβOs (0.5 μM) for 48 h and thereafter RSV (20 μM) or suramin (300 mg/ml) for 24 h. Cell viability was assessed by the CCK-8 assay; SIRT1 protein and mRNA determined by western blotting and real-time PCR, respectively; senile plaques examined immunohistochemically; ROS monitored by flow cytometry; and the contents of OH-, H2O2, O2·-, and MDA, and the activities of SOD and GSH-Px measured by standard biochemical procedures. In comparison to wild-type mice or untreated primary neurons, the expression of SIRT1 was significantly lower in the brains of APP/PS1 mice or neurons exposed to AβOs. In these same systems, increased numbers of senile plaques and a high level of oxidative stress were apparent. Interestingly, these two latter changes were attenuated by treatment with RSV, but enhanced by suramin. These findings indicate that SIRT1 may be neuroprotective.
Collapse
Affiliation(s)
- Yang-Ting Dong
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Kun Cao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Long-Chun Tan
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Yan Xiao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| |
Collapse
|
14
|
de la Torre J. The Vascular Hypothesis of Alzheimer's Disease: A Key to Preclinical Prediction of Dementia Using Neuroimaging. J Alzheimers Dis 2019; 63:35-52. [PMID: 29614675 DOI: 10.3233/jad-180004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The vascular hypothesis of Alzheimer's disease (VHAD) was proposed 24 years ago from observations made in our laboratory using aging rats subjected to chronic brain hypoperfusion. In recent years, VHAD has become a mother-lode to numerous neuroimaging studies targeting cerebral hemodynamic changes, particularly brain hypoperfusion in elderly patients at risk of developing Alzheimer's disease (AD). There is a growing consensus among neuroradiologists that brain hypoperfusion is likely involved in the pathogenesis of AD and that disturbed cerebral blood flow (CBF) can serve as a key biomarker for predicting conversion of mild cognitive impairment to AD. The use of cerebral hypoperfusion as a preclinical predictor of AD is becoming decisive in stratifying low and high risk patients that may develop cognitive decline and for assessing the effectiveness of therapeutic interventions. There is currently an international research drive from neuroimaging groups to seek new perspectives that can broaden our understanding of AD and improve lifestyle. Diverse neuroimaging methods are currently being used to monitor normal and dyscognitive brain activity. Some techniques are very powerful and can detect, diagnose, quantify, prognose, and predict cognitive decline before AD onset, even from a healthy cognitive state. Multimodal imaging offers new insights in the treatment and prevention of cognitive decline during advanced aging and better understanding of the functional and structural organization of the human brain. This review discusses the impact the VHAD and CBF are having on the neuroimaging technology that can usher practical strategies to help prevent AD.
Collapse
Affiliation(s)
- Jack de la Torre
- Department of Psychology, University of Texas, Austin, Austin, TX, USA
| |
Collapse
|
15
|
Reciprocal Predictive Relationships between Amyloid and Tau Biomarkers in Alzheimer's Disease Progression: An Empirical Model. J Neurosci 2019; 39:7428-7437. [PMID: 31350262 DOI: 10.1523/jneurosci.1056-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need to understand the relationships between amyloid-β (Aβ) and tau in the progression of Alzheimer's disease to identify treatment targets. Here we examine reciprocal predictions of brain Aβ burden quantified by positron emission tomography and CSF concentrations of Aβ42 and phosphorylated tau (p-tau). Each biomarker was examined over 48 months in two separate cross-lagged models; one in asymptomatic healthy elderly people (men and women), and one in patients with Alzheimer's disease (AD) dementia or mild cognitive impairment (MCI). The models examine predictions of each biomarker on the progression of the others, considering each previous and concurrent measure. In healthy elderly, lower CSF Aβ42 predicted Aβ deposition and reciprocally, Aβ burden predicted a decrease in CSF Aβ42. Lower CSF Aβ42 predicted an increase in CSF p-tau, and CSF p-tau predicted Aβ deposition. In AD/MCI, lower CSF Aβ42 predicted Aβ deposition and Aβ burden reciprocally predicted CSF Aβ42 changes; however, in contrast to healthy elderly, CSF p-tau concentrations did not predict Aβ biomarkers, or vice versa. In post hoc models examining cognitive status, CSF Aβ42 predicted Mini Mental State Examination (MMSE) scores in healthy elderly, whereas Aβ burden and CSF p-tau predicted MMSE scores in AD/MCI. The findings describe reciprocal predictions between Aβ and tau biomarkers in healthy elderly and they implicate mechanisms underlying low CSF Aβ42 in Alzheimer's disease pathogenesis and progression. In symptomatic Alzheimer's disease, CSF Aβ42 and Aβ deposition predicted each other; however, Aβ and CSF p-tau progressed independently and they independently predicted cognitive decline.SIGNIFICANCE STATEMENT This study offers empirical evidence concerning the hypothesized "amyloid cascade", as it progressed over 4 years in healthy elderly people and in Alzheimer's disease patients. In healthy elderly, CSF amyloid changes predicted amyloid deposition, CSF phosphorylated tau concentrations, and a decline in cognitive status. Phosphorylated tau concentrations specifically predicted amyloid deposition. In Alzheimer's disease patients, although amyloid deposition and CSF amyloid changes continued to "cascade", there was no evidence to suggest that amyloid and tau biomarkers predicted each other, although both amyloid deposition and CSF tau progression predicted cognitive decline independently. Taking advantage of repeated amyloid PET and CSF measures, this dynamic view offers new insight into the progression of Alzheimer's disease biomarkers and their relationships with cognitive decline.
Collapse
|
16
|
Relation of Serum Plasmalogens and APOE Genotype to Cognition and Dementia in Older Persons in a Cross-Sectional Study. Brain Sci 2019; 9:brainsci9040092. [PMID: 31022959 PMCID: PMC6523320 DOI: 10.3390/brainsci9040092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/18/2023] Open
Abstract
Using a community sample of 1205 elderly persons, we investigated the associations and potential interactions between Apolipoprotein E (APOE) genotype and serum phosphatidylethanolamine (PlsEtn) on cognition and dementia. For each person, APOE genotype, PlsEtn Biosynthesis value (PBV, the combination of three key PlsEtn species), cognition (the combination of five specific cognitive domains), and diagnosis of dementia was determined. APOE genotype and PBV were observed to be non-interacting (p > 0.05) and independently associated with cognition: APOE (relative to ε3ε3:ε2ε3 (Coef = 0.14, p = 4.2 × 10−2); ε3ε4/ε4ε4 (Coef = −0.22, p = 6.2 × 10−5); PBV (Coef = 0.12, p = 1.7 × 10−7) and dementia: APOE (relative to ε3ε3:ε2ε3 (Odds Ratio OR = 0.44, p = 3.0 × 10−2); ε3ε4/ε4ε4 (OR = 2.1, p = 2.2 × 10−4)); PBV (OR = 0.61, p = 3.3 × 10−6). Associations are expressed per standard deviation (SD) and adjusted for serum lipids and demographics. Due to the independent and non-interacting nature of the APOE and PBV associations, the prevalence of dementia in APOE ε3ε4/ε4ε4 persons with high PBV values (>1 SD from mean) was observed to be the same as APOE ε3ε3 persons (14.3% versus 14.0%). Similarly, the prevalence of dementia in APOE ε3ε3 persons with high PBV values was only 5.7% versus 6.7% for APOE ε2ε3 persons. The results of these analyses indicate that the net effect of APOE genotype on cognition and the prevalence of dementia is dependent upon the plasmalogen status of the person.
Collapse
|
17
|
Dionisio-Santos DA, Olschowka JA, O'Banion MK. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. J Neuroinflammation 2019; 16:74. [PMID: 30953557 PMCID: PMC6449993 DOI: 10.1186/s12974-019-1453-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is considered one of the cardinal features of Alzheimer’s disease (AD). Neuritic plaques composed of amyloid β and neurofibrillary tangle-laden neurons are surrounded by reactive astrocytes and microglia. Exposure of microglia, the resident myeloid cell of the CNS, to amyloid β causes these cells to acquire an inflammatory phenotype. While these reactive microglia are important to contain and phagocytose amyloid plaques, their activated phenotype impacts CNS homeostasis. In rodent models, increased neuroinflammation promoted by overexpression of proinflammatory cytokines can cause an increase in hyperphosphorylated tau and a decrease in hippocampal function. The peripheral immune system can also play a detrimental or beneficial role in CNS inflammation. Systemic inflammation can increase the risk of developing AD dementia, and chemokines released directly by microglia or indirectly by endothelial cells can attract monocytes and T lymphocytes to the CNS. These peripheral immune cells can aid in amyloid β clearance or modulate microglia responses, depending on the cell type. As such, several groups have targeted the peripheral immune system to modulate chronic neuroinflammation. In this review, we focus on the interplay of immunomodulating factors and cell types that are being investigated as possible therapeutic targets for the treatment or prevention of AD.
Collapse
Affiliation(s)
- Dawling A Dionisio-Santos
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - John A Olschowka
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
18
|
Assessment of diets containing curcumin, epigallocatechin-3-gallate, docosahexaenoic acid and α-lipoic acid on amyloid load and inflammation in a male transgenic mouse model of Alzheimer's disease: Are combinations more effective? Neurobiol Dis 2019; 124:505-519. [DOI: 10.1016/j.nbd.2018.11.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
|
19
|
Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer's disease. Acta Neuropathol 2018; 136:663-689. [PMID: 30349969 PMCID: PMC6208728 DOI: 10.1007/s00401-018-1918-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The dominant hypothesis of Alzheimer’s disease (AD) aetiology, the neuropathological guidelines for diagnosing AD and the majority of high-profile therapeutic efforts, in both research and in clinical practice, have been built around one possible causal factor, amyloid-β (Aβ). However, the causal link between Aβ and AD remains unproven. Here, in the context of a detailed assessment of historical and contemporary studies, we raise critical questions regarding the role of Aβ in the definition, diagnosis and aetiology of AD. We illustrate that a holistic view of the available data does not support an unequivocal conclusion that Aβ has a central or unique role in AD. Instead, the data suggest alternative views of AD aetiology are potentially valid, at this time. We propose that an unbiased way forward for the field, beyond the current Aβ-centric approach, without excluding a role for Aβ, is required to come to an accurate understanding of AD dementia and, ultimately, an effective treatment.
Collapse
|
20
|
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.
Collapse
Affiliation(s)
- Eric Tönnies
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Beesley S, Olcese J, Saunders C, Bienkiewicz EA. Combinatorial Treatment Effects in a Cell Culture Model of Alzheimer's Disease. J Alzheimers Dis 2018; 55:1155-1166. [PMID: 27814295 DOI: 10.3233/jad-160459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, and as its prevalence increases, so does its detrimental impact on society. The currently available therapies have limited efficacy, leaving AD patients on an irrevocably fatal path of this disease. OBJECTIVE The purpose of this study was to test efficacy of a novel combinatorial treatment approach to alleviate AD-like pathology. METHODS We selected four naturally occurring compounds and used them in different combinations to test their effect on AD-like pathology. Employing a well-established cell culture AD model system, we evaluated levels of several diverse biomarkers associated with a number of cellular pathways associated with AD. The readouts included: amyloid-β peptides, anti-inflammatory and anti-apoptotic proteins, oxidative enzymes, and reactive oxygen species. RESULTS Using this approach, we demonstrated that the compounds delivered in combination had higher efficacy than individual treatments. Specifically, we observed significant reduction in levels of the amyloid-β peptides, as well as pro-inflammatory proteins and reactive oxygen species. Similarly, delivery of compounds in combination resulted in an increased expression of anti-apoptotic proteins and anti-oxidative enzymes. Collectively, these modifications in AD pathology biomarkers reflect a promising therapeutic and preventive strategy to combat this disease. CONCLUSION The above findings support a novel therapeutic approach to address a currently unmet medical need, which would benefit not only AD patients and their caregivers, but also society as a whole.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine, Florida State University, FL, USA
| | - James Olcese
- Department of Biomedical Sciences, College of Medicine, Florida State University, FL, USA.,Center for Brain Repair, College of Medicine, Florida State University, FL, USA
| | - Charles Saunders
- Department of Behavioral Sciences and Social Medicine, College of Medicine, Florida State University, FL, USA
| | - Ewa A Bienkiewicz
- Department of Biomedical Sciences, College of Medicine, Florida State University, FL, USA.,Center for Brain Repair, College of Medicine, Florida State University, FL, USA
| |
Collapse
|
22
|
Steen Jensen C, Portelius E, Siersma V, Høgh P, Wermuth L, Blennow K, Zetterberg H, Waldemar G, Gregers Hasselbalch S, Hviid Simonsen A. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease. Dement Geriatr Cogn Disord 2018; 42:146-158. [PMID: 27643858 DOI: 10.1159/000449408] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical activity. AIM The objective of this study was to elucidate the effect of 16 weeks of moderate- to high-intensity physical exercise on the biomarkers of AD, with special emphasis on the amyloidogenic pathway. METHODS From a total of 53 patients with AD participating in the Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients for apolipoprotein E ε4 (ApoE ε4) genotype. RESULTS We found no effect of 16 weeks of physical exercise on the selected biomarkers, and no effect of ApoE ε4 genotype. CONCLUSION Our findings suggest that the possible effect of physical exercise on cognition in patients with AD is not due to modulation of Aβ, t-tau, p-tau and sAPP species.
Collapse
Affiliation(s)
- Camilla Steen Jensen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dong YX, Zhang HY, Li HY, Liu PH, Sui Y, Sun XH. Association between Alzheimer's disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regen Res 2018; 13:908-914. [PMID: 29863022 PMCID: PMC5998637 DOI: 10.4103/1673-5374.232486] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The APPSwe/PSEN1dE9 (APP/PS1) transgenic mouse model is an Alzheimer's disease mouse model exhibiting symptoms of dementia, and is commonly used to explore pathological changes in the development of Alzheimer's disease. Previous clinical autopsy and imaging studies suggest that Alzheimer's disease patients have white matter and oligodendrocyte damage, but the underlying mechanisms of these have not been revealed. Therefore, the present study used APP/PS1 mice to assess cognitive change, myelin loss, and corresponding changes in oligodendrocytes, and to explore the underlying mechanisms. Morris water maze tests were performed to evaluate cognitive change in APP/PS1 mice and normal C57BL/6 mice aged 3 and 6 months. Luxol fast blue staining of the corpus callosum and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for myelin basic protein (MBP) mRNA were carried out to quantify myelin damage. Immunohistochemistry staining for NG2 and qRT-PCR for monocarboxylic acid transporter 1 (MCT1) mRNA were conducted to assess corresponding changes in oligodendrocytes. Our results demonstrate that compared with C57BL/6 mice, there was a downregulation of MBP mRNA in APP/PS1 mice aged 3 months. This became more obvious in APP/PS1 mice aged 6 months accompanied by other abnormalities such as prolonged escape latency in the Morris water maze test, shrinkage of the corpus callosum, upregulation of NG2-immunoreactive cells, and downregulation of MCT1 mRNA. These findings indicate that the involvement of early demyelination at 3 months and the oligodendrocyte dysfunction at 6 months in APP/PS1 mice are in association with Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Yu-Xia Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Neurology, Fushun Second Hospital, Fushun, Liaoning Province, China
| | - Hui-Yu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hui-Yuan Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Pei-Hui Liu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang; Department of Neurology, Huludao Central Hospital, Huludao, Liaoning Province, China
| | - Yi Sui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University; Department of Neurology, Shenyang First People's Hospital, Shenyang, Liaoning Province, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
24
|
Xu J, Li D, Zheng T, Lu Y. β-amyloid expression in age-related cataract lens epithelia and the effect of β-amyloid on oxidative damage in human lens epithelial cells. Mol Vis 2017; 23:1015-1028. [PMID: 29386875 PMCID: PMC5757856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/25/2017] [Indexed: 11/06/2022] Open
Abstract
Purpose To evaluate the changes in β-amyloid (Aβ) expression in age-related cataract (ARC) lens epithelia and the effect of Aβ on oxidative damage in human lens epithelial cells (HLECs). Methods Specimens of lens epithelia and aqueous humor were obtained from 255 cataract surgery patients and 48 healthy donor eyes. The ARC samples were divided into four groups according to the Lens Opacities Classification System III, with increasing severity from Group I to Group IV. The HLECs were cultured under healthy or oxidative conditions with or without Aβ pretreatment. Western blot, immunofluorescence, real-time PCR, and enzyme-linked immunosorbent assay were performed to detect Aβ and β-amyloid precursor protein (APP) expression. β-secretase activity was analyzed in lens epithelia and HLECs. The effect of Aβ on the viability of HLECs under oxidative conditions was investigated using a cell viability assay. Results Compared with the healthy group, the Aβ 1-42 expression levels in lens epithelia and Aβ 1-40 expression levels in aqueous humor decreased in Groups I, II, and III (p<0.05) but were unchanged in Group IV. In contrast, APP expression levels increased in Groups I, II, and III (p<0.05) compared with those in the healthy group but were unchanged in Group IV. H2O2-treated HLECs exhibited decreased amounts of Aβ 1-42 and increased amounts of APP. β-secretase activity decreased in the lens epithelia of all four subgroups of ARCs compared with that in the lens epithelia of healthy subjects and decreased in H2O2-treated HLECs. Furthermore, treatment with nanomolar concentrations (0.2 nM to 10 nM) of Aβ could protect cell viability from oxidative damage. Conclusions Aβ and APP expression levels exhibited differential changes during the development of ARC, indicating active feedback of this protein processing. Decreased expression of physiologically generated Aβ in the early and mid-stages of ARC development might be one of the potential mechanisms accelerating oxidative stress in HLECs during cataractogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianyu Zheng
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
25
|
Veerappan K, Natarajan S, Ethiraj P, Vetrivel U, Samuel S. Inhibition of IKKβ by celastrol and its analogues - an in silico and in vitro approach. PHARMACEUTICAL BIOLOGY 2017; 55:368-373. [PMID: 27931154 PMCID: PMC6130723 DOI: 10.1080/13880209.2016.1241809] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/01/2016] [Accepted: 09/23/2016] [Indexed: 05/25/2023]
Abstract
CONTEXT Alzheimer's disease (AD) is the most common form of dementia affecting the aged population and neuroinflammation is one of the most observed AD pathologies. NF-κB is the central regulator of inflammation and inhibitor κB kinase (IKK) is the converging point in NF-κB activation. Celastrol is a natural triterpene used as a treatment for inflammatory conditions. OBJECTIVE This study determines the neuroprotective and inhibitory effect of celastrol on amyloid beta1-42 (Aβ1-42) induced cytotoxicity and IKKβ activity, respectively. MATERIALS AND METHODS Retinoic acid differentiated IMR-32 cells were treated with celastrol (1 μM) before treatment with Aβ1-42 (IC30 10 μM) for 24 h. The cytotoxicity and IKK phosphorylation were measured by MTT and western blotting analysis, respectively. We screened 36 celastrol analogues for the IKKβ inhibition by molecular docking and evaluated their drug like properties to delineate the neuroprotective effects. RESULTS Celastrol (1 μM) inhibited Aβ1-42 (10 μM) induced IκBα phosphorylation and protected IMR-32 cells from cell death. Celastrol and 25 analogues showed strong binding affinity with IKKβ as evidenced by strong hydrogen-bonding interactions with critical active site residues. All the 25 analogues displayed strong anti-inflammatory properties but only 11 analogues showed drug-likeness. Collectively, molecule 15 has highest binding affinity, CNS activity and more drug likeness than parent compound celastrol. DISCUSSION AND CONCLUSION The decreased expression of pIκBα in celastrol pretreated cells affirms the functional representation of inhibited IKKβ activity in these cells. The neuroprotective potentials of celastrol and its analogues may be related to IKK inhibition.
Collapse
Affiliation(s)
- Karpagam Veerappan
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, Tamilnadu, India
| | | | - Purushoth Ethiraj
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM University, Kattankulathur, Tamilnadu, India
| | - Umashankar Vetrivel
- Center for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu, India
| | - Shila Samuel
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, Tamilnadu, India
| |
Collapse
|
26
|
Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, Shakirzyanova A, Leskelä S, Sarajärvi T, Viitanen M, Rinne JO, Hiltunen M, Haapasalo A, Giniatullin R, Tavi P, Zhang SC, Kanninen KM, Hämäläinen RH, Koistinaho J. PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports 2017; 9:1885-1897. [PMID: 29153989 PMCID: PMC5785689 DOI: 10.1016/j.stemcr.2017.10.016] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder and the leading cause of cognitive impairment. Due to insufficient understanding of the disease mechanisms, there are no efficient therapies for AD. Most studies have focused on neuronal cells, but astrocytes have also been suggested to contribute to AD pathology. We describe here the generation of functional astrocytes from induced pluripotent stem cells (iPSCs) derived from AD patients with PSEN1 ΔE9 mutation, as well as healthy and gene-corrected isogenic controls. AD astrocytes manifest hallmarks of disease pathology, including increased β-amyloid production, altered cytokine release, and dysregulated Ca2+ homeostasis. Furthermore, due to altered metabolism, AD astrocytes show increased oxidative stress and reduced lactate secretion, as well as compromised neuronal supportive function, as evidenced by altering Ca2+ transients in healthy neurons. Our results reveal an important role for astrocytes in AD pathology and highlight the strength of iPSC-derived models for brain diseases. PSEN1 mutant AD astrocytes manifest hallmarks of AD pathology Altered mitochondrial metabolism in AD astrocytes increases oxidative stress AD astrocytes reduce the calcium signaling activity of healthy neurons Astrocytes are important in the pathogenesis of AD
Collapse
Affiliation(s)
- Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | | | - Nikolay Naumenko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Katja Puttonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Šárka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Max Gubert Olivé
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anastasia Shakirzyanova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Stina Leskelä
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Timo Sarajärvi
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Matti Viitanen
- Department of Geriatrics, University of Turku, Turku City Hospital, 20700 Turku, Finland; Department of Geriatrics, Karolinska Institutet and Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, 20700 Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, 20700 Turku, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Rashid Giniatullin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pasi Tavi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Departments of Neuroscience and Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
27
|
Gongol B, Marin TL, Jeppson JD, Mayagoitia K, Shin S, Sanchez N, Kirsch WM, Vinters HV, Wilson CG, Ghribi O, Soriano S. Cellular hormetic response to 27-hydroxycholesterol promotes neuroprotection through AICD induction of MAST4 abundance and kinase activity. Sci Rep 2017; 7:13898. [PMID: 29066835 PMCID: PMC5654999 DOI: 10.1038/s41598-017-13933-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/03/2017] [Indexed: 01/10/2023] Open
Abstract
The function of the amyloid precursor protein (APP) in brain health remains unclear. This study elucidated a novel cytoprotective signaling pathway initiated by the APP transcriptionally active intracellular domain (AICD) in response to 27-hydroxycholesterol (27OHC), an oxidized cholesterol metabolite associated with neurodegeneration. The cellular response to 27OHC was hormetic, such that low, but not high, doses promoted AICD transactivation of microtubule associated serine/threonine kinase family member 4 (MAST4). MAST4 in turn phosphorylated and inhibited FOXO1-dependent transcriptional repression of rhotekin 2 (RTKN2), an oxysterol stress responder, to optimize cell survival. A palmitate-rich diet, which increases serum 27OHC, or APP ablation, abrogated this response in vivo. Further, this pathway was downregulated in human Alzheimer's Disease (AD) brains but not in frontotemporal dementia brains. These results unveil MAST4 as functional kinase of FOXO1 in a 27OHC AICD-driven, hormetic pathway providing insight for therapeutic approaches against cholesterol associated neuronal disorders.
Collapse
Affiliation(s)
- Brendan Gongol
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Cardiopulmonary Sciences, Schools of Allied Health Professions and Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Traci L Marin
- Cardiopulmonary Sciences, Schools of Allied Health Professions and Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - John D Jeppson
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Karina Mayagoitia
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Samuel Shin
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nicholas Sanchez
- Department of Basic Sciences, Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wolff M Kirsch
- Department of Basic Sciences, Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Harry V Vinters
- Section of Neuropathology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, 90095, USA
| | - Christopher G Wilson
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Othman Ghribi
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Salvador Soriano
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
28
|
Obasse I, Taylor M, Fullwood NJ, Allsop D. Development of proteolytically stable N-methylated peptide inhibitors of aggregation of the amylin peptide implicated in type 2 diabetes. Interface Focus 2017; 7:20160127. [PMID: 29147551 DOI: 10.1098/rsfs.2016.0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Islet amyloid polypeptide, also known as amylin, is the main component of the amyloid deposits present in approximately 90% of people with type 2 diabetes mellitus (T2DM). In this disease, amylin aggregates into multimeric β-pleated sheet structures which cause damage to pancreatic islet β-cells. Inhibitors of early-stage amylin aggregation could therefore provide a disease-modifying treatment for T2DM. In this study, overlapping peptides were designed to target the 'binding' region (RLANFLVHSS, residues 11-20) of human amylin, and their effects on amyloid fibril formation were determined by thioflavin-T assay. The first generation peptides showed less than 50% inhibition of aggregation, but a second generation peptide (H2N-RGANFLVHGR-CONH2) showed strong inhibitory effects on amylin aggregation, and this was confirmed by negative stain electron microscopy. Cytotoxicity studies revealed that this peptide protected human pancreatic 1.4E7 (ECACC 10070102) insulin-secreting cells from the toxic effects of human amylin. Unlike the retro-inverso version of this peptide, which stimulated aggregation, two N-methylated peptides (H2N-RGAmNFmLVmHGR-CONH2 and H2N-RGANmFLmVHmR-CONH2) gave very clear dose-dependent inhibition of fibril formation. These two peptides were also stable against a range of different proteolytic enzymes, and in human plasma. These N-methylated peptides could provide a novel treatment for slowing progression of T2DM.
Collapse
Affiliation(s)
- Idira Obasse
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| | - Mark Taylor
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| |
Collapse
|
29
|
Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, Xu Y, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 2017; 36:3356-3371. [PMID: 29018038 PMCID: PMC5731665 DOI: 10.15252/embj.201796797] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by β‐secretase to generate a 99‐aa C‐terminal fragment (C99) that is then cleaved by γ‐secretase to generate the β‐amyloid (Aβ) found in senile plaques. In previous reports, we and others have shown that γ‐secretase activity is enriched in mitochondria‐associated endoplasmic reticulum (ER) membranes (MAM) and that ER–mitochondrial connectivity and MAM function are upregulated in AD. We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ‐secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Jorge Montesinos
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Medical Campus, New York, NY, USA
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mark F Mehler
- Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Geoffrey S Perumal
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zachary Z Freyberg
- Departments of Psychiatry and Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebeca Acin-Perez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jose Antonio Enriquez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Tardiff DF, Brown LE, Yan X, Trilles R, Jui NT, Barrasa MI, Caldwell KA, Caldwell GA, Schaus SE, Lindquist S. Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism. ACS Chem Neurosci 2017; 8:2039-2055. [PMID: 28628299 PMCID: PMC5705239 DOI: 10.1021/acschemneuro.7b00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by β-amyloid (Aβ), the peptide implicated in Alzheimer's disease. Rescue of Aβ toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aβ toxicity by reducing Aβ levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aβ in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aβ peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aβ toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.
Collapse
Affiliation(s)
- Daniel F. Tardiff
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Richard Trilles
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nathan T. Jui
- Department of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - M. Inmaculada Barrasa
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Scott E. Schaus
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department of Biology, MIT, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Osgood D, Miller MC, Messier AA, Gonzalez L, Silverberg GD. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier. Neurobiol Aging 2017; 57:178-185. [PMID: 28654861 PMCID: PMC5728118 DOI: 10.1016/j.neurobiolaging.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation.
Collapse
Affiliation(s)
- Doreen Osgood
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA
| | - Miles C Miller
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA
| | - Arthur A Messier
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA
| | - Liliana Gonzalez
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Gerald D Silverberg
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA.
| |
Collapse
|
32
|
Kwon Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Exp Gerontol 2017; 95:39-43. [PMID: 28528007 DOI: 10.1016/j.exger.2017.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
|
33
|
Li JM, Huang LL, Liu F, Tang BS, Yan XX. Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine? BMC Neurol 2017; 17:163. [PMID: 28841840 PMCID: PMC5574137 DOI: 10.1186/s12883-017-0942-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer’s disease (AD). CAA is associated with vascular injury and may cause devastating neurological outcomes. No therapeutic approach is available for this lesion to date. Main body ß-Secretase 1 (BACE1) is the enzyme initiating Aß production. Brain permeable BACE1 inhibitors targeting primarily at the parenchymal plaque pathology are currently evaluated in clinical trials. This article presents findings in support of a role of BACE1 elevation in the development of CAA, in addition to plaque pathogenesis. The rationale, feasibility, benefit and strategic issues for developing BACE1 inhibitors against CAA are discussed. Brain impermeable compounds are considered preferable as they might exhibit sufficient anti-CAA efficacy without causing significant neuronal/synaptic side effects. Conclusion Early pharmacological intervention to the pathogenesis of CAA is expected to provide significant protection for cerebral vascular health and hence brain health. Brain impermeable BACE1 inhibitors should be optimized and tested as potential anti-CAA therapeutics.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Li-Ling Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, 410013, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Bei-Sha Tang
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao-Xin Yan
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, 410013, China.
| |
Collapse
|
34
|
Berger AL. Insulin resistance and reduced brain glucose metabolism in the aetiology of Alzheimer’s disease. JOURNAL OF INSULIN RESISTANCE 2016. [DOI: 10.4102/jir.v1i1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Significant epidemiological and clinical evidence has emerged that suggests Alzheimer’s disease (AD) can be added to the list of chronic illnesses that are primarily caused by modern diets and lifestyles at odds with human physiology. High intakes of refined carbohydrates insufficient physical activity, suboptimal sleep quantity and quality, and other factors that may contribute to insulin resistance combine to create a perfect storm of glycation and oxidative stress in the brain. Specific neurons lose the ability to metabolise and harness energy from glucose, ultimately resulting in neuronal degeneration and death. Simultaneously, chronic peripheral hyperinsulinaemia prevents ketogenesis, thus depriving struggling neurons of a highly efficient alternative fuel substrate. The intimate association between type 2 diabetes and AD suggests that they have common underlying causes, namely insulin resistance and perturbed glucose metabolism. Preclinical evidence of AD is detectable decades before over symptoms appear, indicating that AD progresses over time, with observable signs manifesting only after the brain’s compensatory mechanisms have failed and widespread neuronal atrophy begins to interfere with cognition and performance of daily life tasks. That dietary and environmental triggers play pivotal roles in causing AD suggests that nutrition and lifestyle based interventions may hold the key to ameliorating or preventing this debilitating condition for which conventional pharmaceutical treatments are largely ineffective. Results from small scale clinical studies indicate that dietary and lifestyle strategies may be effective for reversing dementia and cognitive impairment. Increased research efforts should be dedicated towards this promising avenue in the future.
Collapse
|
35
|
Bronzuoli MR, Iacomino A, Steardo L, Scuderi C. Targeting neuroinflammation in Alzheimer's disease. J Inflamm Res 2016; 9:199-208. [PMID: 27843334 PMCID: PMC5098782 DOI: 10.2147/jir.s86958] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Almost 47 million people suffer from dementia worldwide, with an estimated new case diagnosed every 3.2 seconds. Alzheimer’s disease (AD) accounts for approximately 60%–80% of all dementia cases. Given this evidence, it is clear dementia represents one of the greatest global public health challenges. Currently used drugs alleviate the symptoms of AD but do not treat the underlying causes of dementia. Hence, a worldwide quest is under way to find new treatments to stop, slow, or even prevent AD. Besides the classic targets of the oldest therapies, represented by cholinergic and glutamatergic systems, β-amyloid (Aβ) plaques, and tau tangles, new therapeutic approaches have other targets. One of the newest and most promising strategies is the control of reactive gliosis, a multicellular response to brain injury. This phenomenon occurs as a consequence of a persistent glial activation, which leads to cellular dysfunctions and neuroinflammation. Reactive gliosis is now considered a key abnormality in the AD brain. It has been demonstrated that reactive astrocytes surround both Aβ plaques and tau tangles. In this condition, glial cells lose some of their homeostatic functions and acquire a proinflammatory phenotype amplifying neuronal damage. So, molecules that are able to restore their physiological functions and control the neuroinflammatory process offer new therapeutic opportunities for this devastating disease. In this review, we describe the role of neuroinflammation in the AD pathogenesis and progression and then provide an overview of the recent research with the aim of developing new therapies to treat this disorder.
Collapse
Affiliation(s)
- Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Aniello Iacomino
- Faculty of Psychology, University of Rome "G. Marconi", Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Luczkowski M. “No screams and cries will convince us that white is white and black is black”, an ode to the defenders of amyloid cascade hypothesis of Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
38
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
39
|
Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer's disease. Sci Rep 2016; 6:32553. [PMID: 27581852 PMCID: PMC5007504 DOI: 10.1038/srep32553] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
The oligomeric amyloid-β (Aβ) peptide is thought to contribute to the subtle amnesic changes in Alzheimer’s disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Aβ42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Aβ enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Aβ for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss.
Collapse
|
40
|
Guo XD, Sun GL, Zhou TT, Xu X, Zhu ZY, Rukachaisirikul V, Hu LH, Shen X. Small molecule LX2343 ameliorates cognitive deficits in AD model mice by targeting both amyloid β production and clearance. Acta Pharmacol Sin 2016; 37:1281-1297. [PMID: 27569389 PMCID: PMC5057240 DOI: 10.1038/aps.2016.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
AIM Streptozotocin (STZ) is widely used to induce oxidative damage and to impair glucose metabolism, apoptosis, and tau/Aβ pathology, eventually leading to cognitive deficits in both in vitro and in vivo models of Alzheimer's disease (AD). In this study, we constructed a cell-based platform using STZ to induce stress conditions mimicking the complicated pathologies of AD in vitro, and evaluated the anti-amyloid effects of a small molecule, N-(1,3-benzodioxol-5-yl)-2-[5-chloro-2-methoxy(phenylsulfonyl)anilino]acetamide (LX2343) in the amelioration of cognitive deficits in AD model mice. METHODS Cell-based assays for screening anti-amyloid compounds were established by assessing Aβ accumulation in HEK293-APPsw and CHO-APP cells, and Aβ clearance in primary astrocytes and SH-SY5Y cells after the cells were treated with STZ in the presence of the test compounds. Autophagic flux was observed using confocal laser scanning microscopy. APP/PS1 transgenic mice were administered LX2343 (10 mg·kg-1·d-1, ip) for 100 d. After LX2343 administration, cognitive ability of the mice was evaluated using Morris water maze test, and senile plaques in the brains were detected using Thioflavine S staining. ELISA assay was used to evaluate Aβ and sAPPβ levels, while Western blot analysis was used to measure the signaling proteins in both cell and animal brains. RESULTS LX2343 (5-20 μmol/L) dose-dependently decreased Aβ accumulation in HEK293-APPsw and CHO-APP cells, and promoted Aβ clearance in SH-SY5Y cells and primary astrocytes. The anti-amyloid effects of LX2343 were attributed to suppressing JNK-mediated APPThr668 phosphorylation, thus inhibiting APP cleavage on one hand, and inhibiting BACE1 enzymatic activity with an IC50 value of 11.43±0.36 μmol/L, on the other hand. Furthermore, LX2343 acted as a non-ATP competitive PI3K inhibitor to negatively regulate AKT/mTOR signaling, thus promoting autophagy, and increasing Aβ clearance. Administration of LX2343 in APP/PS1 transgenic mice significantly ameliorated cognitive deficits and markedly ameliorated the Aβ pathology in their brains. CONCLUSION LX2343 ameliorates cognitive dysfunction in APP/PS1 transgenic mice via both Aβ production inhibition and clearance promotion, which highlights the potential of LX2343 in the treatment of AD.
Collapse
Affiliation(s)
- Xiao-dan Guo
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-long Sun
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-ting Zhou
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Xu
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-yuan Zhu
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vatcharin Rukachaisirikul
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Li-hong Hu
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Shen
- CAS Key Laboratory of Receptor Research
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Yan R, Fan Q, Zhou J, Vassar R. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer's disease. Neurosci Biobehav Rev 2016; 65:326-40. [PMID: 27044452 PMCID: PMC4856578 DOI: 10.1016/j.neubiorev.2016.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Over the past two decades, many studies have identified significant contributions of toxic β-amyloid peptides (Aβ) to the etiology of Alzheimer's disease (AD), which is the most common age-dependent neurodegenerative disease. AD is also recognized as a disease of synaptic failure. Aβ, generated by sequential proteolytic cleavages of amyloid precursor protein (APP) by BACE1 and γ-secretase, is one of major culprits that cause this failure. In this review, we summarize current findings on how BACE1-cleaved APP products impact learning and memory through proteins localized on glutamatergic, GABAergic, and dopaminergic synapses. Considering the broad effects of Aβ on all three types of synapses, BACE1 inhibition emerges as a practical approach for ameliorating Aβ-mediated synaptic dysfunctions. Since BACE1 inhibitory drugs are currently in clinical trials, this review also discusses potential complications arising from BACE1 inhibition. We emphasize that the benefits of BACE1 inhibitory drugs will outweigh the concerns.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Zhou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert Vassar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Cuchillo-Ibañez I, Balmaceda V, Mata-Balaguer T, Lopez-Font I, Sáez-Valero J. Reelin in Alzheimer’s Disease, Increased Levels but Impaired Signaling: When More is Less. J Alzheimers Dis 2016; 52:403-16. [DOI: 10.3233/jad-151193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Valeria Balmaceda
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
43
|
Li JM, Cai Y, Liu F, Yang L, Hu X, Patrylo PR, Cai H, Luo XG, Xiao D, Yan XX. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum. Oncotarget 2016; 6:10772-85. [PMID: 25871402 PMCID: PMC4484418 DOI: 10.18632/oncotarget.3599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/20/2015] [Indexed: 01/17/2023] Open
Abstract
Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China.,Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - La Yang
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, China
| | - Xia Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Peter R Patrylo
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Xue-Gang Luo
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Dong Xiao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| |
Collapse
|
44
|
Liu H, Wei C, He H, Liu X. Evaluating Alzheimer's Disease Progression by Modeling Crosstalk Network Disruption. Front Neurosci 2016; 9:523. [PMID: 26834548 PMCID: PMC4718081 DOI: 10.3389/fnins.2015.00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
Aβ, tau, and P-tau have been widely accepted as reliable markers for Alzheimer's disease (AD). The crosstalk between these markers forms a complex network. AD may induce the integral variation and disruption of the network. The aim of this study was to develop a novel mathematic model based on a simplified crosstalk network to evaluate the disease progression of AD. The integral variation of the network is measured by three integral disruption parameters. The robustness of network is evaluated by network disruption probability. Presented results show that network disruption probability has a good linear relationship with Mini Mental State Examination (MMSE). The proposed model combined with Support vector machine (SVM) achieves a relative high 10-fold cross-validated performance in classification of AD vs. normal and mild cognitive impairment (MCI) vs. normal (95% accuracy, 95% sensitivity, 95% specificity for AD vs. normal; 90% accuracy, 94% sensitivity, 83% specificity for MCI vs. normal). This research evaluates the progression of AD and facilitates AD early diagnosis.
Collapse
Affiliation(s)
- Haochen Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Chunxiang Wei
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Xiaoquan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| |
Collapse
|
45
|
Evaluation of the Role of JNK1 in the Hippocampus in an Experimental Model of Familial Alzheimer’s Disease. Mol Neurobiol 2015; 53:6183-6193. [DOI: 10.1007/s12035-015-9522-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/29/2015] [Indexed: 01/18/2023]
|
46
|
Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochem Int 2015; 95:63-74. [PMID: 26529297 DOI: 10.1016/j.neuint.2015.10.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by deposition of amyloid plaques and neurofibrillary tangles, as well as microglial and astroglial activation, and, finally, leading to neuronal dysfunction and death. Current treatments for AD primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for the treatment of AD patients. This review will provide an overview of the antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of a variety of nutraceuticals including curcumin, apigenin, docosahexaenoic acid, epigallocatechin gallate, α-lipoic acid and resveratrol and their potential for AD prevention and treatment. We suggest that therapeutic use of these compounds might lead to a safe strategy to delay the onset of AD or slow down its progression. The continuing investigation of the potential of these substances is necessary as they are promising compounds to yield a possible remedy for this pervasive disease.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sandra Sonego
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; Molecular Medicine Research Group, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Gerald Münch
- Dept of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia; Molecular Medicine Research Group, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
47
|
Puzzo D, Gulisano W, Arancio O, Palmeri A. The keystone of Alzheimer pathogenesis might be sought in Aβ physiology. Neuroscience 2015; 307:26-36. [PMID: 26314631 PMCID: PMC4591241 DOI: 10.1016/j.neuroscience.2015.08.039] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
For several years Amyloid-beta peptide (Aβ) has been considered the main pathogenetic factor of Alzheimer's disease (AD). According to the so called Amyloid Cascade Hypothesis the increase of Aβ triggers a series of events leading to synaptic dysfunction and memory loss as well as to the structural brain damage in the later stage of the disease. However, several evidences suggest that this hypothesis is not sufficient to explain AD pathogenesis, especially considering that most of the clinical trials aimed to decrease Aβ levels have been unsuccessful. Moreover, Aβ is physiologically produced in the healthy brain during neuronal activity and it is needed for synaptic plasticity and memory. Here we propose a model interpreting AD pathogenesis as an alteration of the negative feedback loop between Aβ and its physiological receptors, focusing on alpha7 nicotinic acetylcholine receptors (α7-nAchRs). According to this vision, when Aβ cannot exert its physiological function a negative feedback mechanism would induce a compensatory increase of its production leading to an abnormal accumulation that reduces α7-nAchR function, leading to synaptic dysfunction and memory loss. In this perspective, the indiscriminate Aβ removal might worsen neuronal homeostasis, causing a further impoverishment of learning and memory. Even if further studies are needed to better understand and validate these mechanisms, we believe that to deepen the role of Aβ in physiological conditions might represent the keystone to elucidate important aspects of AD pathogenesis.
Collapse
Affiliation(s)
- D Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, Viale A. Doria 6 (ed. 2), University of Catania, Catania 95125, Italy.
| | - W Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, Viale A. Doria 6 (ed. 2), University of Catania, Catania 95125, Italy
| | - O Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, 630 West 168th Street, Columbia University, New York, NY 10032, USA
| | - A Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, Viale A. Doria 6 (ed. 2), University of Catania, Catania 95125, Italy
| |
Collapse
|
48
|
Venigalla M, Gyengesi E, Münch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen Res 2015; 10:1181-5. [PMID: 26487830 PMCID: PMC4590215 DOI: 10.4103/1673-5374.162686] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder, characterized by deposition of amyloid beta, neurofibrillary tangles, astrogliosis and microgliosis, leading to neuronal dysfunction and loss in the brain. Current treatments for Alzheimer's disease primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for Alzheimer's disease patients. This review will provide an overview of the proven antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of curcumin and apigenin and discuss the potential of these compounds for Alzheimer's disease prevention and treatment. We suggest that these compounds might delay the onset of Alzheimer's disease or slow down its progression, and they should enter clinical trials as soon as possible.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia ; Molecular Medicine Research Group, University of Western Sydney, Penrith, NSW, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia ; National Institute of Complementary Medicine, University of Western Sydney, Penrith, NSW, Australia ; Molecular Medicine Research Group, University of Western Sydney, Penrith, NSW, Australia
| |
Collapse
|
49
|
Beierlein JM, McNamee LM, Walsh MJ, Ledley FD. Patterns of Innovation in Alzheimer's Disease Drug Development: A Strategic Assessment Based on Technological Maturity. Clin Ther 2015; 37:1643-51.e3. [PMID: 26243074 DOI: 10.1016/j.clinthera.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE This article examines the current status of translational science for Alzheimer's disease (AD) drug discovery by using an analytical model of technology maturation. Previous studies using this model have demonstrated that nascent scientific insights and inventions generate few successful leads or new products until achieving a requisite level of maturity. This article assessed whether recent failures and successes in AD research follow patterns of innovation observed in other sectors. METHODS The bibliometric-based Technology Innovation Maturation Evaluation model was used to quantify the characteristic S-curve of growth for AD-related technologies, including acetylcholinesterase, N-methyl-d-aspartate (NMDA) receptors, B-amyloid, amyloid precursor protein, presenilin, amyloid precursor protein secretases, apolipoprotein E4, and transactive response DNA binding protein 43 kDa (TDP-43). This model quantifies the accumulation of knowledge as a metric for technological maturity, and it identifies the point of initiation of an exponential growth stage and the point at which growth slows as the technology is established. FINDINGS In contrast to the long-established acetylcholinesterase and NMDA receptor technologies, we found that amyloid-related technologies reached the established point only after 2000, and that the more recent technologies (eg, TDP-43) have not yet approached this point. The first approvals for new molecular entities targeting acetylcholinesterase and the NMDA receptor occurred an average of 22 years after the respective technologies were established, with only memantine (which was phenotypically discovered) entering clinical trials before this point. In contrast, the 6 lead compounds targeting the formation of amyloid plaques that failed in Phase III trials between 2009 and 2014 all entered clinical trials before the respective target technologies were established. IMPLICATIONS This analysis suggests that AD drug discovery has followed a predictable pattern of innovation in which technological maturity is an important determinant of success in development. Quantitative analysis indicates that the lag in emergence of new products, and the much-heralded clinical failures of recent years, should be viewed in the context of the ongoing maturation of AD-related technologies. Although these technologies were not sufficiently mature to generate successful products a decade ago, they may be now. Analytical models of translational science can inform basic and clinical research results as well as strategic development of new therapeutic products.
Collapse
Affiliation(s)
- Jennifer M Beierlein
- Center for Integration of Science and Industry, Department of Natural and Applied Sciences and Department of Management, Bentley University, Waltham, Massachusetts
| | - Laura M McNamee
- Center for Integration of Science and Industry, Department of Natural and Applied Sciences and Department of Management, Bentley University, Waltham, Massachusetts
| | - Michael J Walsh
- Center for Integration of Science and Industry, Department of Natural and Applied Sciences and Department of Management, Bentley University, Waltham, Massachusetts
| | - Fred D Ledley
- Center for Integration of Science and Industry, Department of Natural and Applied Sciences and Department of Management, Bentley University, Waltham, Massachusetts.
| |
Collapse
|
50
|
Clark IA, Vissel B. Amyloid β: one of three danger-associated molecules that are secondary inducers of the proinflammatory cytokines that mediate Alzheimer's disease. Br J Pharmacol 2015; 172:3714-27. [PMID: 25939581 PMCID: PMC4523330 DOI: 10.1111/bph.13181] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
This review concerns how the primary inflammation preceding the generation of certain key damage-associated molecular patterns (DAMPs) arises in Alzheimer's disease (AD). In doing so, it places soluble amyloid β (Aβ), a protein hitherto considered as a primary initiator of AD, in a novel perspective. We note here that increased soluble Aβ is one of the proinflammatory cytokine-induced DAMPs recognized by at least one of the toll-like receptors on and in various cell types. Moreover, Aβ is best regarded as belonging to a class of DAMPs, as do the S100 proteins and HMBG1, that further exacerbate production of these same proinflammatory cytokines, which are already enhanced, and induces them further. Moreover, variation in levels of other DAMPs of this same class in AD may explain why normal elderly patients can exhibit high Aβ plaque levels, and why removing Aβ or its plaque does not retard disease progression. It may also explain why mouse transgenic models, having been designed to generate high Aβ, can be treated successfully by this approach.
Collapse
Affiliation(s)
- I A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National UniversityCanberra, ACT, Australia
| | - B Vissel
- Neurodegeneration Research Group, Garvan InstituteSydney, NSW, Australia
| |
Collapse
|